Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38672446

RESUMO

Preclinical studies regarding the potential of liver X receptor (LXR) agonists to inhibit macrophage foam cell formation and the development of atherosclerotic lesions are generally executed in mice fed with Western-type diets enriched in cholesterol and fat. Here, we investigated whether LXR agonism remains anti-atherogenic under dietary conditions with a low basal hepatic lipogenesis rate. Hereto, atherosclerosis-susceptible male apolipoprotein E knockout mice were fed a low-fat diet with or without 10 mg/kg/day LXR agonist T0901317 supplementation for 8 weeks. Importantly, T0901317 significantly stimulated atherosclerosis susceptibility, despite an associated increase in the macrophage gene expression levels of cholesterol efflux transporters ABCA1 and ABCG1. The pro-atherogenic effect of T0901317 coincided with exacerbated hypercholesterolemia, hypertriglyceridemia, and a significant rise in hepatic triglyceride stores and macrophage numbers. Furthermore, T0901317-treated mice exhibited elevated plasma MCP-1 levels and monocytosis. In conclusion, these findings highlight that the pro-atherogenic hepatic effects of LXR agonism are dominant over the anti-atherogenic effects in macrophages in determining the overall atherosclerosis outcome under low-fat diet feeding conditions. A low-fat diet experimental setting, as compared to the commonly used high-fat-diet-based preclinical setup, thus appears more sensitive in uncovering the potential relevance of the off-target liver effects of novel anti-atherogenic therapeutic approaches that target macrophage LXR.


Assuntos
Apolipoproteínas E , Aterosclerose , Benzenossulfonamidas , Fluorocarbonos , Hidrocarbonetos Fluorados , Receptores X do Fígado , Fígado , Macrófagos , Camundongos Knockout , Sulfonamidas , Animais , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Masculino , Sulfonamidas/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Aterosclerose/patologia , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo
2.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675565

RESUMO

The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.


Assuntos
Araquidonato 15-Lipoxigenase , Receptores X do Fígado , Macrófagos , Oxilipinas , Araquidonato 15-Lipoxigenase/metabolismo , Receptores X do Fígado/metabolismo , Receptores X do Fígado/agonistas , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Anti-Inflamatórios/farmacologia , Esteróis/farmacologia , Esteróis/metabolismo
3.
Stroke Vasc Neurol ; 8(6): 486-502, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-37137522

RESUMO

BACKGROUND: Inflammation-exacerbated secondary brain injury and limited tissue regeneration are barriers to favourable prognosis after intracerebral haemorrhage (ICH). As a regulator of inflammation and lipid metabolism, Liver X receptor (LXR) has the potential to alter microglia/macrophage (M/M) phenotype, and assist tissue repair by promoting cholesterol efflux and recycling from phagocytes. To support potential clinical translation, the benefits of enhanced LXR signalling are examined in experimental ICH. METHODS: Collagenase-induced ICH mice were treated with the LXR agonist GW3965 or vehicle. Behavioural tests were conducted at multiple time points. Lesion and haematoma volume, and other brain parameters were assessed using multimodal MRI with T2-weighted, diffusion tensor imaging and dynamic contrast-enhanced MRI sequences. The fixed brain cryosections were stained and confocal microscopy was applied to detect LXR downstream genes, M/M phenotype, lipid/cholesterol-laden phagocytes, oligodendrocyte lineage cells and neural stem cells. Western blot and real-time qPCR were also used. CX3CR1CreER: Rosa26iDTR mice were employed for M/M-depletion experiments. RESULTS: GW3965 treatment reduced lesion volume and white matter injury, and promoted haematoma clearance. Treated mice upregulated LXR downstream genes including ABCA1 and Apolipoprotein E, and had reduced density of M/M that apparently shifted from proinflammatory interleukin-1ß+ to Arginase1+CD206+ regulatory phenotype. Fewer cholesterol crystal or myelin debris-laden phagocytes were observed in GW3965 mice. LXR activation increased the number of Olig2+PDGFRα+ precursors and Olig2+CC1+ mature oligodendrocytes in perihaematomal regions, and elevated SOX2+ or nestin+ neural stem cells in lesion and subventricular zone. MRI results supported better lesion recovery by GW3965, and this was corroborated by return to pre-ICH values of functional rotarod activity. The therapeutic effects of GW3965 were abrogated by M/M depletion in CX3CR1CreER: Rosa26iDTR mice. CONCLUSIONS: LXR agonism using GW3965 reduced brain injury, promoted beneficial properties of M/M and facilitated tissue repair correspondent with enhanced cholesterol recycling.


Assuntos
Lesões Encefálicas , Microglia , Camundongos , Animais , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Microglia/metabolismo , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/metabolismo , Imagem de Tensor de Difusão , Macrófagos/metabolismo , Colesterol/metabolismo , Colesterol/farmacologia , Hemorragia Cerebral/metabolismo , Inflamação , Lesões Encefálicas/metabolismo , Hematoma
4.
Neurosci Lett ; 793: 136994, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36460235

RESUMO

Perinatal white matter injury (PWMI) can lead to permanent neurological damage in preterm infants and bring a huge economic burden to their families and society. Liver X receptors (LXRs) are transcription factors that have been confirmed to mediate the myelination process under physiological conditions and are involved in regulating neurogenesis in adult animal models of acute and chronic cerebral ischemia. However, the role of LXRs in PWMI induced by both ischemic and hypoxic stimulation in the immature brain has not been reported. Herein, we investigated the role of LXRs in a neonatal rat model of white matter loss after hypoxia-ischemia (HI) injury through intraperitoneal injection of the LXR agonist T0901317 (T09) 1 day before and 15 min postinjury. The in vivo data showed that T09 treatment significantly facilitated myelination and ameliorated neurological behavior after PWMI. Moreover, T09 enhanced the proliferation of oligodendrocyte lineage cells and reduced microgliosis and astrogliosis in the microenvironment for oligodendrocytes (OLs), maintaining a healthy microenvironment for myelinating OLs. In vitro data suggested that the expression of the myelin-related genes Plp and Cnpase was increased in OLN-93 cells after T09 intervention compared with OLN-93 cells injured by oxygen and glucose deprivation (OGD). In primary mixed astrocytes/microglia cells, T09 also reduced the expression of Il6, Cox2, Tnfa and Il10 that was induced by OGD. Mechanistically, the mRNA expression level and the protein level of ATP binding cassette subfamily A member 1 (Abca1) decreased after HI injury, and the protective effect of T09 might be related to the activation of the LXRß-ABCA1 signaling pathway. Our study revealed the protective role of LXRs in myelination and white matter homeostasis, providing a potential therapeutic option for PWMI.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Substância Branca , Animais , Feminino , Gravidez , Ratos , Animais Recém-Nascidos , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Hidrocarbonetos Fluorados/farmacologia , Hidrocarbonetos Fluorados/uso terapêutico , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(10): 1324-1331, 2022 Oct 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36411683

RESUMO

OBJECTIVES: The liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily, and LXR-ß is an important receptor for cholesterol content in brain cells. LXR-ß/retinoic X receptor (RXR-α)/ATP binding cassette transporter A1 (ABCA1) cholesterol transmembrane transport system is closely related to the occurrence and development of Alzheimer's disease (AD). LXR agonist TO901317 can affect the accumulation of ß- amyloid protein in the brain tissue of APP/PS1 double transgenic AD mice. However, the molecular mechanism is not clarified in detail. This study aims to evaluate the effects of LXR agonist TO901317 on the cognitive function of AD mice fed with high cholesterol diet, and to explore its possible mechanism from the perspective of cholesterol metabolism. METHODS: Twenty four male 6-month-old APP/PS1 double transgenic AD mice were randomly divided into 4 groups, 6 mice in each group: a control group (fed with normal diet), a cholesterol rich diet (CRD) group, a TO901317 group (fed with CRD combined with TO901317), and a GSK2033 group (fed with CRD combined with TO901317 and LXR antagonist GSK2033). The mice were fed with pellet feed made of high cholesterol feed, mixed with lard, egg yolk powder, and cod liver oil twice a day. TO901317 and GSK2033 were dissolved and diluted to a final concentration at 0.03%. The drugs were given to the mice daily through gastric tube according to their body weight. Meanwhile, the mice in the drug group were fed with high cholesterol diet . After feeding for 3 months, Morris water maze was used to observe the changes of spatial exploration and memory ability of AD mice in each group. The contents of TC, LDL, and HDL in serum of mice in each group were detected by cholesterol enzyme colorimetry, and the differences among the groups were compared. The expression of Aß42 in the brain of AD mice was detected by ELISA. Western blotting was used to detect the protein levels of LXR-ß, RXR-α, ABCA1, and Caveolin-1 in the brain of each group. RESULTS: Morris water maze results showed that the times, distance and the duration of mice crossing the platform in the CRD group were significantly decreased compared with the control group (all P<0.05), while these three figures in TO901317 group were significantly increased compared with the CRD group (all P<0.05). Compared with the TO901317 group, there was a decrease of these figures in the GSK2033 group (all P<0.05). The serum TC and LDL levels in the CRD group were significantly higher than those in the control group, while HDL levels were significantly lower (all P<0.001). The figures of the TC and LDL contents level in the TO901317 group were lower than those in the CRD group, while HDL levels were higher (all P<0.001). Compared with TO901317 group, the contents of the TC and LDL in GSK2033 group were significantly increased, while HDL content was significantly decreased (all P<0.001). ELISA results showed that the production of Aß42 peptides in the brain of CRD group was the highest while the content in the TO901317 group was significantly decreased (P<0.001), which was the lowest among the groups. The figure in the control group was close to the GSK2033 group. Western blotting results showed that the protein levels of LXR-ß, RXR-α, and ABCA1 in the CRD group were significantly decreased compared with the control group, but the protein level of Caveolin-1 was increased (all P<0.01). After TO901317 treatment, the protein levels of LXR-ß, RXR-α and ABCA1 were significantly increased, while the protein level of Caveolin-1 was decreased partially (all P<0.001). In the GSK2033 group, the effect of TO901317 on AD mice was partially reversed by GSK2033. Compared to TO901317 group, the protein levels of LXR-ß, RXR-α, and ABCA1 showed a decrease trend, while the protein level of Caveolin-1 showed an increase state (all P<0.05). CONCLUSIONS: High cholesterol diet leads to severer spatial exploration, learning and memory impairment in transgenic AD mice, while the LXR agonist TO901317 attenuates this effect. The mechanism may be that TO901317 promotes cholesterol efflux by activating LXR-ß/RXR-α/ABCA1 transmembrane transport system, reduces the expression of Caveolin-1, improves the composition of lipid raft, and ultimately reduces the production of Aß42 in the brain.


Assuntos
Doença de Alzheimer , Masculino , Animais , Camundongos , Receptores X do Fígado/genética , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Caveolina 1/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Cognição , Peptídeos beta-Amiloides/metabolismo , Colesterol
6.
Expert Opin Ther Targets ; 26(7): 645-658, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36003057

RESUMO

INTRODUCTION: Liver X receptors (LXRs) are master regulators of atherogenesis. Their anti-atherogenic potential has been attributed to their role in the inhibition of macrophage-mediated inflammation and promotion of reverse cholesterol transport. Owing to the significance of their anti-atherogenic potential, it is essential to develop and test new-generation LXR agonists, both synthetic and natural, to identify potential LXR-targeted therapeutics for the future. AREAS COVERED: This review describes the role of LXRs in atherosclerotic development, and provides a summary of LXR agonists and future directions for atherosclerosis research. We searched PubMed, Scopus, and Google Scholar for relevant reports, from last 10 years, using atherosclerosis, liver X receptor, and LXR agonist as keywords. EXPERT OPINION: LXRα has gained widespread recognition as a regulator of cholesterol homeostasis and expression of inflammatory genes. Further research using models of cell type-specific knockout and specific agonist-targeted LXR isoforms is warranted. Enthusiasm for therapeutic value of LXR agonists has been tempered due to LXRα-mediated induction of hepatic lipogenesis. LXRα agonism and LXRß targeting, gut-specific inverse LXR agonists, investigations combining LXR agonists with other lipogenesis-mitigating agents, like IDOL antagonists and synthetic HDL, and targeting ABCA1, M2 macrophages, and LXRα phosphorylation remain as promising possibilities.


Assuntos
Aterosclerose , Receptores Nucleares Órfãos , Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , Colesterol/uso terapêutico , Humanos , Fígado/metabolismo , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo
7.
Sci Rep ; 12(1): 10754, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750708

RESUMO

The prevalence of peripheral neuropathy is high in diabetic and overweight populations. Chronic neuropathic pain, a symptom of peripheral neuropathy, is a major disabling symptom that leads to a poor quality of life. Glucose management for diabetic and prediabetic individuals often fail to reduce or improve pain symptoms, therefore, exploring other mechanisms is necessary to identify effective treatments. A large body of evidence suggest that lipid signaling may be a viable target for management of peripheral neuropathy in obese individuals. The nuclear transcription factors, Liver X Receptors (LXR), are known regulators of lipid homeostasis, phospholipid remodeling, and inflammation. Notably, the activation of LXR using the synthetic agonist GW3965, delayed western diet (WD)-induced allodynia in rodents. To further understand the neurobiology underlying the effect of LXR, we used translating ribosome affinity purification and evaluated translatomic changes in the sensory neurons of WD-fed mice treated with the LXR agonist GW3965. We also observed that GW3965 decreased prostaglandin levels and decreased free fatty acid content, while increasing lysophosphatidylcholine, phosphatidylcholine, and cholesterol ester species in the sensory neurons of the dorsal root ganglia (DRG). These data suggest novel downstream interplaying mechanisms that modifies DRG neuronal lipid following GW3965 treatment.


Assuntos
Dieta Ocidental , Gânglios Espinais , Animais , Benzilaminas/farmacologia , Dieta Ocidental/efeitos adversos , Homeostase , Receptores X do Fígado/agonistas , Camundongos , Prostaglandina D2 , Qualidade de Vida
8.
Bioorg Med Chem ; 66: 116792, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576658

RESUMO

Liver X receptor (LXR) α and LXRß are nuclear receptors playing key roles in lipid metabolism, and LXR ligands are attractive drug candidates for metabolic disorders. Here we report the structural development of 4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenylsilane derivatives as LXR agonists bearing silyl functionalities as the hydrophobic pharmacophore, based on the structure of the known sulfonamide LXR agonist T0901317. Most of the synthesized compounds exhibit agonistic activity toward LXRs, but the LXR subtype-selectivity differs depending upon the substituents on the silicon atom. Among them, tri(n-propyl) derivative 12 shows potent LXR-agonistic activity with moderate α subtype-selectivity, while dimethylphenylsilyl derivative 19 shows modest ß-selectivity. These results indicate that silanes can serve as an alternative to the sulfonamide moiety of LXR agonists, and are promising structural options for the development of novel subtype-selective LXR agonists.


Assuntos
Hidrocarbonetos Fluorados , Receptores Citoplasmáticos e Nucleares , Hidrocarbonetos Fluorados/farmacologia , Fígado/metabolismo , Receptores X do Fígado/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia
9.
Acta Neuropathol Commun ; 10(1): 40, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346366

RESUMO

Hereditary spastic paraplegias (HSPs) are a group of inherited, progressive neurodegenerative conditions characterised by prominent lower-limb spasticity and weakness, caused by a length-dependent degeneration of the longest corticospinal upper motor neurons. While more than 80 spastic paraplegia genes (SPGs) have been identified, many cases arise from mutations in genes encoding proteins which generate and maintain tubular endoplasmic reticulum (ER) membrane organisation. The ER-shaping proteins are essential for the health and survival of long motor neurons, however the mechanisms by which mutations in these genes cause the axonopathy observed in HSP have not been elucidated. To further develop our understanding of the ER-shaping proteins, this study outlines the generation of novel in vivo and in vitro models, using CRISPR/Cas9-mediated gene editing to knockout the ER-shaping protein ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1), mutations in which give rise to the HSP subtype SPG61. Loss of Arl6IP1 in Drosophila results in progressive locomotor deficits, emulating a key aspect of HSP in patients. ARL6IP1 interacts with ER-shaping proteins and is required for regulating the organisation of ER tubules, particularly within long motor neuron axons. Unexpectedly, we identified physical and functional interactions between ARL6IP1 and the phospholipid transporter oxysterol-binding protein-related protein 8 in both human and Drosophila model systems, pointing to a conserved role for ARL6IP1 in lipid homeostasis. Furthermore, loss of Arl6IP1 from Drosophila neurons results in a cell non-autonomous accumulation of lipid droplets in axonal glia. Importantly, treatment with lipid regulating liver X receptor-agonists blocked lipid droplet accumulation, restored axonal ER organisation, and improved locomotor function in Arl6IP1 knockout Drosophila. Our findings indicate that disrupted lipid homeostasis contributes to neurodegeneration in HSP, identifying a potential novel therapeutic avenue for the treatment of this disorder.


Assuntos
Receptores X do Fígado , Paraplegia Espástica Hereditária , Animais , Modelos Animais de Doenças , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Receptores X do Fígado/agonistas , Proteínas de Membrana Transportadoras/genética , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética
10.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145035

RESUMO

The nuclear receptors liver X receptor (LXR) α and ß play crucial roles in hepatic metabolism. Many genes induced in response to pharmacologic LXR agonism have been defined; however, the transcriptional consequences of loss of LXR binding to its genomic targets are less well characterized. Here, we addressed how deletion of both LXRα and LXRß from mouse liver (LXR double knockout [DKO]) affects the transcriptional regulatory landscape by integrating changes in LXR binding, chromatin accessibility, and gene expression. Many genes involved in fatty acid metabolism showed reduced expression and chromatin accessibility at their intergenic and intronic regions in LXRDKO livers. Genes that were up-regulated with LXR deletion had increased chromatin accessibility at their promoter regions and were enriched for functions not linked to lipid metabolism. Loss of LXR binding in liver reduced the activity of a broad set of hepatic transcription factors, inferred through changes in motif accessibility. By contrast, accessibility at promoter nuclear factor Y (NF-Y) motifs was increased in the absence of LXR. Unexpectedly, we also defined a small set of LXR targets for direct ligand-dependent repression. These genes have LXR-binding sites but showed increased expression in LXRDKO liver and reduced expression in response to the LXR agonist. In summary, the binding of LXRs to the hepatic genome has broad effects on the transcriptional landscape that extend beyond its canonical function as an activator of lipid metabolic genes.


Assuntos
Benzoatos/farmacologia , Benzilaminas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Receptores X do Fígado/agonistas , Receptores X do Fígado/genética , Camundongos , Camundongos Knockout
11.
J Neuroinflammation ; 19(1): 57, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219337

RESUMO

BACKGROUND: Peripheral neuropathy is a common and progressive disorder in the elderly that interferes with daily activities. It is of importance to find efficient treatments to treat or delay this age-related neurodegeneration. Silencing macrophages by reducing foamy macrophages showed significant improvement of age-related degenerative changes in peripheral nerves of aged mice. We previously demonstrated that activation of the cholesterol sensor Liver X receptor (LXR) with the potent agonist, GW3965, alleviates pain in a diet-induced obesity model. We sought to test whether LXR activation may improve neuropathy in aged mice. METHODS: 21-month-old mice were treated with GW3965 (25 mg/Kg body weight) for 3 months while testing for mechanical allodynia and thermal hyperalgesia. At termination, flow cytometry was used to profile dorsal root ganglia and sciatic nerve cells. Immune cells were sorted and analyzed for cholesterol and gene expression. Nerve fibers of the skin from the paws were analyzed. Some human sural nerves were also evaluated. Comparisons were made using either t test or one-way ANOVA. RESULTS: Treatment with GW3965 prevented the development of mechanical hypersensitivity and thermal hyperalgesia over time in aged mice. We also observed change in polarization and cholesterol content of sciatic nerve macrophages accompanied by a significant increase in nerve fibers of the skin. CONCLUSIONS: These results suggest that activation of the LXR may delay the PNS aging by modifying nerve-immune cell lipid content. Our study provides new potential targets to treat or delay neuropathy during aging.


Assuntos
Doenças do Sistema Nervoso Periférico , Animais , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Receptores X do Fígado/agonistas , Camundongos , Doenças do Sistema Nervoso Periférico/metabolismo , Nervo Isquiático/metabolismo
12.
Neoplasma ; 69(2): 331-340, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35081722

RESUMO

Numerous studies have confirmed the anticancer effects of ferroptosis on a wide range of tumors, specifically in providing new perspectives for tackling drug resistance and treating refractory tumors. Notably, mechanisms of improving tumor susceptibility to ferroptosis have been a focus of current research. This study discovered that co-treatment of LXRS agonist T0901317 and ferroptosis inducers (FINs) significantly inhibited the proliferation of cancer cells, this inhibition effect could be reversed by specific inhibitors of ferroptosis and accompanied by elevated lipid peroxides. Glutathione peroxidase 4 (GPX4) regulates T0901317 induced ferroptotic sensitization, and its overexpression dramatically reverses the joint anticancer effect of T0901317 and FINs. Furthermore, xenograft model results highly confirmed the ferroptotic sensitization effect of T0901317 in vivo. In summary, our findings indicate that drug combination and ferroptosis induction strategies provide novel options for cancer therapy.


Assuntos
Ferroptose , Fluorocarbonos , Receptores X do Fígado , Neoplasias , Sulfonamidas , Animais , Linhagem Celular Tumoral , Fluorocarbonos/farmacologia , Humanos , Receptores X do Fígado/agonistas , Neoplasias/patologia , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Drug Metab Dispos ; 50(1): 43-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697082

RESUMO

Carboxylesterase 1 (CES1) is the predominant carboxylesterase in the human liver, involved in metabolism of both xenobiotics and endogenous substrates. Genetic or epigenetic factors that alter CES1 activity or expression are associated with changes in drug response, lipid, and glucose homeostasis. However, the transcriptional regulation of CES1 in the human liver remains uncertain. By applying both the random forest and Sobol's Sensitivity Indices (SSI) to analyze existing liver RNA expression microarray data (GSE9588), we identified nuclear receptor subfamily 1 group H member 3 (NR1H3) liver X receptor (LXR)α as a key factor regulating constitutive CES1 expression. This model prediction was validated using small interfering RNA (siRNA) knockdown and CRISPR-mediated transcriptional activation of NR1H3 in Huh7 and HepG2 cells. We found that NR1H3's activation of CES1 is splice isoform-specific, namely that increased expression of the NR1H3-211 isoform increased CES1 expression whereas NR1H3-201 did not. Also, in human liver samples, expression of NR1H3-211 and CES1 are correlated, whereas NR1H3-201 and CES1 are not. This trend also occurs during differentiation of induced pluripotent stem cells (iPSCs) to hepatocytes, where only expression of the NR1H3-211 isoform parallels expression of CES1 Moreover, we found that treatment with the NR1H3 agonist T0901317 in HepG2 cells had no effect on CES1 expression. Overall, our results demonstrate a key role of NR1H3 in maintaining the constitutive expression of CES1 in the human liver. Furthermore, our results support that the effect of NR1H3 is splice isoform-specific and appears to be ligand independent. SIGNIFICANCE STATEMENT: Despite the central role of carboxylesterase 1 (CES1) in metabolism of numerous medications, little is known about its transcriptional regulation. This study identifies nuclear receptor subfamily 1 group H member 3 as a key regulator of constitutive CES1 expression and therefore is a potential target for future studies to understand interperson variabilities in CES1 activity and drug metabolism.


Assuntos
Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Receptores X do Fígado/genética , Receptores X do Fígado/fisiologia , Fígado/enzimologia , Idoso , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Isoenzimas/genética , Isoenzimas/metabolismo , Receptores X do Fígado/agonistas , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno , Ativação Transcricional/genética
14.
Brain Res Bull ; 178: 57-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801648

RESUMO

Alzheimer's disease (AD) is the major cause of neurodegeneration worldwide and is characterized by the accumulation of amyloid beta (Aß) in the brain, which is associated with neuronal loss and cognitive impairment. Liver X receptor (LXR), a critical nuclear receptor, and major regulator in lipid metabolism and inflammation, is suggested to play a protective role against the mitochondrial dysfunction noted in AD. In our study, our established 3D gelatin scaffold model and a well characterized in vivo (APP/PS1) murine model of AD were used to directly investigate the molecular, biochemical and behavioral effects of neuronal stem cell exposure to Aß to improve understanding of the in vivo etiology of AD. Herein, human neural stem cells (hNSCs) in our 3D model were exposed to Aß, and had significantly decreased cell viability, which correlated with decreased mRNA and protein expression of LXR, Bcl-2, CREB, PGC1α, NRF-1, and Tfam, and increased caspase 3 and 9 activities. Cotreatment with a synthetic agonist of LXR (TO901317) significantly abrogated these Aß-mediated effects in hNSCs. Moreover, TO901317 cotreatment both significantly rescues hNSCs from Aß-mediated decreases in ATP levels and mitochondrial mass, and significantly restores Aß-induced fragmented mitochondria to almost normal morphology. TO901317 cotreatment also decreases tau aggregates in Aß-treated hNSCs. Importantly, TO901317 treatment significantly alleviates the impairment of memory, decreases Aß aggregates and increases proteasome activity in APP/PS1 mice; whereas, these effects were blocked by cotreatment with an LXR antagonist (GSK2033). Together, these novel results improve our mechanistic understanding of the central role of LXR in Aß-mediated hNSC dysfunction. We also provide preclinical data unveiling the protective effects of using an LXR-dependent agonist, TO901317, to block the toxicity observed in Aß-exposed hNSCs, which may guide future treatment strategies to slow or prevent neurodegeneration in some AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/farmacologia , Receptores X do Fígado/agonistas , Transtornos da Memória/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos
15.
Bioorg Chem ; 119: 105540, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902646

RESUMO

Liver X Receptors (LXRs) are members of the nuclear receptor family, and they play significant role in lipid and cholesterol metabolism. Moreover, they are key regulators of several inflammatory pathways. Pharmacological modulation of LXRs holds great potential in treatment of metabolic diseases, neurodegenerative diseases, and cancer. We were the first group to identify LXR inverse agonists SR9238 (6) and SR9243 (7) and demonstrate their potential utility in treating liver diseases and cancer. Here, we present the results of structure-activity relationship (SAR) studies, based around SR9238 (6) and SR9243 (7). This study led to identification of 16, 17, 19, and 38, which were more potent inverse agonists than SR9238 (6) and SR9243 (7) and inhibited expression of the fatty acid synthase gene in DU145 cells. We previously demonstrated that inhibition of FASN is correlated to the anticancer activity of SR9243 (7) and this suggests that new inverse agonists have great potential as anticancer agents. We identified compounds with distinct selectivity toward both LXR isoforms, which can be excellent tools to study the pharmacology of both isoforms. We employed molecular dynamic (MD) simulations to better understand the molecular mechanism underlying inverse agonist activity and to guide our future design.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Receptores X do Fígado/agonistas , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
16.
J Steroid Biochem Mol Biol ; 217: 106046, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34920079

RESUMO

Oxysterols are a family of over 25 cholesterol metabolites naturally produced by enzymatic or radical oxidation. They are involved in many physiological and pathological pathways. Although their activity has been mainly attributed to the modulation of the Liver X Receptors (LXR), it is currently accepted that oxysterols are quite promiscuous compounds, acting at several targets at the same time. The promiscuity of the oxysterols with the Estrogen Receptor α (ERα) is crucial in several pathologies such as ER+ breast cancer, inflammation and atherosclerosis. Regarding this matter, we have previously reported the synthesis, LXR activity and binding mode of a family of cholestenoic acid analogs with a modified side chain. Here we report the transcriptional activity on the ERα triggered by these compounds and details on the molecular determinants involved in their activities in order to establish structure-activity relationships to shed light over the molecular basis of the promiscuity of these compounds on ER/LXR responses. Our results show that 3ß-hydroxy-5-cholestenoic acid can interact with the ERα receptor in a way similar to 26-hydroxycholesterol and is an agonist of the receptor. Using molecular dynamics simulations, we were able to predict the ERα activity of a set of cholestenoic acid analogs with changes in the flexibility and/or steric requirements of the side chain, some of which exhibited selective activation of ERα or LXR.


Assuntos
Receptor alfa de Estrogênio , Oxisteróis , Colestenos/química , Receptor alfa de Estrogênio/genética , Receptores X do Fígado/agonistas , Oxisteróis/química
17.
Int Immunopharmacol ; 101(Pt B): 108373, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34802946

RESUMO

BACKGROUND AND AIMS: Allyl isothiocyanate(AITC) has been shown to play an important role in the improved symptoms of chronic obstructive pulmonary disease(COPD) and the inhibition of inflammation, but the role in COPD lipid metabolism disorder and the molecular mechanism remains unclear. We aimed to explore whether and how AITC affects COPD by regulating lipid metabolism and inflammatory response. METHODS: The COPD rat model was established by cigarette smoke exposure. Cigarette smoke extract stimulated 16HBE cells to induce a cell model. The effect of AITC treatment was detected by lung function test, H&E staining, Oil red O staining, immunohistochemistry, ELISA, CCK-8, HPLC, fluorescence efflux test, siRNA, RT-PCR, and Western blotting. Biological analysis was performed to analyze the results. Graphpad Prism 8.0 software was used for statistical analysis. RESULTS: AITC can improve lung function and pathological injury in COPD rats. The levels of IL-1 ß and TNF- α in the AITC treatment group were significantly lower than those in the model group(P < 0.05), and the lipid metabolism was also improved (P < 0.05). AITC reverses CSE-induced down-regulation of LXR α, ABCA1, and ABCG1 expression and function in a time-and concentration-dependent manner (P < 0.05). AITC regulates the cholesterol metabolism disorder induced by CSE in NR8383 cells and attenuates macrophage inflammation (P < 0.05). In addition, after silencing LXR α with siRNA, the effect of AITC was also inhibited. CONCLUSION: These results suggest that AITC improves COPD by promoting RCT process and reducing inflammatory response via activating LXR pathways.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Fumaça/efeitos adversos , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Conservantes de Alimentos/farmacologia , Receptores X do Fígado/agonistas , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
18.
Chem Phys Lipids ; 241: 105151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673009

RESUMO

N,N-Dimethyl 3ß-hydroxychol-5-en-24-amide (DMHCA, 3) is the prototype of cholenamides, a class of steroidal LXR modulators characterized by the nucleus of Δ5-cholen-3ß-ol and the presence of an amide moiety at C-24. DMHCA (3) has been reported to act as a gene-selective modulator able to fully induce ABCA1 expression whilst poorly up-regulate the expression of FASN and SREBP-1α genes. With the aim to widen the limited structure-activity relationships of DMHCA (3), herein we describe the synthesis and the biological evaluation of nine novel derivatives, resulting from a) the homologation of DMHCA's side-chain to give N,N-dimethyl 3ß-hydroxy-24a-homochol-5-en-24a-amide (4); b) the distal branching of the side-chain of 3 and 4 by introducing an ethyl group at C-23 and C-24, respectively; c) the replacement of the dimethyl amide moiety of all the derivatives with a carboxylic acid function. While broadening the structure-activity relationships of the class of cholenamides, we were successful in the discovery of (24R)-N,N-dimethyl-24-ethyl-3ß-hydroxy-24a-homochol-5-en-24a-amide (6) as a novel LXR agonist with improved profile in term of selective gene modulation respect to the prototype DMHCA (3); indeed, 6 was able to up-regulate the expression of ABCA1 more than DMHCA (3), without to induce SREBP-1c, differently from DMHCA (3). Moreover, 6 induced the expression of FASN less than 3 and interestingly was a negative modulator towards SCD1 in contrast to DMHCA (3), which instead weakly induced the expression of this gene.


Assuntos
Amidas/farmacologia , Receptores X do Fígado/agonistas , Amidas/síntese química , Amidas/química , Células Cultivadas , Células HEK293 , Humanos , Conformação Molecular , Relação Estrutura-Atividade
19.
Mol Neurobiol ; 58(10): 5272-5288, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34278533

RESUMO

Sleep deprivation (SD) leads to cognitive impairment due to neuroinflammation associated with impaired hippocampal neuronal plasticity and memory processes. Liver X receptors (LXRs), including LXRα and LXRß isoforms, are crucial for synaptic plasticity and neuroinflammation. However, the potential roles of LXRs in the pathogenesis of cognitive impairment induced by SD remain unclear. We revealed that SD resulted in LXRß reduction in the hippocampus, which was associated with upregulated expression of high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)/NF-κB p65, and knockdown of hippocampal LXRß by shRNA (shLXRß) led to cognitive impairment. GW3965, a dual agonist for both LXRα and LXRß, ameliorated SD-induced cognitive impairment by inhibiting microglia activation, suppressing HMGB1/TLR4/NF-κB p65 pathway, and ultimately affecting the hippocampal expression of inflammatory cytokines in SD mice. LXRß knockdown by shLXRß abrogated the GW3965-mediated inhibition of the HMGB1/TLR4/NF-κB p65 pathway, therefore, abolishing the cognitive improvement. Moreover, inhibition of HMGB1 by glycyrrhizin (GLY) synergistic promoted GW3965-mediated anti-inflammation in activated microglia after lipopolysaccharide (LPS)/ATP stimulation and facilitated the cognitive improvement after GW administration by activating LXRß. All the data suggested that GW3965 ameliorated impaired cognition in SD mice by suppressing the HMGB1/TLR4/NF-κB p65 pathway followed LXRß activation. This study correlates a deficit of LXRß in cognitive dysfunction in SD associated with HMGB1 inflammatory pathway in hippocampus, and LXRs may serve as a potential therapeutic target for cognitive impairment with anti-inflammation.


Assuntos
Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Receptores X do Fígado/metabolismo , Doenças Neuroinflamatórias/metabolismo , Privação do Sono/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Benzoatos/administração & dosagem , Benzilaminas/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Relação Dose-Resposta a Droga , Ácido Glicirrízico/administração & dosagem , Hipocampo/efeitos dos fármacos , Receptores X do Fígado/agonistas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Doenças Neuroinflamatórias/tratamento farmacológico , Distribuição Aleatória , Privação do Sono/tratamento farmacológico
20.
J Am Heart Assoc ; 10(14): e019473, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34227403

RESUMO

Background It is known that dietary intake of polyunsaturated fatty acids may improve cardiac function. However, relatively high daily doses are required to achieve sufficient cardiac concentrations of beneficial omega-3 fatty acids. The liver X receptor (LXR) is a nuclear hormone receptor and a crucial regulator of lipid homeostasis in mammals. LXR activation has been shown to endogenously reprogram cellular lipid profiles toward increased polyunsaturated fatty acids levels. Here we studied whether LXR lipid reprogramming occurs in cardiac tissue and exerts cardioprotective actions. Methods and Results Male 129SV mice were treated with the LXR agonist AZ876 (20 µmol/kg per day) for 11 days. From day 6, the mice were injected with the nonselective ß-agonist isoproterenol for 4 consecutive days to induce diastolic dysfunction and subendocardial fibrosis while maintaining systolic function. Treatment with isoproterenol led to a marked impairment of global longitudinal strain and the E/e' ratio of transmitral flow to mitral annular velocity, which were both significantly improved by the LXR agonist. Histological examination showed a significant reduction in isoproterenol-induced subendocardial fibrosis by AZ876. Analysis of the cardiac lipid composition by liquid chromatography-high resolution mass spectrometry revealed a significant increase in cardiac polyunsaturated fatty acids levels and a significant reduction in saturated fatty acids by AZ876. Conclusions The present study provides evidence that the LXR agonist AZ876 prevents subendocardial damage, improves global longitudinal strain and E/e' in a mouse model of isoproterenol-induced cardiac damage, accompanied by an upregulation of cardiac polyunsaturated fatty acids levels. Cardiac LXR activation and beneficial endogenous cardiac lipid reprogramming may provide a new therapeutic strategy in cardiac disease with diastolic dysfunction.


Assuntos
Compostos de Anilina/farmacologia , Ácidos Graxos/metabolismo , Cardiopatias/prevenção & controle , Isoproterenol , Miocárdio/metabolismo , Tiazóis/farmacologia , Animais , Reprogramação Celular , Modelos Animais de Doenças , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Receptores X do Fígado/agonistas , Masculino , Camundongos , Camundongos da Linhagem 129 , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA