Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.702
Filtrar
1.
Neurosci Lett ; 794: 137025, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529388

RESUMO

Acetylcholine signaling can strengthen associations between environmental cues and reward availability. Diverse subtypes (M1-M5) of the muscarinic acetylcholine receptor (mAChR) family may have distinct roles in different learning and memory processes, such as encoding cue-reward associations and consolidating these associations in long-term memory. Using an operant discrimination learning task in which mice are trained to nose poke during a tone to receive a food reward, we found that acquisition of the task requires mAChR signaling in the central nervous system. In addition, post-session injections of a broad mAChR antagonist, scopolamine impaired consolidation of the cue-reward memory. Further, after successful learning of a cue-reward contingency across multiple training sessions, mice that received a single pre-session injection of scopolamine were unable to use the learned cue association to receive rewards. Taken together, these data demonstrate distinct roles for muscarinic signaling in acquisition, consolidation and recall of the operant discrimination learning task. Understanding mechanisms underlying natural reward-related responding may provide insight into other maladaptive forms of reward learning such as addiction.


Assuntos
Aprendizagem por Discriminação , Antagonistas Muscarínicos , Camundongos , Animais , Antagonistas Muscarínicos/farmacologia , Escopolamina/farmacologia , Aprendizagem , Memória , Receptores Muscarínicos/fisiologia , Recompensa , Condicionamento Operante
2.
Cell Biol Toxicol ; 39(4): 1453-1469, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36098822

RESUMO

Awareness is growing that, besides several neurotoxic effects, cholinomimetic drugs able to interfere the cholinergic neurotransmitter system may exert a teratogen effect in developing embryos of vertebrate and invertebrate organisms. Cholinomimetic substances exert their toxic activity on organisms as they inhibit the functionality of the cholinergic system by completely or partially replacing the ACh molecule both at the level of the AChE active site and at the level of acetylcholine receptors. In this work, we focused the attention on the effects of muscarinic antagonist (atropine) and agonist (carbachol) drugs during the early development and ontogenesis of chick embryos. An unsteady-state mathematical model of the drug release and fate was developed, to synchronize exposure to a gradient of drug concentrations with the different developmental events. Since concentration measures in time and space cannot be taken without damaging the embryo itself, the diffusion model was the only way to establish at each time-step the exact concentration of drug at the different points of the embryo body (considered two-dimensional up to the 50 h stage). This concentration depends on the distance and position of the embryo with respect to the releasing source. The exposure to carbachol generally enhanced dimensions and stages of the embryos, while atropine mainly caused delay in development and small size of the embryos. Both the drugs were able to cause developmental anomalies, depending on the moment of development, in a time- and dose-dependent way, regardless the expression of genes driving each event. 1. Early chick embryos were exposed to muscarinic drugs in a spatial-temporal context. 2. Effects were stage-(time) dependent, according to distance and position of the source. 3. Atropine inhibited growth, mainly interfering with the cephalic process formation and heart differentiation; carbachol increased growth reducing differentiation. 4. Interferences may be exerted by alteration of calcium responses to naturally occurring morphogen-driven mechanisms.


Assuntos
Colinérgicos , Receptores Muscarínicos , Animais , Embrião de Galinha , Carbacol/farmacologia , Receptores Muscarínicos/fisiologia , Atropina/farmacologia , Modelos Teóricos
3.
Dig Dis Sci ; 68(2): 439-450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35947306

RESUMO

BACKGROUND: The specific role of the M3 muscarinic acetylcholine receptor in gastrointestinal motility under physiological conditions is unclear, due to a lack of subtype-selective compounds. AIMS: The objective of this study was to determine the region-specific role of the M3 receptor in gastrointestinal motility. METHODS: We developed a novel positive allosteric modulator (PAM) for the M3 receptor, PAM-369. The effects of PAM-369 on the carbachol-induced contractile response of porcine esophageal smooth muscle and mouse colonic smooth muscle (ex vivo) and on the transit in mouse small intestine and rat colon (in vivo) were examined. RESULTS: PAM-369 selectively potentiated the M3 receptor under the stimulation of its orthosteric ligands without agonistic or antagonistic activity. Half-maximal effective concentrations of PAM activity for human, mouse, and rat M3 receptors were 0.253, 0.345, and 0.127 µM, respectively. PAM-369 enhanced carbachol-induced contraction in porcine esophageal smooth muscle and mouse colonic smooth muscle without causing any contractile responses by itself. The oral administration of 30 mg/kg PAM-369 increased the small intestinal transit in both normal motility and loperamide-induced intestinal dysmotility mice but had no effects on the colonic transit, although the M3 receptor mRNA expression is higher in the colon than in the small intestine. CONCLUSIONS: This study provided the first direct evidence that the M3 receptor has different region-specific roles in the motility function between the small intestine and colon in physiological and pathophysiological contexts. Selective PAMs designed for targeted subtypes of muscarinic receptors are useful for elucidating the subtype-specific function.


Assuntos
Motilidade Gastrointestinal , Receptor Muscarínico M3 , Animais , Humanos , Camundongos , Ratos , Carbacol/farmacologia , Motilidade Gastrointestinal/genética , Motilidade Gastrointestinal/fisiologia , Contração Muscular , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptores Muscarínicos/fisiologia , Suínos
4.
Pharmacol Biochem Behav ; 218: 173425, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798059

RESUMO

Re-exposure of rats to a previously fear-conditioned environment arouses great alterations in behavioral and cardiovascular parameters. Pieces of works provide putative evidence for the contribution of the dorsal hippocampus (dHC) to contextual conditioning. dHC gathers massive cholinergic inputs from the basal forebrain, and dHC acetylcholine (ACh) is often described as triggering the retrieval of defensive behavior. ACh acts partially through muscarinic receptors (mAChRs) M1R and M3R subtypes. Hence, activation of mAChRs facilitates autonomic and behavioral responses associated with threats and dangers. Therefore, this study explored the likely involvement of M1R and M3R in rat dHC to establish the behavioral and autonomic changes associated with contextual fear retrieval. Male Wistar rats had stainless steel guide cannula implanted into the dHC before being submitted to contextual fear conditioning (6 footshocks, 1.5 mA, 3 s). A catheter placed within the femoral artery allowed autonomic recordings. A variety of drugs were delivered into the dHC 10 min before contextual re-exposure. The choline reuptake inhibitor hemicholinium induced a decrease of the fear conditioned responses, while did not modify it in non-conditioned animals. The non-selective mAChR antagonist atropine also reduced the fear-conditioned responses, as did the selective M1/M3 mAChRs antagonist fumarate. On the other hand, the M1 selective mAChR antagonist pirenzepine inhibited all the autonomic fear responses without affecting animal freezing. These findings support that cholinergic neurotransmission present in the dHC acts through mAChRs to coordinate the expression of fear evoked by contextual conditioning.


Assuntos
Medo , Receptores Muscarínicos , Acetilcolina/metabolismo , Animais , Comportamento Animal , Colinérgicos , Medo/fisiologia , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Receptores Muscarínicos/fisiologia
5.
Clin Exp Hypertens ; 44(4): 297-305, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266430

RESUMO

BACKGROUND: The cardiovascular effects of nicotinic receptors of cholinergic system in the pedunculopontine tegmental nucleus (PPT) were shown. OBJECTIVE: In the following, the cardiovascular effects of the muscarinic receptor, another receptor in this system, were examined. METHODS: Rats were divided into eight groups: 1) control; 2 and 3) Ach (acetylcholine, an agonist) 90 and 150 nmol; 4 and 5) Atr (atropine; a muscarinic antagonist) 3 and 9 nmol; 6) Atr 3 + Ach 150; 7) Atr 9 + Ach 150; and 8) Atr 3 + hexamethonium (Hexa; 300 nmol) + Ach 150. After anesthesia, cannulation of the femoral artery was performed, and then the mean arterial pressure (MAP), systolic blood pressure (SBP), and heart rate (HR) were recorded using a power lab apparatus. RESULTS: Following drug microinjection, the maximum change (Δ) in MAP, SBP, and HR was calculated and analyzed. Both doses of Ach (90 and 150) significantly decreased ΔMAP and ΔSBP but could not change ΔHR. Neither of the doses of Atr significantly affected ΔMAP, ΔSBP, and ΔHR. Co-injection of Atr 3 + Ach 150 only increased ΔHR, but Atr 9 + Ach 150 decreased ΔMAP and ΔSBP than Ach 150 alone. The effect of the co-injection of Atr 9 + Hexa 300 + Ach 150 was also the same as the Atr 9 + Ach 150 group. CONCLUSION: The present results revealed that cholinergic muscarinic receptors in the PPT have an inhibitory effect on MAP and SBP with no important effect on HR.


Assuntos
Núcleo Tegmental Pedunculopontino , Ratos , Animais , Atropina/farmacologia , Acetilcolina/farmacologia , Receptores Muscarínicos/fisiologia , Colinérgicos
6.
J Neurophysiol ; 127(4): 1098-1116, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294308

RESUMO

Mechanisms of rhythm generation have been extensively studied in motor systems that control locomotion over terrain in limbed animals; however, much less is known about rhythm generation in soft-bodied terrestrial animals. Here we explored how muscarinic acetylcholine receptor (mAChR)-modulated rhythm-generating networks are distributed in the central nervous system (CNS) of soft-bodied Drosophila larvae. We measured fictive motor patterns in isolated CNS preparations, using a combination of Ca2+ imaging and electrophysiology while manipulating mAChR signaling pharmacologically. Bath application of the mAChR agonist oxotremorine potentiated bilaterally asymmetric activity in anterior thoracic regions and promoted bursting in posterior abdominal regions. Application of the mAChR antagonist scopolamine suppressed rhythm generation in these regions and blocked the effects of oxotremorine. Oxotremorine triggered fictive forward crawling in preparations without brain lobes. Oxotremorine also potentiated rhythmic activity in isolated posterior abdominal CNS segments as well as isolated anterior brain and thoracic regions, but it did not induce rhythmic activity in isolated anterior abdominal segments. Bath application of scopolamine to reduced preparations lowered baseline Ca2+ levels and abolished rhythmic activity. Overall, these results suggest that mAChR signaling plays a role in enabling rhythm generation at multiple sites in the larval CNS. This work furthers our understanding of motor control in soft-bodied locomotion and provides a foundation for study of rhythm-generating networks in an emerging genetically tractable locomotor system.NEW & NOTEWORTHY Using a combination of pharmacology, electrophysiology, and Ca2+ imaging, we find that signaling through mACh receptors plays a critical role in rhythmogenesis in different regions of the Drosophila larval CNS. mAChR-dependent rhythm generators reside in distal regions of the larval CNS and provide functional substrates for central pattern-generating networks (CPGs) underlying headsweep behavior and forward locomotion. This provides new insights into locomotor CPG operation in soft-bodied animals that navigate over terrain.


Assuntos
Proteínas de Drosophila , Drosophila , Locomoção , Receptores Muscarínicos , Acetilcolina/farmacologia , Animais , Proteínas de Drosophila/fisiologia , Larva/fisiologia , Locomoção/fisiologia , Oxotremorina/farmacologia , Receptores Muscarínicos/fisiologia , Escopolamina/farmacologia
7.
J Cardiovasc Pharmacol ; 79(5): 678-686, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170489

RESUMO

ABSTRACT: In human hearts, muscarinic receptors (M-R) are expressed in ventricular and atrial tissue, but the acetylcholine-activated potassium current (IK,ACh) is expressed mainly in the atrium. M-R activation decreases force and increases electrical stability in human atrium, but the impact of IK,ACh to both effects remains unclear. We used a new selective blocker of IK,ACh to elaborate the contribution of IK,ACh to M-R activation-mediated effects in human atrium. Force and action potentials were measured in rat atria and in human right atrial trabeculae. Cumulative concentration-effect curves for norepinephrine-induced force and arrhythmias were measured in the presence of carbachol (CCh; 1 µM) or CCh together with the IK,ACh -blocker XAF-1407 (1 µM) or in time-matched controls. To investigate the vulnerability to arrhythmias, we performed some experiments also in the presence of cilostamide (0.3 µM) and rolipram (1 µM), inhibiting PDE3 and PDE4. In rat atria and human right atrial trabeculae, CCh shortened the action potential duration persistently. However, the direct negative inotropy of CCh was only transient in human, but stable in rat atria. In rat and human atria, the negative inotropic effect was insensitive to blockage of IK,ACh by XAF-1407. In the presence of cilostamide and rolipram about 40% of trabeculae developed arrhythmias when exposed to norepinephrine. CCh prevented these concentration-dependent norepinephrine-induced arrhythmias, again insensitive to XAF-1407. Maximum catecholamine-induced force was not depressed by CCh. In human atrium, the direct and the indirect negative inotropic effect of CCh are independent of IK,ACh. The same applies to the CCh-mediated suppression of norepinephrine/PDE-inhibition-induced arrhythmias.


Assuntos
Acetilcolina , Átrios do Coração , Acetilcolina/farmacologia , Animais , Arritmias Cardíacas/induzido quimicamente , Humanos , Norepinefrina/farmacologia , Ratos , Receptores Muscarínicos/fisiologia , Rolipram/farmacologia
9.
J Neurochem ; 160(3): 325-341, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878647

RESUMO

The nucleus accumbens (NAc) plays critical roles in emotional behaviors, including aversive learning. Aversive stimuli such as an electric foot shock increase acetylcholine (ACh) in the NAc, and muscarinic signaling appears to increase neuronal excitability and aversive learning. Muscarinic signaling inhibits the voltage-dependent potassium KCNQ current which regulates neuronal excitability, but the regulatory mechanism has not been fully elucidated. Phosphorylation of KCNQ2 at threonine 217 (T217) and its inhibitory effect on channel activity were predicted. However, whether and how muscarinic signaling phosphorylates KCNQ2 in vivo remains unclear. Here, we found that PKC directly phosphorylated KCNQ2 at T217 in vitro. Carbachol and a muscarinic M1 receptor (M1R) agonist facilitated KCNQ2 phosphorylation at T217 in NAc/striatum slices in a PKC-dependent manner. Systemic administration of the cholinesterase inhibitor donepezil, which is commonly used to treat dementia, and electric foot shock to mice induced the phosphorylation of KCNQ2 at T217 in the NAc, whereas phosphorylation was suppressed by an M1R antagonist. Conditional deletion of Kcnq2 in the NAc enhanced electric foot shock induced aversive learning. Our findings indicate that muscarinic signaling induces the phosphorylation of KCNQ2 at T217 via PKC activation for aversive learning.


Assuntos
Aprendizagem da Esquiva/fisiologia , Canal de Potássio KCNQ2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Proteína Quinase C/metabolismo , Receptores Muscarínicos/fisiologia , Animais , Carbacol/farmacologia , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Canal de Potássio KCNQ2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso/genética , Fosforilação , Receptor Muscarínico M2/efeitos dos fármacos
10.
Nat Commun ; 12(1): 7252, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903750

RESUMO

G-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.


Assuntos
Comportamento Animal/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Drosophila melanogaster , Habituação Psicofisiológica/fisiologia , Potenciais da Membrana/fisiologia , Condutos Olfatórios , Neurônios Receptores Olfatórios/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Muscarínicos/genética , Receptores Muscarínicos/fisiologia , Receptores Nicotínicos/fisiologia , Olfato/fisiologia
11.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851820

RESUMO

G protein-coupled receptors (GPCRs) transmit extracellular signals to the inside by activation of intracellular effector proteins. Different agonists can promote differential receptor-induced signaling responses - termed bias - potentially by eliciting different levels of recruitment of effector proteins. As activation and recruitment of effector proteins might influence each other, thorough analysis of bias is difficult. Here, we compared the efficacy of seven agonists to induce G protein, G protein-coupled receptor kinase 2 (GRK2), as well as arrestin3 binding to the muscarinic acetylcholine receptor M3 by utilizing FRET-based assays. In order to avoid interference between these interactions, we studied GRK2 binding in the presence of inhibitors of Gi and Gq proteins and analyzed arrestin3 binding to prestimulated M3 receptors to avoid differences in receptor phosphorylation influencing arrestin recruitment. We measured substantial differences in the agonist efficacies to induce M3R-arrestin3 versus M3R-GRK2 interaction. However, the rank order of the agonists for G protein- and GRK2-M3R interaction was the same, suggesting that G protein and GRK2 binding to M3R requires similar receptor conformations, whereas requirements for arrestin3 binding to M3R are distinct.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Muscarínicos/fisiologia , beta-Arrestina 2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos
12.
BMC Urol ; 21(1): 113, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419040

RESUMO

BACKGROUND: The aim of the current study was to investigate the effects of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) on bladder function via prostate-to-bladder cross-sensitization in a rat model of lipopolysaccharide (LPS)-induced prostate inflammation. METHODS: Male rats were intraprostatically injected with LPS or saline, serving as control. Micturition parameters were examined in a metabolic cage 10 or 14 days later. Subsequently, to evaluate bladder function, cystometry was performed. Micturition cycles were induced by saline infusion and cholinergic and purinergic contractile responses were measured by intravenous injection with methacholine and ATP, respectively. Thereafter, the prostate and bladder were excised and assessed histopathologically for possible inflammatory changes. RESULTS: Metabolic cage experiments showed increased urinary frequency in rats with LPS-induced CP/CPPS. Cystometry showed a significant increase in the number of non-voiding contractions, longer voiding time and lower compliance in CP/CPPS animals compared to controls. Induction of CP/CPPS led to significantly reduced cholinergic and purinergic bladder contractile responses. Histopathological analysis demonstrated prostatic inflammation in CP/CPPS animals. There were no significant differences between the groups regarding the extent or the grade of bladder inflammation. Prostate weight was not significantly different between the groups. CONCLUSIONS: The present study shows that prostate-to-bladder cross-sensitization can be triggered by an infectious focus in the prostate, giving rise to bladder overactivity and alterations in both afferent and efferent signalling. Future studies are required to fully understand the underlying mechanisms.


Assuntos
Dor Crônica/fisiopatologia , Modelos Animais de Doenças , Dor Pélvica/fisiopatologia , Próstata/fisiopatologia , Bexiga Urinária/fisiopatologia , Animais , Cistite/fisiopatologia , Lipopolissacarídeos , Masculino , Próstata/inervação , Próstata/patologia , Prostatite/fisiopatologia , Ratos Sprague-Dawley , Receptores Colinérgicos/fisiologia , Receptores Muscarínicos/fisiologia , Síndrome , Bexiga Urinária/inervação , Bexiga Urinária/patologia , Bexiga Urinária Hiperativa/etiologia , Micção
13.
Neuroimage ; 237: 118096, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940149

RESUMO

Drugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeutic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect in the reverse direction, i.e., to infer the status of specific neuromodulatory systems from electrophysiological measures. In this study, we provide proof-of-concept that the functional status of cholinergic (specifically muscarinic) receptors can be inferred from electrophysiological data using generative (dynamic causal) models. To this end, we used epidural EEG recordings over two auditory cortical regions during a mismatch negativity (MMN) paradigm in rats. All animals were treated, across sessions, with muscarinic receptor agonists and antagonists at different doses. Together with a placebo condition, this resulted in five levels of muscarinic receptor status. Using a dynamic causal model - embodying a small network of coupled cortical microcircuits - we estimated synaptic parameters and their change across pharmacological conditions. The ensuing parameter estimates associated with (the neuromodulation of) synaptic efficacy showed both graded muscarinic effects and predictive validity between agonistic and antagonistic pharmacological conditions. This finding illustrates the potential utility of generative models of electrophysiological data as computational assays of muscarinic function. In application to EEG data of patients from heterogeneous spectrum diseases, e.g. schizophrenia, such models might help identify subgroups of patients that respond differentially to cholinergic treatments. SIGNIFICANCE STATEMENT: In psychiatry, the vast majority of pharmacological treatments affect actions of neuromodulatory transmitters, e.g. dopamine or acetylcholine. As treatment is largely trial-and-error based, one of the goals for computational psychiatry is to construct mathematical models that can serve as "computational assays" and infer the status of specific neuromodulatory systems in individual patients. This translational neuromodeling strategy has great promise for electrophysiological data in particular but requires careful validation. The present study demonstrates that the functional status of cholinergic (muscarinic) receptors can be inferred from electrophysiological data using dynamic causal models of neural circuits. While accuracy needs to be enhanced and our results must be replicated in larger samples, our current results provide proof-of-concept for computational assays of muscarinic function using EEG.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Eletrocorticografia/métodos , Potenciais Evocados Auditivos/fisiologia , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/fisiologia , Animais , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/efeitos dos fármacos , Comportamento Animal/fisiologia , Eletrocorticografia/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Agonistas Muscarínicos/administração & dosagem , Antagonistas Muscarínicos/administração & dosagem , Pilocarpina/farmacologia , Estudo de Prova de Conceito , Ratos , Escopolamina/farmacologia , Máquina de Vetores de Suporte
14.
Psychopharmacology (Berl) ; 238(8): 2225-2234, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33891128

RESUMO

Episodic memory retrieval is fundamental for daily activities of humans and animals. Muscarinic cholinergic signaling is important for memory functioning and shows gender-dependent response in episodic memory retrieval. Dopamine D2 receptors influence memory formation and retrieval by influencing cholinergic signaling in the brain. This study aimed to determine the gender-dependent effects of D2 and muscarinic activity on memory retrieval. Male and female mice were trained for Morris water maze test and contextual fear conditioning. Memory retrieval was assessed following sub-chronic treatment (for 5 days) with D2 antagonist (risperidone 2.5 mg/kg) alone or in combination with scopolamine (1 mg/kg) or donepezil (1 mg/kg). Open field test was performed prior to the retrieval test to evaluate effects of risperidone treatment on locomotor activity and exploratory behavior. Risperidone co-treatment with donepezil impaired spatial memory retrieval in males only. Muscarinic and D2 simultaneous antagonism tend to impair fear retrieval in males but significantly enhanced retrieval of fear memories in female mice. These results suggest that D2 signaling influence muscarinic receptor activity during memory retrieval in gender-dependent manner.


Assuntos
Medo/fisiologia , Receptores de Dopamina D2/fisiologia , Receptores Muscarínicos/fisiologia , Caracteres Sexuais , Memória Espacial/fisiologia , Animais , Inibidores da Colinesterase/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Medo/efeitos dos fármacos , Medo/psicologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
15.
J Neurochem ; 158(6): 1263-1273, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33735482

RESUMO

Electrical stimulation of the spinal cord is a potent means for activating mammalian stepping in the absence of the descending control from the brain. Previously, we have shown that stimulation of pain delivering (Aδ) sacrocaudal afferents (SCA) has a powerful capacity to activate the sacral and lumbar rhythmogenic networks in the neonatal rodent spinal cord. Relatively little is known about the neural pathways involved in activation of the locomotor networks by Aδ afferents, on their mechanism of action and on the possibility to modulate their activity. We have shown that elevation of the endogenous level of acetylcholine at the sacral cord by blocking cholinesterase could modulate the SCA-induced locomotor rhythm in a muscarinic receptor-dependent mechanism. Here, we review these and more recent findings and report that controlled stimulation of SCA in the presence of muscarine is a potent activator of the locomotor network. The possible mechanisms involved in the muscarinic modulation of the locomotor rhythm are discussed in terms of the differential projections of sacral relay neurons, activated by SCA stimulation, to the lumbar locomotor rhythm generators, and to their target motoneurons. Altogether, our studies show that manipulations of cholinergic networks offer a simple and powerful means to control the activity of locomotor networks in the absence of supraspinal control. Cover Image for this issue: https://doi.org/10.1111/jnc.15079.


Assuntos
Neurônios Motores/fisiologia , Agonistas Muscarínicos/farmacologia , Rede Nervosa/fisiologia , Periodicidade , Receptores Muscarínicos/fisiologia , Medula Espinal/fisiologia , Animais , Neurônios Motores/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Roedores , Medula Espinal/efeitos dos fármacos
16.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361149

RESUMO

Acetylcholine (ACh) promotes various cell migrations in vitro, but there are few investigations into this nonsynaptic role of ACh signaling in vivo. Here we investigate the function of a muscarinic receptor on an epithelial cell migration in Caenorhabditis elegans We show that the migratory gonad leader cell, the linker cell (LC), uses an M1/M3/M5-like muscarinic ACh receptor GAR-3 to receive extrasynaptic ACh signaling from cholinergic neurons for its migration. Either the loss of the GAR-3 receptor in the LC or the inhibition of ACh release from cholinergic neurons resulted in migratory path defects. The overactivation of the GAR-3 muscarinic receptor caused the LC to reverse its orientation through its downstream effectors Gαq/egl-30, PLCß/egl-8, and TRIO/unc-73 This reversal response only occurred in the fourth larval stage, which corresponds to the developmental time when the GAR-3::yellow fluorescent protein receptor in the membrane relocalizes from a uniform to an asymmetric distribution. These findings suggest a role for the GAR-3 muscarinic receptor in determining the direction of LC migration.


Assuntos
Acetilcolina/metabolismo , Movimento Celular/fisiologia , Receptores Muscarínicos/metabolismo , Acetilcolina/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Células Epiteliais/metabolismo , Contração Muscular/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores Muscarínicos/fisiologia , Transdução de Sinais
17.
Neurobiol Learn Mem ; 177: 107360, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307182

RESUMO

Over the years, experimental and clinical evidence has given support to the idea that acetylcholine (Ach) plays an essential role in mnemonic phenomena. On the other hand, the Hippocampus is already known to have a key role in learning and memory. What is yet unclear is how the Ach receptors may contribute to this brain region role during memory retrieval. The Ach receptors are divided into two broad subtypes: the ionotropic nicotinic acetylcholine receptors and the metabotropic muscarinic acetylcholine receptors. Back in 2010, we demonstrated for the first time the critical role of hippocampal α7 nicotinic acetylcholine receptors in memory reconsolidation process of an inhibitory avoidance response in mice. In the present work, we further investigate the possible implication of hippocampal muscarinic Ach receptors (mAchRs) in this process using a pharmacological approach. By specifically administrating agonists and antagonists of the different mAchRs subtypes in the hippocampus, we found that M1 and M2 but not M3 subtype may be involved in memory reconsolidation processes in mice.


Assuntos
Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Receptores Muscarínicos/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Hipocampo/efeitos dos fármacos , Masculino , Consolidação da Memória/efeitos dos fármacos , Camundongos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Pirenzepina/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Escopolamina/farmacologia , Succinato de Solifenacina/farmacologia
18.
Neurosci Lett ; 740: 135466, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152457

RESUMO

The sense of taste provides information regarding the nutrient content, safety or potential toxicity of an edible. This is accomplished via a combination of innate and learned taste preferences. In conditioned taste aversion (CTA), rats learn to avoid ingesting a taste that has previously been paired with gastric malaise. Recent evidence points to a role of cholinergic muscarinic signaling in the amygdala for the learning and storage of emotional memories. The present study tested the participation of muscarinic receptors in the amygdala during the formation of CTA by infusing the non-specific antagonist scopolamine into the basolateral or central subnuclei before or after conditioning, as well as before retrieval. Our data show that regardless of the site of infusion, pre-conditioning administration of scopolamine impaired CTA acquisition whereas post-conditioning infusion did not affect its storage. Also, infusions into the basolateral but not in the central amygdala before retrieval test partially reduced the expression of CTA. Our results indicate that muscarinic receptors activity is required for acquisition but not consolidation of CTA. In addition, our data add to recent evidence pointing to a role of cholinergic signaling in peri-hippocampal structures in the process of memory retrieval.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem da Esquiva/fisiologia , Receptores Muscarínicos/fisiologia , Transdução de Sinais/fisiologia , Paladar/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Emoções , Masculino , Consolidação da Memória/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Microinjeções , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Muscarínicos/farmacologia , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/fisiologia , Ratos , Ratos Wistar , Receptores Muscarínicos/efeitos dos fármacos , Escopolamina/administração & dosagem , Escopolamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Paladar/efeitos dos fármacos
19.
ScientificWorldJournal ; 2020: 4046256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33299384

RESUMO

OBJECTIVE: Crocin as an important constituent of saffron has antineuropathic pain properties; however, the exact mechanism of this effect is not known. The aim of this study was whether the hypoalgesic effect of crocin can be exerted through muscarinic receptors. MATERIALS AND METHODS: In the present project, 36 male Wistar rats (200 ± 20 g) were used. Animals randomly divided into six groups (sham, neuropathy, neuropathy + crocin, neuropathy + atropine 0.5 mg/kg, neuropathy + atropine 1 mg/kg, and neuropathy + atropine 1 mg/kg + crocin). Neuropathy was induced by the chronic constriction injury (CCI) method on the sciatic nerve. Crocin and atropine was administered intraperitoneally during 14 days following the 14th day after surgery. Pain response was detected every three days, two hours after each injection and 3 days following last injection. Mechanical allodynia and thermal hyperalgesia were detected using the Von Frey filaments and plantar test device, respectively. RESULTS: CCI significantly reduced the paw withdrawal response to mechanical and thermal stimulus (P < 0.01 and P < 0.05, respectively). Crocin therapy significantly reduced mechanical allodynia and thermal hyperalgesia induced by CCI (P < 0.05). Atropine pretreatment significantly blocked the hypoalgesic effect of crocin (P < 0.05 in mechanical allodynia and P < 0.01 in thermal hyperalgesia). Fourteen days administration of atropine alone at a dose of 0.5 mg/kg but not 1 mg/kg significantly reduced CCI-induced mechanical allodynia at day 30 after surgery. CONCLUSION: Crocin significantly decreased CCI-induced neuropathic pain. The hypoalgesic effect of crocin was blocked by atropine pretreatment, which indicates an important role for muscarinic receptors in the effect of crocin.


Assuntos
Carotenoides/uso terapêutico , Antagonistas Muscarínicos/farmacologia , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Receptores Muscarínicos/fisiologia , Animais , Atropina/farmacologia , Carotenoides/antagonistas & inibidores , Carotenoides/farmacologia , Constrição Patológica/complicações , Constrição Patológica/tratamento farmacológico , Constrição Patológica/fisiopatologia , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/etiologia , Neuralgia/fisiopatologia , Medição da Dor/métodos , Ratos , Ratos Wistar
20.
Learn Mem ; 27(10): 414-417, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32934093

RESUMO

We present evidence that experience and cholinergic modulation in an early sensory network interact to improve certainty about olfactory stimuli. The data we present are in agreement with existing theoretical ideas about the functional role of acetylcholine but highlight the importance of early sensory networks in addition to cortical networks. We use a simple behavioral paradigm in mice which allows us to measure certainty about a stimulus via the response amplitude to a condition and novel stimuli. We conclude that additional learning increases certainty and that the slope of this relationship can be modulated by activation of muscarinic cholinergic receptors in the olfactory bulb.


Assuntos
Bulbo Olfatório/fisiologia , Receptores Muscarínicos/fisiologia , Olfato/fisiologia , Acetilcolina/metabolismo , Animais , Condicionamento Clássico , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA