Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Cell Chem Biol ; 31(5): 944-954.e5, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653243

RESUMO

Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.


Assuntos
Epitopos , Humanos , Epitopos/imunologia , Epitopos/química , Animais , Receptores do Fator de Necrose Tumoral/agonistas , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores OX40/agonistas , Receptores OX40/imunologia , Receptores OX40/metabolismo , Receptores OX40/antagonistas & inibidores , Anticorpos/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Camundongos
2.
Am J Clin Dermatol ; 25(3): 447-461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38236520

RESUMO

Atopic dermatitis (AD) is a chronic, heterogeneous, inflammatory disease characterized by skin lesions, pruritus, and pain. Patients with moderate-to-severe AD experience chronic symptoms, intensified by unpredictable flares, and often have comorbidities and secondary complications, which can result in significant clinical burden that impacts the patient's overall quality of life. The complex interplay of immune dysregulation and skin barrier disruption drives AD pathogenesis, of which T-cell-dependent inflammation plays a critical role in patients with AD. Despite new targeted therapies, many patients with moderate-to-severe AD fail to achieve or sustain their individual treatment goals and/or may not be suitable for or tolerate these therapies. There remains a need for a novel, efficacious, well-tolerated therapeutic option that can deliver durable benefits across a heterogeneous AD patient population. Expression of OX40 [tumor necrosis factor receptor superfamily, member 4 (TNFRSF4)], a prominent T-cell co-stimulatory molecule, and its ligand [OX40L; tumor necrosis factor superfamily, member 4 (TNFSF4)] is increased in AD. As the OX40 pathway is critical for expansion, differentiation, and survival of effector and memory T cells, its targeting might be a promising therapeutic approach to provide sustained inhibition of pathogenic T cells and associated inflammation and broad disease control. Antibodies against OX40 [rocatinlimab (AMG 451/KHK4083) and telazorlimab (GBR 830)] or OX40L [amlitelimab (KY1005)] have shown promising results in early-phase clinical studies of moderate-to-severe AD, highlighting the importance of OX40 signaling as a new therapeutic target in AD.


Assuntos
Dermatite Atópica , Terapia de Alvo Molecular , Ligante OX40 , Receptores OX40 , Dermatite Atópica/imunologia , Dermatite Atópica/tratamento farmacológico , Humanos , Receptores OX40/antagonistas & inibidores , Receptores OX40/imunologia , Receptores OX40/metabolismo , Ligante OX40/antagonistas & inibidores , Ligante OX40/metabolismo , Índice de Gravidade de Doença , Pele/imunologia , Pele/patologia , Qualidade de Vida , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
3.
Nano Lett ; 23(4): 1424-1434, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779813

RESUMO

Combination immunotherapy synergizing the PD-1 blockade with OX40 agonism has become a research hotspot, due to its enormous potential to overcome the restricted clinical objective response suffered by monotherapy. Questions of timing and sequence have been important aspects of immunotherapies when considering immunologic mechanisms; however, most of the time the straightforward additive approach was taken. Herein, our work is the first to investigate an alternative timing of aOX40 and aPD-1 treatment in melanoma-bearing mice, and it demonstrates that sequential administration (aOX40 first, then aPD-1 following) provided superior antitumor benefits than concurrent treatment. Based on that, to further avoid the limits suffered by solution forms, we adopted pharmaceutical technologies to construct an in situ-formed physical- and chemical-dually ROS-responsive nano-in-gel platform to implement sequential and prolonged release of aPD-1 and aOX40. Equipped with these advantages, the as-prepared (aPD-1NCs&aOX40)@Gels elicited augmented combination immunity and achieved great eradication of both primary and distant melanoma tumors in vivo.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Nanoestruturas , Animais , Camundongos , Géis/química , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Espécies Reativas de Oxigênio , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Receptores OX40/antagonistas & inibidores , Receptores OX40/imunologia
4.
Biochem Biophys Res Commun ; 637: 9-16, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375254

RESUMO

Group 2 innate lymphoid cells (ILC2s) are resident cells and participate in innate and adaptive immunity. In the tumor microenvironment (TME), ILC2s contribute to both tumorigenesis and inhibition of tumor growth, but the true role of ILC2s in TME construction remains unclear. We show that IL-33 treatment induces an anti-tumor effect in vivo in a mouse model of melanoma in which ILC2s and CD8+ T cells infiltrate into tumor tissue. This anti-tumor effect is dependent on CD8+ T cells, however, IL-33 does not act directly on CD8+ T cells because the cells lack ST2, the receptor for IL-33. ILC2s and CD8+ T cells in tumors of IL-33-treated mice express OX40 ligand (OX40L) and OX40, respectively, and in vivo blockade of OX40L-OX40 interaction canceled the anti-tumor effect of IL-33. Co-culture of CD8+ T cells expressing OX40 with IL-33-stimulated ILC2 expressing OX40L promoted cell activation and proliferation of CD8+ T cells, which was significantly suppressed by administration of anti-OX40L blocking antibody. Thus, the IL-33-ILC2 axis promotes CD8+ T cell responses via OX40/OX40L interaction and exerts an anti-tumor effect.


Assuntos
Linfócitos T CD8-Positivos , Imunidade Inata , Interleucina-33 , Neoplasias , Receptores OX40 , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Interleucina-33/imunologia , Linfócitos/imunologia , Ligante OX40/imunologia , Receptores OX40/imunologia , Neoplasias/imunologia
5.
Comput Math Methods Med ; 2022: 6244175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222687

RESUMO

BACKGROUND: Researches have confirmed that the abnormal signals of OX40 and PD-1 lead to the changes of T cell biological behavior, thus participating the immunopathological process of RA. However, the pathogenesis of RA immunopathological process has not been clarified yet. METHODS: 30 DBA/1 mice were randomly divided into 5 groups (6 mice per group): control group, collagen-induced arthritis (CIA) group, PD-1-Fc/CIA group, OX40-Fc/CIA group, and PD-1-Fc + OX40-Fc/CIA group. The pathological changes in mice joints were observed by H&E staining. The proportion of CD4+ T, CD8+ T, CD28+, and CD19+ cells in peripheral blood mononuclear cells (PBMCs) was detected by flow cytometry. Serum inflammatory factors (CRP, IL-2, IL-4, IL-1ß, INF-γ) and bone metabolism-related genes (CTX-I, TRACP-5b, BALP) were detected by ELISA assay. Western blotting was applied to measure the NF-κB signaling pathway-related protein (p-IKKß, p-IκBα, p50) expression in synovial tissue of mice joint. RESULTS: Compared with the control group, CIA mice showed significant increases in arthritis score and pathological score. In the CIA group, a marked decrease was identified in the proportion of CD8+ T, CD19+, and CD68+ cells. Additionally, the CIA group was associated with upregulation of secretion of inflammatory factors in serum and expression of bone metabolism-related genes and NF-κB pathway-related proteins. Compared with the CIA group, the same indexes above showed a further aggravation in the PD-1-Fc group while all indexes improved in the OX40-Fc group. Besides, OX40-Fc fusion protein slowed down significantly the further deterioration of CIA mouse pathological process caused by PD-1-Fc fusion protein. CONCLUSION: OX40-Fc fusion protein alleviates PD-1-Fc-aggravated RA by inhibiting inflammatory response. This research provides biological markers with clinical significance for diagnosis and prognosis of RA, as well as offers theoretical and experimental foundation to the new targets for immune intervention.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores OX40/uso terapêutico , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/fisiopatologia , Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Biomarcadores/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Colágeno Tipo I/metabolismo , Biologia Computacional , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , NF-kappa B/metabolismo , Peptídeos/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptores OX40/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fosfatase Ácida Resistente a Tartarato/metabolismo
6.
Nat Commun ; 12(1): 7264, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907171

RESUMO

Antibodies targeting costimulatory receptors of T cells have been developed for the activation of T cell immunity in cancer immunotherapy. However, costimulatory molecule expression is often lacking in tumor-infiltrating immune cells, which can impede antibody-mediated immunotherapy. Here, we hypothesize that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells will enhance the antitumor effects of antibodies. We first design a library of biomimetic nanoparticles and find that phospholipid nanoparticles (PL1) effectively deliver costimulatory receptor mRNA (CD137 or OX40) to T cells. Then, we demonstrate that the combination of PL1-OX40 mRNA and anti-OX40 antibody exhibits significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. This treatment regimen results in a 60% complete response rate in the A20 tumor model, with these mice being resistant to rechallenge by A20 tumor cells. Additionally, the combination of PL1-OX40 mRNA and anti-OX40 antibody significantly boosts the antitumor immune response to anti-PD-1 + anti-CTLA-4 antibodies in the B16F10 tumor model. This study supports the concept of delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.


Assuntos
Materiais Biomiméticos/administração & dosagem , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Nanopartículas/administração & dosagem , RNA Mensageiro/administração & dosagem , Linfócitos T/imunologia , Animais , Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos , Glicolipídeos/administração & dosagem , Glicolipídeos/química , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Nanopartículas/química , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Fosfolipídeos/administração & dosagem , Fosfolipídeos/química , RNA Mensageiro/química , Receptores OX40/antagonistas & inibidores , Receptores OX40/genética , Receptores OX40/imunologia , Receptores OX40/metabolismo , Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
7.
Front Immunol ; 12: 763888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868010

RESUMO

Introduction: Combining CpG oligodeoxynucleotides with anti-OX40 agonist antibody (CpG+OX40) is able to generate an effective in situ vaccine in some tumor models, including the A20 lymphoma model. Immunologically "cold" tumors, which are typically less responsive to immunotherapy, are characterized by few tumor infiltrating lymphocytes (TILs), low mutation burden, and limited neoantigen expression. Radiation therapy (RT) can change the tumor microenvironment (TME) of an immunologically "cold" tumor. This study investigated the effect of combining RT with the in situ vaccine CpG+OX40 in immunologically "cold" tumor models. Methods: Mice bearing flank tumors (A20 lymphoma, B78 melanoma or 4T1 breast cancer) were treated with combinations of local RT, CpG, and/or OX40, and response to treatment was monitored. Flow cytometry and quantitative polymerase chain reaction (qPCR) experiments were conducted to study differences in the TME, secondary lymphoid organs, and immune activation after treatment. Results: An in situ vaccine regimen of CpG+OX40, which was effective in the A20 model, did not significantly improve tumor response or survival in the "cold" B78 and 4T1 models, as tested here. In both models, treatment with RT prior to CpG+OX40 enabled a local response to this in situ vaccine, significantly improving the anti-tumor response and survival compared to RT alone or CpG+OX40 alone. RT increased OX40 expression on tumor infiltrating CD4+ non-regulatory T cells. RT+CpG+OX40 increased the ratio of tumor-infiltrating effector T cells to T regulatory cells and significantly increased CD4+ and CD8+ T cell activation in the tumor draining lymph node (TDLN) and spleen. Conclusion: RT significantly improves the local anti-tumor effect of the in situ vaccine CpG+OX40 in immunologically "cold", solid, murine tumor models where RT or CpG+OX40 alone fail to stimulate tumor regression.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias Experimentais/radioterapia , Oligodesoxirribonucleotídeos/uso terapêutico , Receptores OX40/imunologia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
8.
Anticancer Res ; 41(7): 3371-3387, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230133

RESUMO

BACKGROUND/AIM: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit karana ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells. MATERIALS AND METHODS: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma. RESULTS: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20. In addition, "Karanahan" demonstrated high efficiency in all types of tumors, regardless of their immunogenicity or size. CONCLUSION: "Karanahan" therapy showed higher efficacy relative to in situ vaccination with CpG oligonucleotides and anti-OX40 antibodies.


Assuntos
Antineoplásicos/imunologia , Imunoterapia/métodos , Animais , Anticorpos/imunologia , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Linhagem Celular Tumoral , Ciclofosfamida/imunologia , DNA/imunologia , Feminino , Linfoma/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Neoplásicas/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores OX40/imunologia , Vacinação/métodos
9.
Mol Immunol ; 138: 20-30, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332182

RESUMO

Respiratory syncytial virus (RSV) infection in early life is associated strongly with the subsequent development and exacerbation of asthma, however, the mechanism is still ambiguous. In this study, we identified that RSV nonstructural protein (NS) 1 plays a critical role. Plasmid-mediated overexpression of NS1 induced significant airway hyperresponsiveness, eosinophilia, and mucus hyperproduction in mice. In the pNS1 group, there were markedly elevated proportions of Th2 and Th17 cells, while Th1 and Foxp3+ regulatory T cells (Tregs) significantly declined compared with the control group. Serum concentrations of interleukin (IL)-4, IL-5, IL-6, IL-17, transforming growth factor-beta, and tumor necrosis factor-alpha increased but levels of interferon-gamma and interleukin-10 declined in pNS1 group. Besides, NS1 caused a significant rise of serum thymic stromal lymphopoietin (TSLP) and OX40L levels, and a neutralizing mAb anti-OX40L was capable of promoting RSV clearance and attenuating the airway allergic inflammation caused by pNS1. Otherwise, OX40L-blocking counteracts the inhibitory effect of pNS1 on Tregs in the spleen. RSV NS1 caused elevated levels of phospho-AKT, phospho-mTOR, and phospho-S6K1, which were partially attenuated by anti-OX40L. Moreover, a specific inhibitor of mTORC1 significantly relieved the inhibition of Foxp3 expression and Tregs differentiation. Together, the data indicate that RSV NS1 protein breaks immune tolerance and induces airway inflammation and hyperresponsiveness in mice. In this process, NS1-stimulated TSLP and OX40L play a major role by inhibiting the induction of Tregs, which is at least partially mediated by modulating AKT-mTOR signaling pathways.


Assuntos
Tolerância Imunológica/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Citocinas/imunologia , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ligante OX40/imunologia , Receptores OX40/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/complicações , Vírus Sincicial Respiratório Humano/imunologia , Serina-Treonina Quinases TOR/imunologia , Linfopoietina do Estroma do Timo
10.
Chest ; 160(3): 969-982, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33901497

RESUMO

BACKGROUND: Pulmonary sarcoidosis (PS) is a noncaseating granulomatous disease of unknown origin. Despite conflicting reports, it is considered that the regulatory T (Treg) cells are functionally impaired in PS, but the underlying mechanisms remain unclear. OX40, a pivotal costimulatory molecule, is essential for T-cell functions and memory development, but its impact on Treg cells is ambiguous. RESEARCH QUESTION: Does the OX40 pathway influence the suppressive functions of Treg cells in PS? STUDY DESIGN AND METHODS: Fifty treatment-naïve patients with PS and 30 healthy control participants were recruited for this study. Polychromatic flow cytometry-based immunologic assays were performed to enumerate effector T helper (Th) cells and Treg cells along with their functions. Using real-time polymerase chain reaction analysis, small interfering RNA, and pharmacologic inhibitors, the impact of OX40 on Treg cell function was investigated. RESULTS: We observed enrichment of Th-9 cells perhaps for the first time along with Th-1, Th-17, and Treg cells in patients' BAL fluid (BALF) compared with peripheral blood. However, Treg cells were observed to be functionally defective at the pathological site. We observed higher expression of OX40 on both T effector (CD4+Foxp3-) and Treg (CD4+Foxp3+) cells obtained from the BALF of patients with PS. However, OX40 exerted contrasting impact on these T-cell subsets, enhancing effector T-cell functions (interferon γ, tumor necrosis factor α) while inhibiting Treg cell function (IL-10, transforming growth factor ß). OX40 silencing or blocking on Treg cells resulted in restoration of their impaired functions. INTERPRETATION: We propose that inhibiting the OX40 pathway may constitute a therapeutic strategy for controlling inflammatory T cells by restoring Treg cell functions in patients with PS.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Receptores OX40/imunologia , Sarcoidose Pulmonar , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores/imunologia , Adulto , Estudos Transversais , Descoberta de Drogas , Feminino , Humanos , Memória Imunológica , Testes Imunológicos/métodos , Inflamação/imunologia , Inflamação/patologia , Interferon gama/análise , Interleucina-10/análise , Masculino , Sarcoidose Pulmonar/imunologia , Sarcoidose Pulmonar/patologia , Linfócitos T Auxiliares-Indutores/classificação , Linfócitos T Auxiliares-Indutores/imunologia , Fator de Crescimento Transformador beta/análise , Fator de Necrose Tumoral alfa/análise
11.
FEBS Lett ; 595(11): 1587-1603, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33792041

RESUMO

OX40 is a costimulatory molecule that belongs to the tumor necrosis factor receptor (TNFR) superfamily. OX40 agonist-based combinations are emerging as promising candidates for novel cancer immunotherapy. Clinical trials have shown that OX40 agonist antibodies could lead to better results in cancer patients. Using a hybridoma platform and three different types of immunization strategies, namely recombinant protein, DNA, and overexpressing cells, we identified a chimeric anti-OX40 antibody (mAb035-hIgG1 from DNA immunization) that shows excellent binding specificity, and slightly stronger activation of human memory CD4+ T cells and similar potent antitumor activity compared with BMS 986178, an anti-OX40 antibody currently being evaluated for the treatment of solid tumors. This paper further systematically investigates the antigen-specific immune response, the number of binders, epitope bins, and functional activities of antibodies among different immunization strategies. Interestingly, we found that different immunization strategies affect the biological activity of monoclonal antibodies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Imunização/métodos , Receptores OX40/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Afinidade de Anticorpos , Especificidade de Anticorpos , Antineoplásicos Imunológicos/isolamento & purificação , Antineoplásicos Imunológicos/metabolismo , Bioensaio , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Células CHO , Cricetulus , Feminino , Adjuvante de Freund/administração & dosagem , Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Hibridomas/química , Hibridomas/imunologia , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Fragmentos Fc das Imunoglobulinas/farmacologia , Células Jurkat , Luciferases/genética , Luciferases/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/imunologia , Receptores OX40/antagonistas & inibidores , Receptores OX40/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação
12.
Immunopharmacol Immunotoxicol ; 43(3): 291-298, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33757384

RESUMO

OBJECTIVES: It has been demonstrated that artemisinin (ART) possesses multiple immune modulatory effects. However, its role as immunosuppressant in allogeneic transplantation is undetermined. Here, we investigated the effect of ART on co-stimulatory signaling in OX40+ T cells and evaluated ART as a potential immunosuppressant in transplantation. MATERIALS AND METHODS: Allogeneic skin transplantation was performed in C57BL/6 to BALB/c mice. Recipient mice were administrated with vehicle, ART or cyclosporine A daily from day 0 to day 19 post transplantation. Proportions of splenic CD4+OX40+ and CD4+CD44hiCD62Lhi cells, and serum IgG was measured by using flow cytometry. An in vitro lymphocyte stimulation with Con A or LPS under various concentrations of ART was performed, expression of CD4+OX40+ and CD4+CD44hiCD62Lhi cells was evaluated, and interleukin(IL)-6 production was measured by ELISA. RESULTS: In in vivo allogeneic skin transplant model, ART significantly prolongs allogeneic skin survival. Furthermore, our in vitro studies demonstrate that the immune suppression of ART on T cells is associated with a reduction in OX40+ T cells and inhibition of IL-6 secretion. CONCLUSION: Our data indicate that the OX40-OX40L pathway and IL-6 are possibly involved in ART-induced immunosuppression, and ART is a potential novel immunosuppressant.


Assuntos
Artemisininas/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Lactonas/farmacologia , Ligante OX40 , Receptores OX40 , Transplante de Pele , Aloenxertos , Animais , Feminino , Sobrevivência de Enxerto/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ligante OX40/antagonistas & inibidores , Ligante OX40/imunologia , Receptores OX40/antagonistas & inibidores , Receptores OX40/imunologia
13.
Cancer Immunol Immunother ; 70(8): 2353-2365, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33527196

RESUMO

Regulatory T cells (Tregs) are often enriched in tumors, where their immunosuppressive function has a key role in tumor persistence and progression. In colorectal cancer (CRC), however, Tregs are frequently associated with an improved clinical outcome. Tumor-infiltrating Tregs have been shown to exhibit a distinct signature comprising the co-stimulatory molecules (OX40, 4-1BB), cytokine receptors (IL1R2, IL21R, CCR8, CD30), and co-inhibitory molecules (PD-L1, TIGIT). Here, we showed by flow cytometry that circulating CD45RO+ Tregs from patients with CRC (n = 25) have elevated CD30 and OX40 expression compared to healthy subjects (n = 14). We identified co-expression of CD30 and OX40 on circulating CD45RO+ Tregs using single-cell images captured by the DEPArray™ system. The frequency of CD30+OX40+CD45RO+ Tregs was significantly higher in CRC patients than in healthy subjects (P < 0.001). Importantly, receiver operating characteristic analysis confirmed that this CD30+OX40+ Treg subset could strongly discriminate between CRC patients and healthy subjects with the highest accuracy of 92.3%, an AUC of 0.92, a sensitivity of 88%, a specificity of 100%, a positive predictive value of 100%, a negative predictive value of 82.35%, and a trade-off value of 3.44%, compared to other Treg subsets. Consistently, multiplex-IHC/IF of tumor-infiltrating Tregs revealed a significant association between high densities of CD30+OX40+ Tregs and improved overall survival; no such association was found for other subsets. These data suggest a potential role for CD30+OX40+ Tregs as a diagnostic or prognostic biomarker in CRC.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Antígeno Ki-1/imunologia , Receptores OX40/imunologia , Linfócitos T Reguladores/imunologia , Biomarcadores Tumorais/imunologia , Células Cultivadas , Humanos , Antígenos Comuns de Leucócito/imunologia , Estudos Prospectivos , Receptores de Citocinas/imunologia , Estudos Retrospectivos
14.
Cancer Immunol Res ; 9(4): 430-440, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33593794

RESUMO

CTLA-4 blockade in combination with an agonist OX40-specific monoclonal antibody synergizes to augment antitumor immunity through enhanced T-cell effector function, leading to increased survival in preclinical cancer models. We have shown previously that anti-OX40/anti-CTLA-4 combination therapy synergistically enhances the expression of Eomesodermin (Eomes) in CD8+ T cells. Eomes is a critical transcription factor for the differentiation and memory function of CD8+ T cells. We hypothesized that EomeshiCD8+ T cells were necessary for anti-OX40/anti-CTLA-4 immunotherapy efficacy and that further enhancement of this population would improve tumor-free survival. Indeed, CD8+ T cell-specific deletion of Eomes abrogated the efficacy of anti-OX40/anti-CTLA-4 therapy. We also found that anti-OX40/anti-CTLA-4-induced EomeshiCD8+ T cells expressed lower levels of checkpoint receptors (PD1, Tim-3, and Lag-3) and higher levels of effector cytokines (IFNγ and TNFα) than their Eomeslo counterparts. Eomes expression is negatively regulated in T cells through interleukin-2-inducible T-cell kinase (ITK) signaling. We investigated the impact of modulating ITK signaling with ibrutinib, an FDA-approved tyrosine kinase inhibitor, and found that anti-OX40/anti-CTLA-4/ibrutinib therapy further enhanced CD8+ T cell-specific Eomes expression, leading to enhanced tumor regression and improved survival, both of which were associated with increased T-cell effector function across multiple tumor models. Taken together, these data demonstrate the potential of anti-OX40/anti-CTLA-4/ibrutinib as a triple therapy to improve the efficacy of immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Receptores OX40/imunologia , Transferência Adotiva , Animais , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Transplante de Neoplasias , Neoplasias/imunologia , Proteínas com Domínio T/metabolismo
15.
Expert Opin Ther Pat ; 31(1): 81-90, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32945223

RESUMO

INTRODUCTION: OX40 is an immune checkpoint in cancer and its presence in cancer is a good prognosis, making it a highly relevant target for the development of new immunotherapies. AREAS COVERED: The patent literature reveals vital information on new trends in cancer therapies. The authors used the patent databases of the six major patent offices in the world: United States Patent and Trademark Office, European Patent Office, World Intellectual Property Organization, Japan Patent Office, State Office of Intellectual Property of China and Korean Intellectual Property Office, to generate a panorama of patents related to OX40 agonists. Specific patents have been grouped into innovative patents and adoption patents. EXPERT OPINION: An increasing trend in the development of OX40 agonists in cancer, particularly in the years 2018 and 2019. United States was the leader in generating patents, followed by China and England. Major pharmaceutical companies have at least one anti-OX40 agonist, MEDI6469 and MEDI-0562 (AstraZeneca), PF-04518600 (Pfizer), GSK3174998 (GlaxoSmithKline), BMS-986,178 (Bristol-Myers Squibb) and MOXR0916 (Roche), which represent 68% of clinical trials conducted with OX40 agonists.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Receptores OX40/agonistas , Animais , Desenvolvimento de Medicamentos , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/patologia , Patentes como Assunto , Receptores OX40/imunologia
16.
Toxicol Appl Pharmacol ; 409: 115285, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069749

RESUMO

The OX40 receptor plays a crucial co-stimulatory role in T effector cell survival, expansion, cytokine production, and cytotoxicity to tumor cells; therefore, OX40 agonists are being evaluated as anti-cancer immunotherapies, especially in combination with checkpoint inhibitors. To support clinical development of BMS-986178 (an OX40 agonist antibody), two repeat-dose toxicity studies were conducted in cynomolgus monkeys. In the first study, BMS-986178 was administered intravenously (IV) once weekly for one month at doses from 30 to 120 mg/kg. BMS-986178 was well tolerated; surprisingly, immune function was suppressed rather than increased based on pharmacodynamic (PD) and flow cytometry readouts (e.g. T-cell dependent antibody response [TDAR]). To determine whether immune suppression was due to a bi-phasic response, a follow-up study was conducted at lower doses (1 and 10 mg/kg). Although receptor engagement was confirmed, immune function was still suppressed at both doses. In addition, treatment-emergent anti-drug antibodies (ADAs) at 1 mg/kg resulted in hypersensitivity reactions and reduced BMS-986178 exposure after repeated dosing, which precluded a full PD assessment at this dose. In conclusion, BMS-986178 was clinically well-tolerated by monkeys at weekly IV doses from 10 to 120 mg/kg (AUC[0-168] ≤ 712,000 µg●h/mL). However, despite target engagement, PD assays and other immune endpoints demonstrated immune suppression, not stimulation. Due to the inverted immune response at higher doses and the onset of ADAs, additional repeat-dose toxicity studies of BMS-986178 in monkeys (that would typically be required to support Phase 3 clinical trials and registration) would not add value for human safety assessment.


Assuntos
Anticorpos Monoclonais/imunologia , Imunidade/imunologia , Receptores OX40/imunologia , Linfócitos T/imunologia , Animais , Feminino , Seguimentos , Humanos , Imunoterapia/métodos , Macaca fascicularis , Masculino
17.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900860

RESUMO

BACKGROUND: OX40 (CD134) is a costimulatory molecule of the tumor necrosis factor receptor superfamily that is currently being investigated as a target for cancer immunotherapy. However, despite promising results in murine tumor models, the clinical efficacy of agonistic αOX40 antibodies in the treatment of patients with cancer has fallen short of the high expectation in earlier-stage trials. METHODS: Using lymphocytes from resected tumor, tumor-free (TF) tissue and peripheral blood mononuclear cells (PBMC) of 96 patients with hepatocellular and colorectal cancers, we determined OX40 expression and the in vitro T-cell agonistic activity of OX40-targeting compounds. RNA-Seq was used to evaluate OX40-mediated transcriptional changes in CD4+ and CD8+ human tumor-infiltrating lymphocytes (TILs). RESULTS: Here, we show that OX40 was overexpressed on tumor-infiltrating CD4+ T cells compared with blood and TF tissue-derived T cells. In contrast to a clinical candidate αOX40 antibody, treatment with an Fc-engineered αOX40 antibody (αOX40_v12) with selectively enhanced FcγRIIB affinity, stimulated in vitro CD4+ and CD8+ TIL expansion, as well as cytokine and chemokine secretions. The activity of αOX40_v12 was dependent on FcγRIIB engagement and intrinsic CD3/CD28 signals. The transcriptional landscape of CD4+ and CD8+ TILs shifted toward a prosurvival, inflammatory and chemotactic profile on treatment with αOX40_v12. CONCLUSIONS: OX40 is overexpressed on CD4+ TILs and thus represents a promising target for immunotherapy. Targeting OX40 with currently used agonistic antibodies may be inefficient due to lack of OX40 multimerization. Thus, Fc engineering is a powerful tool in enhancing the agonistic activity of αOX40 antibody and may shape the future design of antibody-mediated αOX40 immunotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Receptores OX40/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
18.
Cancer Immunol Res ; 8(6): 781-793, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32273279

RESUMO

Following the success of immune checkpoint blockade therapy against cancer, agonistic antibodies targeting T-cell costimulatory pathways are in clinical trials. The TNF superfamily of receptors (TNFRSF) members CD137 and OX40 are costimulatory receptors that stimulate T-cell proliferation and activation upon interaction with their cognate ligands. Activating CD137 and OX40 with agonistic mAbs stimulates the immune system due to their broad expression on CD4+ and CD8+ T cells and natural killer cells and has antitumor effects in preclinical models. Most TNFRSF agonist antibodies require crosslinking via Fcγ receptors (FcγR), which can limit their clinical activity. FS120 mAb2, a dual agonist bispecific antibody targeting CD137 and OX40, activated both CD4+ and CD8+ T cells in an FcγR-independent mechanism, dependent on concurrent binding. A mouse surrogate version of the bispecific antibody displayed antitumor activity in syngeneic tumor models, independent of T regulatory cell depletion and of FcγR interaction, but associated with peripheral T-cell activation and proliferation. When compared with a crosslink-independent CD137 agonist mAb, the FS120 surrogate induced lower liver T-cell infiltration. These data support initiation of clinical development of FS120, a first-in-class dual agonist bispecific antibody for the treatment of human cancer.


Assuntos
Anticorpos Biespecíficos/farmacologia , Neoplasias do Colo/terapia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Receptores OX40/imunologia , Linfócitos T Reguladores/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Clin Invest ; 130(7): 3528-3542, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182225

RESUMO

Plasmacytoid DCs (pDCs), the major producers of type I interferon, are principally recognized as key mediators of antiviral immunity. However, their role in tumor immunity is less clear. Depending on the context, pDCs can promote or suppress antitumor immune responses. In this study, we identified a naturally occurring pDC subset expressing high levels of OX40 (OX40+ pDC) enriched in the tumor microenvironment (TME) of head and neck squamous cell carcinoma. OX40+ pDCs were distinguished by a distinct immunostimulatory phenotype, cytolytic function, and ability to synergize with conventional DCs (cDCs) in generating potent tumor antigen-specific CD8+ T cell responses. Transcriptomically, we found that they selectively utilized EIF2 signaling and oxidative phosphorylation pathways. Moreover, depletion of pDCs in the murine OX40+ pDC-rich tumor model accelerated tumor growth. Collectively, we present evidence of a pDC subset in the TME that favors antitumor immunity.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Neoplasias Experimentais/imunologia , Microambiente Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Células Dendríticas/patologia , Fator de Iniciação 2 em Eucariotos/imunologia , Feminino , Humanos , Masculino , Camundongos , Neoplasias Experimentais/patologia , Receptores OX40/imunologia
20.
Cancer Immunol Immunother ; 69(6): 939-950, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078015

RESUMO

With the great success of anti-CTLA-4 and anti-PD-1 therapeutics in cancer immunotherapy, tumor necrosis factor receptor superfamily members have been recognized as ideal targets to provide co-stimulatory signals in combination with immune checkpoint blocking antibodies. Among these is OX40 (CD134), a co-stimulatory molecule expressed by activated immune cells. Recently, several anti-OX40 agonistic monoclonal antibodies, pogalizumab as the most advanced, have entered early phase clinical trials. Using a yeast platform and multiple screening methods, we identified a fully human anti-OX40 antibody (IBI101) with distinct modes of action. Unlike pogalizumab, IBI101 partially blocks the binding of OX40 to its ligand OX40L and exhibits both FcγR-dependent and independent agonistic activities in NF-κB luciferase reporter assays. IBI101 also promotes T cell activation and proliferation in vitro. These unique properties partially explain the more potent anti-tumor activity of IBI101 than that of pogalizumab in humanized NOG mice bearing LoVo tumors. In addition, IBI101 shows efficacious anti-tumor activity in mice when administrated alone or in combination with anti-PD-1 antibodies. In human OX40 knock-in mice bearing MC38 colon carcinoma, IBI101 treatment induces tumor antigen-specific CD8+ T-cell responses, decreases immunosuppressive regulatory T cells in tumor, and enhances the immune response to PD-1 inhibition. Preclinical studies of IBI101 in non-human primates demonstrate typical pharmacokinetic characteristics of an IgG antibody and no drug-related toxicity. Collectively, IBI101 has desirable preclinical attributes which support its clinical development for cancer treatment.


Assuntos
Imunoterapia/métodos , Receptores OX40/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA