Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.591
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273354

RESUMO

Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.


Assuntos
Analgésicos Opioides , Canabinoides , Receptores de Canabinoides , Humanos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Dor/tratamento farmacológico , Dor/metabolismo , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Receptores Opioides/metabolismo , Epigênese Genética/efeitos dos fármacos , Manejo da Dor/métodos , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Endocanabinoides/metabolismo
2.
Curr Opin Neurobiol ; 88: 102914, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236640

RESUMO

The problem of drug addiction has become a profound societal problem worldwide. A better understanding of the neurobiological basis of addiction and the discovery of more effective treatments are needed. Recent studies have shown that many mechanisms that underlie addiction exist in more primitive organisms, including the nematode Caenorhabditis elegans (C. elegans). C. elegans is also hypothesized to possess a functional opioid-like system, including the endogenous opioid-like peptide NLP-24 and opioid-like receptor NPR-17. Opioids, such as morphine, are thought to cause addiction-like behavior by activating dopamine nerves in C. elegans via the opioid-like system. Accumulating evidence suggests that C. elegans is an excellent animal model for identifying molecular mechanisms of addiction.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Transtornos Relacionados ao Uso de Opioides , Animais , Transtornos Relacionados ao Uso de Opioides/metabolismo , Humanos , Receptores Opioides/metabolismo
3.
Behav Pharmacol ; 35(7): 399-407, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230435

RESUMO

The l -arginine ( l -Arg)/nitric oxide/cyclic GMP/potassium channel (K ATP ) pathway and opioid receptors are known to play critical roles in pain perception and the antinociceptive effects of various compounds. While there is evidence suggesting that the analgesic effects of rutin may involve nitric oxide modulation, the direct link between rutin and the l -Arg/nitric oxide/cyclic GMP/K ATP pathway in the context of pain modulation requires further investigation. The antinociceptive effect of rutin was studied in male NMRI mice using the formalin test. To investigate the role of the l -Arg/nitric oxide/cyclic GMP/K ATP pathway and opioid receptors, the mice were pretreated intraperitoneally with different substances. These substances included l -Arg (a precursor of nitric oxide), S-nitroso- N -acetylpenicillamine (SNAP, a nitric oxide donor), N(gamma)-nitro- l -arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase), sildenafil (an inhibitor of phosphodiesterase enzyme), glibenclamide (a K ATP channel blocker), and naloxone (an opioid receptor antagonist). All pretreatments were administered 20 min before the administration of the most effective dose of rutin. Based on our investigation, it was found that rutin exhibited a dose-dependent antinociceptive effect. The administration of SNAP enhanced the analgesic effects of rutin during both the initial and secondary phases. Moreover, L-NAME, naloxone, and glibenclamide reduced the analgesic effects of rutin in both the primary and secondary phases. In conclusion, rutin holds significant value as a flavonoid with analgesic properties, and its analgesic effect is directly mediated through the nitric oxide/cyclic GMP/K ATP channel pathway.


Assuntos
Analgésicos , Arginina , GMP Cíclico , Canais KATP , NG-Nitroarginina Metil Éster , Óxido Nítrico , Receptores Opioides , Rutina , Transdução de Sinais , Animais , Masculino , Camundongos , Arginina/farmacologia , Óxido Nítrico/metabolismo , Rutina/farmacologia , Analgésicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores Opioides/efeitos dos fármacos , Canais KATP/metabolismo , GMP Cíclico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Glibureto/farmacologia , Citrato de Sildenafila/farmacologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Naloxona/farmacologia , Sulfonas/farmacologia , Piperazinas/farmacologia , Purinas/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Antagonistas de Entorpecentes/farmacologia , Relação Dose-Resposta a Droga , Doadores de Óxido Nítrico/farmacologia
4.
J Opioid Manag ; 20(4): B9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39321063

RESUMO

BACKGROUND: Although buprenorphine use has increased dramatically over the past decade, its unique pharmacologic and pharmacokinetic profile often leads to misconceptions about its overall utility and has created a drastic underrepresentation in patients with chronic non-can- cer pain. A common misnomer associated with buprenorphine is because of 'partial agonist' activity, it exhibits a plateauing of typical opioid-related side effects (including respiratory depression, constipation, euphoria, and hypogonadal axis suppression), but additionally it must exhibit a plateauing effect of overall analgesic potential. However, novel downstream molecular and cellular mechanisms offer new insights that help support the clinical potential that buprenorphine's analgesic actions may not have a ceiling, like its side effect profile. This interactive symposium will provide an enhanced review of the evolving research that helps unravel the complexity around buprenorphine's varying pharmacologic effects including actions on various opioid receptors, promiscuity to elicit varying actions on mu-opioid receptors coupled with different isoforms of G~ subunits, role in the intracellular recruitment of beta-arrestin, binding to different splice variants of mu-opioid receptors, and greater spinal versus supraspinal activity. The final half of this symposium will be designed to substantiate evidence with various human clinical trial data to further support buprenorphine's place on the analgesic ladder.


Assuntos
Analgésicos Opioides , Buprenorfina , Humanos , Buprenorfina/farmacocinética , Buprenorfina/uso terapêutico , Buprenorfina/efeitos adversos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacocinética , Agonismo Parcial de Drogas , Dor Crônica/tratamento farmacológico , Animais , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Receptores Opioides/efeitos dos fármacos
5.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273261

RESUMO

Opioids have been utilized for both medical and recreational purposes since their discovery. Primarily recognized for their analgesic properties, they are also associated with the development of tolerance and dependence, contributing to a significant public health concern worldwide. Sex differences in opioid use disorder reveal that while men historically exhibit higher rates of abuse, women may develop dependence more quickly and are more susceptible to the addictive nature of opioids. This narrative review explores sex differences in opioid response in both clinical and experimental models, focusing on opioid receptor mechanisms, pain modulation, and hormonal influences. Additionally, it discusses the complexities of opioid addiction and withdrawal, highlighting sex-specific responses and the role of opioid replacement therapies. Diverse experimental outcomes, together with observational data, underscore the need for further research into sex-specific opioid biological mechanisms in a wider context, including demographic, cultural, and health-related factors. A comprehensive understanding of these complexities holds the potential to enhance personalized opioid therapies.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Manejo da Dor , Caracteres Sexuais , Humanos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Analgésicos Opioides/uso terapêutico , Manejo da Dor/métodos , Masculino , Feminino , Receptores Opioides/metabolismo , Animais , Dor/tratamento farmacológico , Fatores Sexuais
6.
J Neurophysiol ; 132(3): 1056-1073, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110896

RESUMO

Besides having high potency and efficacy at the µ-opioid (MOR) and other opioid receptor types, fentanyl has some affinity for some adrenergic receptor types, which may underlie its unique pathophysiological differences from typical opioids. To better understand the unique actions of fentanyl, we assessed the extent to which fentanyl alters striatal medium spiny neuron (MSN) activity via opioid receptors or α1-adrenoceptors in dopamine type 1 or type 2 receptor (D1 or D2)-expressing MSNs. In neuronal and mixed-glial cocultures from the striatum, acute fentanyl (100 nM) exposure decreased the frequency of spontaneous action potentials. Overnight exposure of cocultures to 100 nM fentanyl severely reduced the proportion of MSNs with spontaneous action potentials, which was unaffected by coexposure to the opioid receptor antagonist naloxone (10 µM) but fully negated by coadministering the pan-α1-adrenoceptor inverse agonist prazosin (100 nM) and partially reversed by the selective α1A-adrenoceptor antagonist RS 100329 (300 nM). Acute fentanyl (100 nM) exposure modestly reduced the frequency of action potentials and caused firing rate adaptations in D2, but not D1, MSNs. Prolonged (2-5 h) fentanyl (100 nM) application dramatically attenuated firing rates in both D1 and D2 MSNs. To identify possible cellular sites of α1-adrenoceptor action, α1-adrenoceptors were localized in subpopulations of striatal astroglia and neurons by immunocytochemistry and Adra1a mRNA by in situ hybridization in astrocytes. Thus, sustained fentanyl exposure can inhibit striatal MSN activity via a nonopioid receptor-dependent pathway, which may be modulated via complex actions in α1-adrenoceptor-expressing striatal neurons and/or glia.NEW & NOTEWORTHY Acute fentanyl exposure attenuated the activity of striatal medium spiny neurons (MSNs) in vitro and in dopamine D2, but not D1, receptor-expressing MSNs in ex vivo slices. By contrast, sustained fentanyl exposure suppressed the spontaneous activity of MSNs cocultured with glia through a nonopioid receptor-dependent mechanism modulated, in part, by α1-adrenoceptors. Fentanyl exposure can affect striatal function via a nonopioid receptor mechanism of action that appears mediated by α1-adrenoreceptor-expressing striatal neurons and/or astroglia.


Assuntos
Potenciais de Ação , Analgésicos Opioides , Técnicas de Cocultura , Corpo Estriado , Fentanila , Neuroglia , Neurônios , Animais , Fentanila/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Camundongos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Analgésicos Opioides/farmacologia , Potenciais de Ação/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Masculino , Antagonistas de Entorpecentes/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Células Cultivadas
7.
Inflammopharmacology ; 32(5): 3037-3056, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39164607

RESUMO

Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on µ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.


Assuntos
Oligopeptídeos , Proteínas e Peptídeos Salivares , Animais , Humanos , Analgésicos Opioides/farmacologia , Antidepressivos/farmacologia , Oligopeptídeos/farmacologia , Dor/metabolismo , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Sistema Renina-Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/farmacologia
8.
Mol Pharmacol ; 106(5): 240-252, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39187388

RESUMO

Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, ß-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at µ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (µ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at µ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of µ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.


Assuntos
Ketamina , Receptores Opioides , Ketamina/farmacologia , Ketamina/metabolismo , Animais , Regulação Alostérica/efeitos dos fármacos , Receptores Opioides/metabolismo , Humanos , Camundongos , Ratos , Masculino , Ratos Sprague-Dawley , Células HEK293 , Cricetulus , Células CHO
9.
J Psychiatr Res ; 178: 225-227, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163660

RESUMO

The onset of the disease as a morphine addiction is associated with the appearance in the patient's body of antibodies directed against opiate receptors (ORs). Once anti-opiate receptor antibodies (anti-OR antibodies) appear in the blood they will tend to bind to ORs. Such binding will cause blocking of physiological functions of OR. The blockage is felt by a morphine addict as withdrawal syndrome. To get rid of this harmful condition, the addict increases the dose of morphine taken. This is where tolerance manifests itself. The drug addict is forced to increase the dose of morphine from time to time because of the body responds by producing the more and more anti-OR antibodies. The immunological nature of morphine addiction is the reason for lifelong changes in the body's reactivity to the drug. An addict can be cured if he gets rid of B- and T-memory cells, which specifically react to ORs.


Assuntos
Dependência de Morfina , Humanos , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Morfina/administração & dosagem , Dependência de Morfina/imunologia , Receptores Opioides/imunologia , Receptores Opioides/metabolismo
10.
Free Radic Biol Med ; 223: 398-412, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122201

RESUMO

Enkephalins are reportedly correlated with heart function. However, their regulation in the heart remains unexplored. This study revealed a substantial increase in circulating levels of opioid growth factor (OGF) (also known as methionine enkephalin) and myocardial expression levels of both OGF and its receptor (OGFR) in subjects treated with doxorubicin (Dox). Silencing OGFR through gene knockout or using adeno-associated virus serotype 9 carrying small hairpin RNA effectively alleviated Dox-induced cardiotoxicity (DIC) in mice. Conversely, OGF supplementation exacerbated DIC manifestations, which could be abolished by administration of the OGFR antagonist naltrexone (NTX). Mechanistically, the previously characterized OGF/OGFR/P21 axis was identified to facilitate DIC-related cardiomyocyte apoptosis. Additionally, OGFR was observed to dissociate STAT1 from the promoters of ferritin genes (FTH and FTL), thereby repressing their transcription and exacerbating DIC-related cardiomyocyte ferroptosis. To circumvent the compromised therapeutic effects of Dox on tumors owing to OGFR blockade, SiO2-based modifiable lipid nanoparticles were developed for heart-targeted delivery of NTX. The pretreatment of tumor-bearing mice with the assembled NTX nanodrug successfully provided cardioprotection against Dox toxicity without affecting Dox therapy in tumors. Taken together, this study provides a novel understanding of Dox cardiotoxicity and sheds light on the development of cardioprotectants for patients with tumors receiving Dox treatment.


Assuntos
Cardiotoxicidade , Doxorrubicina , Miócitos Cardíacos , Animais , Doxorrubicina/efeitos adversos , Camundongos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/genética , Cardiotoxicidade/etiologia , Cardiotoxicidade/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Humanos , Apoptose/efeitos dos fármacos , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacologia , Receptores Opioides/metabolismo , Receptores Opioides/genética , Masculino , Transdução de Sinais/efeitos dos fármacos , Nanopartículas , Camundongos Endogâmicos C57BL
11.
Biomolecules ; 14(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39199314

RESUMO

Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.


Assuntos
Encefalinas , Dor , Humanos , Encefalinas/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Animais , Receptores Opioides/metabolismo , Manejo da Dor/métodos
12.
Medicine (Baltimore) ; 103(29): e38837, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029082

RESUMO

Opioids exert analgesic effects by agonizing opioid receptors and activating signaling pathways coupled to receptors such as G-protein and/or ß-arrestin. Concomitant respiratory depression (RD) is a common clinical problem, and improvement of RD is usually achieved with specific antagonists such as naloxone; however, naloxone antagonizes opioid analgesia and may produce more unknown adverse effects. In recent years, researchers have used various methods to isolate opioid receptor-mediated analgesia and RD, with the aim of preserving opioid analgesia while attenuating RD. At present, the focus is mainly on the development of new opioids with weak respiratory inhibition or the use of non-opioid drugs to stimulate breathing. This review reports recent advances in novel opioid agents, such as mixed opioid receptor agonists, peripheral selective opioid receptor agonists, opioid receptor splice variant agonists, biased opioid receptor agonists, and allosteric modulators of opioid receptors, as well as in non-opioid agents, such as AMPA receptor modulators, 5-hydroxytryptamine receptor agonists, phosphodiesterase-4 inhibitors, and nicotinic acetylcholine receptor agonists.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Humanos , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores Opioides/agonistas , Antagonistas de Entorpecentes/uso terapêutico , Antagonistas de Entorpecentes/farmacologia
13.
Chem Commun (Camb) ; 60(63): 8224-8227, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007214

RESUMO

The current opioid epidemic has incentivized the discovery of new non-addictive analgesics, a process that requires the screening of opioid receptor binding, traditionally performed using radiometric assays. Here we describe a label-free alternative based on high-throughput (1 Hz) ambient mass spectrometry for screening the receptor binding of new opioid analogues.


Assuntos
Ensaios de Triagem em Larga Escala , Receptores Opioides , Espectrometria de Massas por Ionização por Electrospray , Receptores Opioides/metabolismo , Receptores Opioides/química , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Humanos , Ligação Proteica , Automação
14.
Nat Neurosci ; 27(9): 1844-1857, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009835

RESUMO

Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions.


Assuntos
Técnicas Biossensoriais , Optogenética , Animais , Técnicas Biossensoriais/métodos , Camundongos , Optogenética/métodos , Neurônios/metabolismo , Humanos , Dinorfinas/metabolismo , Dinorfinas/genética , Masculino , Peptídeos Opioides/metabolismo , Peptídeos Opioides/genética , Células HEK293 , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Receptores Opioides/metabolismo , Receptores Opioides/genética , Estimulação Elétrica , Recompensa
15.
Nature ; 632(8027): 1092-1100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048016

RESUMO

Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.


Assuntos
Vias Neurais , Percepção da Dor , Dor , Efeito Placebo , Animais , Feminino , Masculino , Camundongos , Analgesia , Antecipação Psicológica/fisiologia , Sinalização do Cálcio , Cerebelo/citologia , Cerebelo/fisiologia , Cognição/fisiologia , Eletrofisiologia , Perfilação da Expressão Gênica , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Dor/fisiopatologia , Dor/prevenção & controle , Dor/psicologia , Manejo da Dor/métodos , Manejo da Dor/psicologia , Manejo da Dor/tendências , Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Limiar da Dor/psicologia , Ponte/citologia , Ponte/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células de Purkinje/fisiologia , Receptores Opioides/metabolismo , Transmissão Sináptica
16.
Neurotherapeutics ; 21(5): e00424, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004556

RESUMO

The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.


Assuntos
Bainha de Mielina , Receptor de Nociceptina , Oligodendroglia , Receptores Opioides , Animais , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Camundongos , Antagonistas de Entorpecentes/farmacologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Ratos , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo
17.
Cell Rep ; 43(6): 114343, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865247

RESUMO

Activation of prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus (ARC) promotes high-fat-diet (HFD)-induced hyperphagia. In turn, PNOCARC neurons can inhibit the anorexic response of proopiomelanocortin (POMC) neurons. Here, we validate the necessity of PNOCARC activity for HFD-induced inhibition of POMC neurons in mice and find that PNOCARC-neuron-dependent inhibition of POMC neurons is mediated by gamma-aminobutyric acid (GABA) release. When monitoring individual PNOCARC neuron activity via Ca2+ imaging, we find a subpopulation of PNOCARC neurons that is inhibited upon gastrointestinal calorie sensing and disinhibited upon HFD feeding. Combining retrograde rabies tracing and circuit mapping, we find that PNOC neurons from the bed nucleus of the stria terminalis (PNOCBNST) provide inhibitory input to PNOCARC neurons, and this inhibitory input is blunted upon HFD feeding. This work sheds light on how an increase in caloric content of the diet can rewire a neuronal circuit, paving the way to overconsumption and obesity development.


Assuntos
Dieta Hiperlipídica , Hiperfagia , Núcleos Septais , Animais , Hiperfagia/metabolismo , Camundongos , Núcleos Septais/metabolismo , Neurônios/metabolismo , Masculino , Ácido gama-Aminobutírico/metabolismo , Pró-Opiomelanocortina/metabolismo , Neurônios GABAérgicos/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Precursores de Proteínas , Receptores Opioides
18.
Nat Commun ; 15(1): 5353, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918403

RESUMO

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.


Assuntos
Neurônios , Nociceptina , Peptídeos Opioides , Receptores Opioides , Animais , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides/genética , Neurônios/metabolismo , Humanos , Camundongos , Masculino , Área Tegmentar Ventral/metabolismo , Receptor de Nociceptina , Células HEK293 , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Ligantes , Técnicas Biossensoriais/métodos
19.
Peptides ; 179: 171268, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943841

RESUMO

This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).


Assuntos
Peptídeos Opioides , Receptores Opioides , Humanos , Peptídeos Opioides/metabolismo , Animais , Receptores Opioides/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Analgésicos Opioides/farmacologia , Comportamento/efeitos dos fármacos
20.
Adv Neurobiol ; 35: 9-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38874716

RESUMO

The function of endogenous opioids spans from initiating behaviors that are critical for survival, to responding to rapidly changing environmental conditions. A network of interconnected systems throughout the body characterizes the endogenous opioid system (EOS). EOS receptors for beta-endorphin, enkephalin, dynorphin, and endomorphin underpin the diverse functions of the EOS across biological systems. This chapter presents a succinct yet comprehensive summary of the structure of the EOS, EOS receptors, and their relationship to other biological systems.


Assuntos
Analgésicos Opioides , Receptores Opioides , Animais , Humanos , Analgésicos Opioides/metabolismo , beta-Endorfina/metabolismo , Dinorfinas/metabolismo , Encefalinas/metabolismo , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA