Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Biomolecules ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927038

RESUMO

The Actinopterygian and specifically the Teleostean peroxisome proliferator-activated receptors (PPARs) present an impressive variability and complexity in their structures, both at the gene and protein levels. These structural differences may also reflect functional divergence from their mammalian homologs, or even between fish species. This review, taking advantage of the data generated from the whole-genome sequencing of several fish species, highlights the differences in the primary structure of the receptors, while discussing results from the literature pertaining to the functions of fish PPARs and their activation by natural and synthetic compounds.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo , Animais , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Peixes/genética , Peixes/metabolismo
2.
Aging (Albany NY) ; 16(10): 8980-8997, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38814181

RESUMO

Hypertension is a complex disease with unknown causes. Therefore, it's crucial to deeply study its molecular mechanism. The hypertension dataset was obtained from Gene Expression Omnibus data base (GEO), and miRNA regulating central hub genes was screened via weighted gene co-expression network (DEGs) and gene set enrichment (GSEA). Cell experiments validated TSR2's role and the PPAR signaling pathway through western blotting. 500 DEGs were identified for hypertension, mainly enriched in actin cross-linking, insulin signaling, PPAR signaling, and protein localization. Eight hub genes (SEC61G, SRP14, Liy AR, NIP7, SDAD1, POLR1D, DYNLL2, TSR2) were identified. Four hub genes (LYAR, SDAD1, POLR1D, TSR2) exhibited high expression levels in the hypertensive tissue samples, while showing low expression levels in the normal tissue samples. This led us to speculate that they may have relevant regulatory effects on hypertension. When TSR2 was knocked down in the hypertension peripheral blood mononuclear cells (PBMC) model, the critical proteins in the PPAR signaling pathway (FABP, PPAR, PLTP, ME1, SCD1, CYP27, FABP1, OLR1, CPT-1, PGAR, CAP, ADIPO, MMP1, UCP1, ILK, PDK1 UBC AQP7) were downregulated. This also occurred in the hypertension peripheral blood mononuclear cells (PBMC) + TSR2_ OV model. TSR2 is highly expressed in individuals with hypertension and may play a significant role in the development of hypertension through the PPAR signaling pathway. TSR2 could serve as a molecular target for the early diagnosis and precise treatment of hypertension, providing a valuable direction for the mechanism research of this condition.


Assuntos
Hipertensão , Transdução de Sinais , Hipertensão/genética , Hipertensão/metabolismo , Humanos , Transdução de Sinais/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Redes Reguladoras de Genes , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167206, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38718848

RESUMO

The long noncoding RNA growth arrest-specific 5 (lncRNA Gas5) is implicated in various kidney diseases. In this study, we investigated the lncRNA Gas5 expression profile and its critical role as a potential biomarker in the progression of chronic kidney disease. Subsequently, we assessed the effect of lncRNA Gas5 deletion on renal fibrosis induced by unilateral ureteral obstruction (UUO). The results indicated that loss of lncRNA Gas5 exacerbates UUO-induced renal injury and extracellular matrix deposition. Notably, the deletion of lncRNA Gas5 had a similar effect on control mice. The fibrogenic phenotype observed in mice lacking lncRNA Gas5 correlates with peroxisome proliferator-activated receptor (PPAR) signaling pathway activation and aberrant cytokine and chemokine reprogramming. Single-cell RNA sequencing analysis revealed key transcriptomic features of fibroblasts after Gas5 deletion, revealing heterogeneous cellular states suggestive of a propensity for renal fibrosis. Our findings indicate that lncRNA Gas5 regulates the differentiation and activation of immune cells and the transcription of key genes in the PPAR signaling pathway. These data offer novel insights into the involvement of lncRNA Gas5 in renal fibrosis, potentially paving the way for innovative diagnostic and therapeutic targets.


Assuntos
Fibrose , RNA Longo não Codificante , Análise de Célula Única , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Fibrose/genética , Camundongos , Perfilação da Expressão Gênica , Masculino , Obstrução Ureteral/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Rim/patologia , Rim/metabolismo , Transcriptoma , Transdução de Sinais/genética , Camundongos Endogâmicos C57BL , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Camundongos Knockout , Fibroblastos/metabolismo , Fibroblastos/patologia , Nefropatias/genética , Nefropatias/patologia , Nefropatias/metabolismo
4.
BMC Genomics ; 25(1): 450, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714918

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are a novel kind of non-coding RNAs proved to play crucial roles in the development of multiple diabetic complications. However, their expression and function in diabetes mellitus (DM)-impaired salivary glands are unknown. RESULTS: By using microarray technology, 663 upregulated and 999 downregulated circRNAs companied with 813 upregulated and 525 downregulated mRNAs were identified in the parotid glands (PGs) of type2 DM mice under a 2-fold change and P < 0.05 cutoff criteria. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of upregulated mRNAs showed enrichments in immune system process and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Infiltration of inflammatory cells and increased inflammatory cytokines were observed in diabetic PGs. Seven differently expressed circRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks analysis. PPAR signaling pathway was primarily enriched through analysis of circRNA-mRNA networks. Moreover, the circRNA-miRNA-mRNA networks highlighted an enrichment in the regulation of actin cytoskeleton. CONCLUSION: The inflammatory response is elevated in diabetic PGs. The selected seven distinct circRNAs may attribute to the injury of diabetic PG by modulating inflammatory response through PPAR signaling pathway and actin cytoskeleton in diabetic PGs.


Assuntos
Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glândula Parótida , RNA Circular , Animais , RNA Circular/genética , Camundongos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glândula Parótida/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Transcriptoma , Ontologia Genética , Masculino , Transdução de Sinais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo
5.
J Cell Mol Med ; 28(8): e18304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652093

RESUMO

Liver hepatocellular carcinoma (LIHC) is a significant global health issue with limited treatment options. In this study, single-cell RNA sequencing (scRNA-seq) data were used to explore the molecular mechanisms of LIHC development and identify potential targets for therapy. The expression of peroxisome proliferator-activated receptors (PPAR)-related genes was analysed in LIHC samples, and primary cell populations, including natural killer cells, T cells, B cells, myeloid cells, endothelial cells, fibroblasts and hepatocytes, were identified. Analysis of the differentially expressed genes (DEGs) between normal and tumour tissues revealed significant changes in gene expression in various cell populations. PPAR activity was evaluated using the 'AUCell' R software, which indicated higher scores in the normal versus the malignant hepatocytes. Furthermore, the DEGs showed significant enrichment of pathways related to lipid and glucose metabolism, cell development, differentiation and inflammation. A prognostic model was then constructed using 8 PPARs-related genes, including FABP5, LPL, ACAA1, PPARD, FABP4, PLIN1, HMGCS2 and CYP7A1, identified using least absolute shrinkage and selection operator-Cox regression analysis, and validated in the TCGA-LIHC, ICGI-LIRI and GSE14520 datasets. Patients with low-risk scores had better prognosis in all cohorts. Based on the expression of the eight model genes, two clusters of patients were identified by ConsensusCluster analysis. We also predicted small-molecule drugs targeting the model genes, and identified perfluorohexanesulfonic acid, triflumizole and perfluorononanoic acid as potential candidates. Finally, wound healing assay confirmed that PPARD can promote the migration of liver cancer cells. Overall, our study offers novel perspectives on the molecular mechanisms of LIHC and potential areas for therapeutic intervention, which may facilitate the development of more effective treatment regimens.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
6.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674052

RESUMO

The metabolic and immune systems are complex networks of organs, cells, and proteins that are involved in the extraction of energy from food; this is to run complex cellular processes and defend the body against infections while protecting its own tissues, respectively [...].


Assuntos
Inflamação , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Inflamação/metabolismo , Inflamação/genética , Animais , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Regulação da Expressão Gênica
7.
Food Chem Toxicol ; 188: 114632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583503

RESUMO

PFOA is one of the most representative compounds in the family of perfluorinated organic compounds. Due to its varying toxicity, alternatives to PFOA are beginning to emerge. HFPO-TA is an alternative for PFOA. It is currently unclear whether HFPO-TA affects glucose and lipid metabolism. In this study, rats were used as an animal model to investigate the effects of HFPO-TA on liver glucose and lipid metabolism. We found that HFPO-TA can affect glucose tolerance. Through omics analysis and molecular detection, it was found that HFPO-TA mainly affects the PPAR signaling pathway in the liver of rats, inhibiting liver glycolysis while promoting glucose production. HFPO-TA not only promotes the synthesis of fatty acids in the liver, but also promotes the breakdown of fatty acids, which ultimately leads to the disruption of hepatic glucose and lipid metabolism. The effects of HFPO-TA on metabolism are discussed in this paper to provide a reference for the risk assessment of this PFOA substitute.


Assuntos
Glucose , Metabolismo dos Lipídeos , Fígado , Metaboloma , Receptores Ativados por Proliferador de Peroxissomo , Transdução de Sinais , Transcriptoma , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Transcriptoma/efeitos dos fármacos , Glucose/metabolismo , Metaboloma/efeitos dos fármacos , Ratos Sprague-Dawley , Fluorocarbonos
8.
Genes Genomics ; 46(5): 621-635, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38536617

RESUMO

BACKGROUND: TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. OBJECTIVE: This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. METHODS: We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. RESULTS: Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. CONCLUSION: Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , RNA Longo não Codificante , Camundongos , Animais , Transcriptoma , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica/métodos , Reprodutibilidade dos Testes , Receptores Ativados por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
9.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451874

RESUMO

In brief: Adverse pregnancy outcomes in women with polycystic ovary syndrome (PCOS) are frequently associated with abnormal placental functions. This review explores the involvement of proliferator-activated receptors (PPARs) in these processes, to gain molecular insights into abnormal pregnancy conditions associated with PCOS. Abstract: Polycystic ovary syndrome (PCOS) is one of the major endocrine disorders affecting women during their reproductive ages.Given its association with other pathologies, such as insulin resistance, metabolic syndrome, type 2 diabetes, and obesity, women with PCOS could present high-risk pregnancies, including a high abortion rate, implantation failure, an increased risk of gestational diabetes, preeclampsia, and intrauterine growth restriction. These adverse pregnancy outcomes are often attributed, at least in part, to defects in placental functions. Peroxisome proliferator-activated receptors (PPARs) are important transcription factors that participate in various placental pathways, regulating the expression of genes involved in lipid and glucose metabolism and inflammation. Furthermore, PPARs have been shown to play a role in placental development and function. Taking together this evidence, the present review focuses on the role of PPARs in placental tissue and discusses their implications in the pregnancy outcomes commonly associated with the presence of PCOS. In addition, the main treatments frequently employed have also been discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Complicações na Gravidez , Gravidez , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Placenta/metabolismo , Resultado da Gravidez
10.
BMC Genomics ; 25(1): 294, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504177

RESUMO

BACKGROUND: Muscle growth post-birth relies on muscle fiber number and size. Myofibre number, metabolic and contractile capacities are established pre-birth during prenatal myogenesis. The aim of this study was to identify genes involved in skeletal muscle development in cattle, sheep, and pigs - livestock. RESULTS: The cattle analysis showed significant differences in 5043 genes during the 135-280 dpc period. In sheep, 444 genes differed significantly during the 70-120 dpc period. Pigs had 905 significantly different genes for the 63-91 dpc period.The biological processes and KEGG pathway enrichment results in each species individually indicated that DEGs in cattle were significantly enriched in regulation of cell proliferation, cell division, focal adhesion, ECM-receptor interaction, and signaling pathways (PI3K-Akt, PPAR, MAPK, AMPK, Ras, Rap1); in sheep - positive regulation of fibroblast proliferation, negative regulation of endothelial cell proliferation, focal adhesion, ECM-receptor interaction, insulin resistance, and signaling pathways (PI3K-Akt, HIF-1, prolactin, Rap1, PPAR); in pigs - regulation of striated muscle tissue development, collagen fibril organization, positive regulation of insulin secretion, focal adhesion, ECM-receptor interaction, and signaling pathways (PPAR, FoxO, HIF-1, AMPK). Among the DEGs common for studied animal species, 45 common genes were identified. Based on these, a protein-protein interaction network was created and three significant modules critical for skeletal muscle myogenesis were found, with the most significant module A containing four recognized hub genes - EGFR, VEGFA, CDH1, and CAV1. Using the miRWALK and TF2DNA databases, miRNAs (bta-miR-2374 and bta-miR-744) and transcription factors (CEBPB, KLF15, RELA, ZNF143, ZBTB48, and REST) associated with hub genes were detected. Analysis of GO term and KEGG pathways showed that such processes are related to myogenesis and associated with module A: positive regulation of MAP kinase activity, vascular endothelial growth factor receptor, insulin-like growth factor binding, focal adhesion, and signaling pathways (PI3K-Akt, HIF-1, Rap1, Ras, MAPK). CONCLUSIONS: The identified genes, common to the prenatal developmental period of skeletal muscle in livestock, are critical for later muscle development, including its growth by hypertrophy. They regulate valuable economic characteristics. Enhancing and breeding animals according to the recognized genes seems essential for breeders to achieve superior gains in high-quality muscle mass.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Suínos/genética , Animais , Bovinos , Ovinos/genética , Perfilação da Expressão Gênica/métodos , Gado/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Esquelético/metabolismo , MicroRNAs/genética , Desenvolvimento Muscular/genética
11.
J Orthop Surg Res ; 19(1): 109, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308345

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease caused by the deterioration of cartilage. However, the underlying mechanisms of OA pathogenesis remain elusive. METHODS: Hub genes were screened by bioinformatics analysis based on the GSE114007 and GSE169077 datasets. The Sprague-Dawley (SD) rat model of OA was constructed by intra-articular injection of a mixture of papain and L-cysteine. Hematoxylin-eosin (HE) staining was used to detect pathological changes in OA rat models. Inflammatory cytokine levels in serum were measured employing the enzyme-linked immunosorbent assay (ELISA). The reverse transcription quantitative PCR (RT-qPCR) was implemented to assess the hub gene expressions in OA rat models. The roles of PDK4 and the mechanism regulating the PPAR pathway were evaluated through western blot, cell counting kit-8 (CCK-8), ELISA, and flow cytometry assays in C28/I2 chondrocytes induced by IL-1ß. RESULTS: Six hub genes were identified, of which COL1A1, POSTN, FAP, and CDH11 expressions were elevated, while PDK4 and ANGPTL4 were reduced in OA. Overexpression of PDK4 inhibited apoptosis, inflammatory cytokine levels (TNF-α, IL-8, and IL-6), and extracellular matrix (ECM) degradation protein expressions (MMP-3, MMP-13, and ADAMTS-4) in IL-1ß-induced chondrocytes. Further investigation revealed that PDK4 promoted the expression of PPAR signaling pathway-related proteins: PPARA, PPARD, and ACSL1. Additionally, GW9662, an inhibitor of the PPAR pathway, significantly counteracted the inhibitory effect of PDK4 overexpression on IL-1ß-induced chondrocytes. CONCLUSION: PDK4 inhibits OA development by activating the PPAR pathway, which provides new insights into the OA management.


Assuntos
Osteoartrite , Receptores Ativados por Proliferador de Peroxissomo , Ratos , Animais , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Osteoartrite/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Condrócitos/metabolismo , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Inflamação/metabolismo
12.
Sci Rep ; 14(1): 4926, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418897

RESUMO

The peroxisome proliferator-activated receptor (PPAR) signaling pathway plays a crucial role in systemic cell metabolism, energy homeostasis and immune response inhibition. However, its significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR signaling pathway-related molecular subtypes, each of which displaying varying survival probabilities and immune infiltration status. Following, a prognostic prediction model of HCC was developed by using the random survival forest method and Cox regression analysis. Significant difference in survival outcome, immune landscape, drug sensitivity and pathological features were observed between patients with different prognosis. Additionally, decision tree and nomogram models were adopted to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified through single-cell RNA-sequencing data. Collectively, this study systematically elucidated that the PPAR signaling pathway-related prognostic model has good predictive efficacy for patients with HCC. These findings provide valuable insights for further research on personalized treatment approaches for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Carcinoma Hepatocelular/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Neoplasias Hepáticas/genética , Nomogramas
13.
Fish Shellfish Immunol ; 146: 109386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242261

RESUMO

Red drum (Sciaenops ocellatus), as an important economical marine fish, has been affected by various bacterial diseases in recent years. Vibrio harveyi cause fatal vibriosis in S. ocellatus, leading to massive mortality and causing significant setbacks in aquaculture. However, the regulatory mechanisms of S. ocellatus response to V. harveyi infection are poorly understood. In this regard, we performed transcriptomic analysis with head kidney tissues of S. ocellatus after V. harveyi infection from 12 h to 48 h to reveal genes, gene expression profiles, and pathways involved in immune and inflammation responses. Specifically, a total of 9,599, 5,728, and 7144 differentially expressed genes (DEGs) were identified after V. harveyi infection at 12 h, 24 h, and 48 h, respectively, and 1,848 shared DEGs have been identified from the above three comparison groups. Subsequent pathway analysis revealed that the shared DEGs following V. harveyi were involved in complement and coagulation cascades (C1R, C1QC, C3, C4, C5, C7, C8A, C8B, C8G, C9, CFB, CFH, and CFI), MAPK signaling pathway, chemokine signaling pathway (CCL19, CXCL8, CXCL12, CXCL14, CCR4, CCR7, and CXCR2), PPAR signaling pathway (PPAR-α, PPAR-γ and PPAR-ß), and TNF signaling pathway. Finally, the expression patterns of DEGs in head kidney tissues and S. ocellatus macrophages were validated by qRT-PCR, suggesting the reliability of RNA sequencing for gene expression analysis. This dynamic transcriptome analyses provided insights into gene expression regulation and immune related pathways involved in S. ocellatus after V. harveyi infection, and provides useful information for further study on the immune defense mechanisms in S. ocellatus as well as other teleost species.


Assuntos
Doenças dos Peixes , Perciformes , Vibrioses , Vibrio , Animais , Transcriptoma , Receptores Ativados por Proliferador de Peroxissomo/genética , Reprodutibilidade dos Testes , Vibrio/fisiologia , Perfilação da Expressão Gênica/veterinária , Perciformes/genética
14.
J Cell Physiol ; 239(2): e31173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38214103

RESUMO

Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.


Assuntos
Adipogenia , Insulina , Transdução de Sinais , Animais , Camundongos , Células 3T3-L1 , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Diferenciação Celular , Regulação para Baixo , Glucose/metabolismo , Insulina/metabolismo , Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , PPAR gama/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
15.
J Gene Med ; 26(1): e3605, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932968

RESUMO

BACKGROUND: Peroxisome proliferator activating receptors (PPARs) are important regulators of nuclear hormone receptor function, and they play a key role in biological processes such as lipid metabolism, inflammation and cell proliferation. However, their role in head and neck squamous cell carcinoma (HNSC) is unclear. METHODS: We used multiple datasets, including TCGA-HNSC, GSE41613, GSE139324, PRJEB23709 and IMVigor, to perform a comprehensive analysis of PPAR-related genes in HNSC. Single-cell sequencing data were preprocessed using Seurat packets, and intercellular communication was analyzed using CellChat packets. Functional enrichment analysis of PPAR-related genes was performed using ClusterProfile and GSEA. Prognostic models were constructed using LASSO and Cox regression models, and immunohistochemical analyses were performed using human protein mapping (The Human Protein Atlas). RESULTS: Our single-cell RNA sequencing analysis revealed distinct cell populations in HNSC, with T cells having the most significant transcriptome differences between tumors and normal tissues. The PPAR features were higher in most cell types in tumor tissues compared with normal tissues. We identified 17 PPAR-associated differentially expressed genes between tumors and normal tissues. A prognostic model based on seven PPAR-associated genes was constructed with high accuracy in predicting 1, 2 and 3 year survival in patients with HNSC. In addition, patients with a low risk score had a higher immune score and a higher proportion of T cells, CD8+ T cells and cytotoxic lymphocytes. They also showed higher immune checkpoint gene expression, suggesting that they might benefit from immunotherapy. PPAR-related genes were found to be closely related to energy metabolism. CONCLUSIONS: Our study provides a comprehensive understanding of the role of PPAR related genes in HNSC. The identified PPAR features and constructed prognostic models may serve as potential biomarkers for HNSC prognosis and treatment response. In addition, our study found that PPAR-related genes can differentiate energy metabolism and distinguish energy metabolic heterogeneity in HNSC, providing new insights into the molecular mechanisms of HNSC progression and therapeutic response.


Assuntos
Neoplasias de Cabeça e Pescoço , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Metabolismo Energético/genética , Fenótipo , Neoplasias de Cabeça e Pescoço/genética
16.
Eur J Pharmacol ; 964: 176304, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142851

RESUMO

Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.


Assuntos
Neoplasias , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Desenvolvimento de Medicamentos , Microambiente Tumoral
17.
PeerJ ; 11: e16659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107572

RESUMO

Objective: Premature ovarian failure (POF) is a disease with high clinical heterogeneity. Subsequently, its diagnosis is challenging. CXCL10 which is a small signaling protein involved in immune response and inflammation may have diagnostic potential in detection of premature ovarian insufficiency. Therefore, this study aimed to investigate CXCL10 based diagnostic biomarkers for POF. Methods: Transcriptome data for POF was obtained from the Gene Expression Omnibus (GEO) database (GSE39501). Principal component analysis (PCA) assessed CXCL10 expression in patients with POF. The receiver operating characteristic (ROC) curve, analyzed using PlotROC, demonstrated the diagnostic potential of CXCL10 and CXCL10-based models for POF. Differentially expressed genes (DEGs) in the control group of POF were identified using DEbylimma. PlotVenn was used to determine the overlap between the POF-control group and the high-/low-expression CXCL10 groups. QuadrantPlot was employed to detect CXCL10-dysregulated genes in POF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted on DEGs using RunMulti Group cluster Profiler. A POF model was induced with cisplatin (DDP) using KGN cells. RT-qPCR and Western blot were used to measure the expression of CXCL10, apoptosis-related proteins, and peroxisome proliferator-activated receptor (PPAR) signaling pathway-related proteins in this model, following siRNA-mediated silencing of CXCL10. Flow cytometry was employed to assess the apoptosis of KGN cells after CXCL10 downregulation. Results: The expression of CXCL10 is dysregulated in POF, and it shows promising diagnostic potential for POF, as evidenced by an area under the curve value of 1. In POF, we found 3,362 up-regulated and 3,969 down-regulated DEGs compared to healthy controls, while the high- and low-expression groups of POF (comprising samples above and below the median CXCL10 expression) exhibited 1,304 up-regulated and 1,315 down-regulated DEGs. Among these, 786 DEGs consistently displayed dysregulation in POF due to CXCL10 influence. Enrichment analysis indicated that the PPAR signaling pathway was activated by CXCL10 in POF. The CXCL10-based model (including CXCL10, Itga2, and Raf1) holds potential as a diagnostic biomarker for POF. Additionally, in the DDP-induced KGN cell model, interfering with CXCL10 expression promoted the secretion of estradiol, and reduced apoptosis. Furthermore, CXCL10 silencing led to decreased expression levels of PPARß and long-chain acyl-CoA synthetase 1 compared to the Si-NC group. These results suggest that CXCL10 influences the progression of POF through the PPAR signaling pathway. Conclusion: The CXCL10-based model, demonstrating perfect diagnostic accuracy for POF and comprising CXCL10, Itga2, and Raf1, holds potential as a valuable diagnostic biomarker. Thus, the expression levels of these genes may collectively provide valuable diagnostic information for POF.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Feminino , Humanos , Insuficiência Ovariana Primária/genética , Perfilação da Expressão Gênica/métodos , Receptores Ativados por Proliferador de Peroxissomo/genética , Menopausa Precoce/genética , Biomarcadores , Família Multigênica , Quimiocina CXCL10/genética
18.
Medicine (Baltimore) ; 102(42): e35604, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861550

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality worldwide, which is characterized by aggressive growth and metastasis. However, the relationship between TOP2A and CDC6 and HCC remains unclear. GSE121248 and GSE101728 profiles for liver cancer were downloaded from the gene expression omnibus database generated using GPL21047and GPL570. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis. Gene expression heat map was drawn and survival analysis was performed. Comparative toxicogenomics database analysis were performed to find the disease most related to the core gene. TargetScan was used to screen miRNAs regulating central DEGs. 885 DEGs were identified. According to gene ontology analysis, they were mainly enriched in organic acid metabolism process, metabolic pathway, p53 signal pathway and PPAR signal pathway. The enrichment items are similar to the GOKEGG enrichment items of differentially expressed genes, mainly in the process of organic acid metabolism, p53 signal pathway and PPAR signal pathway. In the enrichment project of metascape, gene ontology has PIDPLK1 pathway, mitotic cell cycle, tumor retinoblastoma gene. The construction and analysis of protein-protein interaction network obtained 10 core genes (TOP2A, CDK1, ASPM, RACGAP1, ZWINT, CDC6, AURKA, NCAPG, BUB1B, CCNB1), and found that these core genes were highly expressed in tumor tissues and low in normal tissues. Comparative toxicogenomics database analysis showed that 10 genes (TOP2A, CDK1, ASPM, RACGAP1, ZWINT, CDC6, AURKA, NCAPG, BUB1B, CCNB1) were related to necrosis, inflammation, HCC, liver cirrhosis, and adenoid cystic carcinoma. TOP2A and CDC6 are highly expressed in liver cancer, which may become molecular targets for early diagnosis and precise treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Aurora Quinase A/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Hepáticas/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Medicine (Baltimore) ; 102(43): e34384, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904456

RESUMO

Colorectal cancer originates from the epithelium of the large intestine and is a common malignant tumor in the gastrointestinal tract. However, the relationship between RRP9 and DDX21 and colorectal cancer (CRC) remains unclear. GSE134834, GSE206800, and GSE209892 profiles for CRC were downloaded from the gene expression omnibus database generated using GPL20115 and GPL23126. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network. Functional enrichment analysis and gene set enrichment analysis were performed. Gene expression heat map was drawn and immune infiltration analysis was performed. Comparative toxicogenomics database analysis were performed to find the disease most related to the core gene. TargetScan was used to screen miRNAs regulating central DEGs. One thousand three hundred eighty DEGs were identified. According to gene ontology analysis, they were mainly concentrated in signal receptor activity regulation and metal titanase activity. Kyoto encyclopedia of gene and genome analysis showed that they mainly focused on IL17 signal pathway, PPAR signal pathway, protein digestion, and absorption, and the interaction of viral proteins with cytokines and cytokine receptors. The intersection of enrichment items and GOKEGG enrichment items of differentially expressed genes is mainly concentrated in PPAR signal pathway and the interaction of viral proteins with cytokines and cytokine receptors. The protein-protein interaction network obtained 16 core genes (MAD2L1, MELK, TPX2, UBE2C, RFC4, PLK1, RACGAP1, DKC1, DDX21, L Y AR, WDR3, RRP9, WDR43, NOLC1, BRIX1, and GTPBP4). Heat map of gene expression showed that core genes (TPX2, UBE2C, RFC4, PLK1, DKC1, LYAR, WDR3, NOLC1, and BRIX1) were not significantly differentially expressed between CRC and normal tissue samples. Core genes (MAD2L1, MELK, RACGAP1, RRP9, WDR43, DDX21, and GTPBP4) were highly expressed in CRC tissue samples and lowly expressed in normal tissue samples. Comparative toxicogenomics database analysis showed that 7 genes (MAD2L1, MELK, RACGAP1, RRP9, WDR43, DDX21, and GTPBP4) were related to necrosis, inflammation, tumor, precancerous symptoms, hemorrhage, and weightlessness. RRP9 and DDX21 are highly expressed in CRC. The higher the expression level of RRP9 and DDX21, the worse the prognosis.


Assuntos
Neoplasias Colorretais , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/genética , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Proteínas de Ciclo Celular/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Proteínas Virais/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas Nucleares/genética
20.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(7): 1068-1074, 2023 Jul 06.
Artigo em Chinês | MEDLINE | ID: mdl-37482742

RESUMO

To explore whether PPARA is involved in the process of ferroptosis in hepatoma cells, peroxisome proliferator activated receptor (PPARA) was comprehensively analyzed in hepatocellular carcinoma (HCC) through public database and experimental data, including the expression, the functions and the potential roles of tumor progression. The research design is experimental research,data analysis based on bioinformatics and cell experiment. From January 2022 to August 2022, relevant cell experiments were conducted in the Basic Medical Laboratory of the General Hospital of the Southern Theatre of the Chinese People's Liberation Army. The expression and the correlation with clinicopathologic features of PPARA in HCC were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. To study the protein expression of PPARA in HCC and normal tissues through the Human Protein Atlas (HPA). The protein-protein interaction (PPI) network between PPARA and the core factor of ferroptosis was constructed based on Search Tool for the Retrival of Interacting Genes/Protein (STRING) database, then, the correlation between PPARA and the core gene Glutamate-cysteine Ligase Catalytic Subunit (GCLC) was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA). Assessed the expression of PPARA in HCC cell lines SK-HEP-1, SMMC-7721, MHCC-97H, BEL-7402 and normal liver cell L02 by Western Blot (WB) and the changes of PPARA expression after 48h treatment with ferroptosis inducer Erastin were observed. Single factor analysis of variance was used to compare the expression of PPARA between groups in GEPIA database. The expression of PPARA in GSE25097 and GSE112790 data was compared by rank sum test. Survival analysis was performed using time series test method. The difference of PPARA expression between clinical and pathological features was compared using the Kruskal-Wallis test. The correlation between the expression of GCLC and PPARA was compared by the method of Spearman correlation. The expression of PPARA in cell lines was compared by paired T test. The results showed that the RNA and protein expression of PPARA in HCC was lower than that in normal tissues (P<0.05). PPARA alterations were correlated with patient clinicopathological features and prognosis (P<0.05). The PPI constructed by STRING database suggests that PPARA interact with the key factors of ferroptosis, such as NFE2 like bZIP transcription factor 2 (NFE2L2), Heme Oxygenase 1 (HMOX1), Tumor Protein P53 (TP53), GCLC, Dipeptidyl Peptidase 4 (DPP4), Citrate Synthase (CS), Arachidonate 15-Lipoxygenase (ALOX15) and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4). Furthermore, the PPARA was significantly associated with GCLC validated via GEPIA database(R=0.6, P<0.05). The expression of PPARA increased after treatment with ferroptosis inducer Erastin for 48 h by WB. In conclusion, the expression of PPARA is lower in HCC with a poor prognosis. PPARA interacts with GCLC in regulating ferroptosis in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Receptores Ativados por Proliferador de Peroxissomo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA