Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS Lett ; 594(1): 144-152, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31432503

RESUMO

Purinergic signaling plays important roles in bone. P2X5, a member of ligand-gated ion channel receptors, has been demonstrated to regulate osteoclast maturation. However, the molecular mechanism of P2X5-mediated osteoclast regulation remains unclear. Here, we identified methylosome protein 50 (MEP50), a critical cofactor of the protein arginine methyltransferase 5 (PRMT5), as a P2X5-associating molecule. RNAi-mediated knockdown of MEP50 results in decreased formation of mature osteoclasts. MEP50 associates with P2X5, and this association requires the C-terminal intracellular region of P2X5. Additionally, impaired maturation of P2X5-deficient osteoclasts could be restored by transduction of full-length P2X5, but not a C-terminal deletion mutant of P2X5. These results indicate that P2X5 associates with MEP50 and suggest a link between the PRMT5 complex and P2X5 signaling in osteoclast maturation.


Assuntos
Diferenciação Celular , Osteoclastos/metabolismo , Receptores Purinérgicos P2X5/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Osteoclastos/citologia , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores Purinérgicos P2X5/química , Transdução de Sinais , Fatores de Transcrição/genética
2.
J Biol Chem ; 294(51): 19589-19603, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31727741

RESUMO

Although the extracellular ATP-gated cation channel purinergic receptor P2X5 is widely expressed in heart, skeletal muscle, and immune and nervous systems in mammals, little is known about its functions and channel-gating activities. This lack of knowledge is due to P2X5's weak ATP responses in several mammalian species, such as humans, rats, and mice. WT human P2X5 (hP2X5Δ328-349) does not respond to ATP, whereas a full-length variant, hP2X5 (hP2X5-FL), containing exon 10 encoding the second hP2X5 transmembrane domain (TM2), does. However, although rat P2X5 (rP2X5) has a full-length TM2, ATP induces only weak currents in rP2X5, which prompted us to investigate the mechanism underlying this small ATP response. Here, we show that single replacements of specific rP2X5 residues with the corresponding residues in hP2X5 (S191F or F195H) significantly enhance the current amplitude of rP2X5. Using a combination of engineered disulfide cross-linking, single-channel recording, and molecular modeling, we interrogated the effects of S191F and F195H substitutions on the allostery of the left flipper (LF) domain. On the basis of our findings, we propose that the bound ATP-induced distinct allostery of the LF domain with that of other functional subtypes has caused the weak ATP response of rP2X5 receptors. The findings of our study provide the prerequisite for future transgenic studies on the physiological and pathological functions of P2X5 receptors.


Assuntos
Trifosfato de Adenosina/química , Receptores Purinérgicos P2X5/química , Sítio Alostérico , Animais , Biotinilação , Cátions , Reagentes de Ligações Cruzadas , Dissulfetos/química , Éxons , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos , Ratos , Proteínas Recombinantes de Fusão/química
3.
PLoS One ; 7(7): e40595, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792379

RESUMO

Phosphoinositides modulate the function of several ion channels, including most ATP-gated P2X receptor channels in neurons and glia, but little is known about the underlying molecular mechanism. We identified a phosphoinositide-binding motif formed of two clusters of positively charged amino acids located on the P2X cytosolic C-terminal domain, proximal to the second transmembrane domain. For all known P2X subtypes, the specific arrangement of basic residues in these semi-conserved clusters determines their sensitivity to membrane phospholipids. Neutralization of these positive charges disrupts the functional properties of the prototypical phosphoinositide-binding P2X4 subtype, mimicking wortmannin-induced phosphoinositide depletion, whereas adding basic residues at homologous positions to the natively insensitive P2X5 subtype establishes de novo phosphoinositide-mediated regulation. Moreover, biochemical evidence of in vitro P2X subunit-phospholipid interaction and functional intracellular phosphoinositide-binding assays demonstrate that the dual polybasic cluster is necessary and sufficient for regulation of P2X signaling by phospholipids.


Assuntos
Fosfatidilinositóis/metabolismo , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Sequência Conservada , Humanos , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X1/química , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X5/química , Receptores Purinérgicos P2X5/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo , Alinhamento de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA