Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
1.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935021

RESUMO

Thyroid hormone (TH) plays a crucial role in regulating the functions of both bone and adipose tissue. Given that TH exerts its cholesterol-lowering effects in hepatic tissue through the TH receptor-ß (TRß), we hypothesized that TRß agonist therapy using MGL3196 (MGL) would be effective in treating increased adiposity and bone loss in response to a 12-week high-fat diet (HFD) in adult C57BL/6J mice. Transcriptional and serum profiling revealed that HFD-induced leptin promoted weight gain in both males and females, but MGL only suppressed leptin induction and weight gain in males. In vitro studies suggest that estrogen suppresses MGL activity in adipocytes, indicating that estrogen might interfere with MGL-TRß function. Compared to systemic adiposity, HFD reduced bone mass in male but not female mice. Paradoxically, MGL treatment reversed macroscopic bone mineral density loss in appendicular bones, but micro-CT revealed that MGL exacerbated HFD-induced trabecular bone loss, and reduced bone strength. In studies on the mechanisms for HFD effects on bone, we found that HFD induced Rankl expression in male femurs that was blocked by MGL. By ex vivo assays, we found that RANKL indirectly represses osteoblast lineage allocation of osteoprogenitors by induction of inflammatory cytokines TNFα, IL-1ß, and CCL2. Finally, we found that MGL functions in both systemic adiposity and bone by nongenomic TRß signaling, as HFD-mediated phenotypes were not rescued in TRß147F knockout mice with normal genomic but defective nongenomic TRß signaling. Our findings demonstrate that the negative effects of HFD on body fat and bone phenotypes are impacted by MGL in a gender-specific manner.


Assuntos
Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptores beta dos Hormônios Tireóideos , Animais , Masculino , Feminino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Densidade Óssea/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Caracteres Sexuais , Ligante RANK/metabolismo , Ligante RANK/genética , Leptina/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Fatores Sexuais , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
2.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889231

RESUMO

Thyroid hormone (TH) effects are mediated through TH receptors (TRs), TRα1, TRß1, and TRß2. The TRs bind to the DNA and regulate expression of TH target genes (canonical signaling). In addition, they mediate activation of signaling pathways (noncanonical signaling). Whether noncanonical TR action contributes to the spectrum of TH effects is largely unknown. The aim of this study was to attribute physiological effects to the TR isoforms and their canonical and noncanonical signaling. We conducted multiparameter phenotyping in male and female TR knockout mice (TRαKO, TRßKO), mice with disrupted canonical signaling due to mutations in the TR DNA binding domain (TRαGS, TRßGS), and their wild-type littermates. Perturbations in senses, especially hearing (mainly TRß with a lesser impact of TRα), visual acuity, retinal thickness (TRα and TRß), and in muscle metabolism (TRα) highlighted the role of canonical TR action. Strikingly, selective abrogation of canonical TR action often had little phenotypic consequence, suggesting that noncanonical TR action sufficed to maintain the wild-type phenotype for specific effects. For instance, macrocytic anemia, reduced retinal vascularization, or increased anxiety-related behavior were only observed in TRαKO but not TRαGS mice. Noncanonical TRα action improved energy utilization and prevented hyperphagia observed in female TRαKO mice. In summary, by examining the phenotypes of TRα and TRß knockout models alongside their DNA binding-deficient mutants and wild-type counterparts, we could establish that the noncanonical actions of TRα and TRß play a crucial role in modulating sensory, behavioral, and metabolic functions and, thus, contribute to the spectrum of physiological TH effects.


Assuntos
Camundongos Knockout , Fenótipo , Receptores alfa dos Hormônios Tireóideos , Receptores beta dos Hormônios Tireóideos , Animais , Feminino , Masculino , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Camundongos , Transdução de Sinais/genética , Hormônios Tireóideos/metabolismo , Camundongos Endogâmicos C57BL
3.
Pestic Biochem Physiol ; 202: 105961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879309

RESUMO

Exposure to specific pesticides has been demonstrated to alter normal thyroid function of aquatic vertebrates. This study aimed to investigate the impact of penthiopyrad (PO) on the thyroid function of zebrafish, further elucidating its toxic mechanisms on the early developmental stages of zebrafish. Exposure to sublethal doses of PO (0.3-1.2 mg/L) for 8 days from 2 h after fertilization resulted in a significant reduction in larval swim bladder size and body weight, accompanied by developmental abnormalities such as pigment deposition and abnormal abdominal development. Perturbations in the hypothalamic-pituitary-thyroid (HPT) axis in larvae manifested as a marked upregulation of crh, tg, ttr, and ugt1ab expression, alongside downregulation of trß expression, culminating in elevated thyroxine (T4) and triiodothyronine (T3) levels. Additionally, molecular docking results suggest that PO and its metabolites may disrupt the binding of thyroid hormones to thyroid hormone receptor beta (TRß), compromising the normal physiological function of TRß. These findings highlight the PO-induced adverse effects on the HPT axis of larvae under sublethal doses, eventually leading to abnormal development and growth inhibition.


Assuntos
Glândula Tireoide , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Simulação de Acoplamento Molecular , Hormônios Tireóideos/metabolismo , Hipófise/metabolismo , Hipófise/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética
4.
Endocr Pract ; 30(7): 631-638, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697306

RESUMO

BACKGROUND: Resmetirom, a liver-directed, thyroid hormone receptor beta-selective agonist, has recently been approved to treat nonalcoholic steatohepatitis (NASH). This meta-analysis aimed to summarize the efficiency and safety of resmetirom in treating NASH. METHODS: Electronic databases were searched for randomized controlled trials (RCTs) of resmetirom vs placebo in patients with NASH. The primary outcomes were the changes from baseline in hepatic fat content, liver histology, including NASH resolution, and noninvasive markers of hepatic fibrosis. RESULTS: Three randomized controlled trials (n = 2231) met the inclusion criteria. Compared to placebo, resmetirom achieved greater reductions from baseline in hepatic fat content assessed by magnetic resonance imaging proton density fat fraction (for resmetirom 80 mg: MD -27.76% [95%CI: -32.84, -22.69]; for resmetirom 100 mg: MD -36.01% [95%CI: -41.54, -30.48]; P < .00001 for both) and FibroScan controlled attenuation parameter (for resmetirom 80 mg: MD -21.45 dBm [95%CI: -29.37, -13.52]; for resmetirom 100 mg: MD -25.51 dBm [95%CI: -33.53, -17.49]; P < .00001 for both). Resmetirom 80 mg outperformed placebo in NASH resolution and ≥2-point nonalcoholic fatty liver disease activity score reduction. Moreover, resmetirom 80 mg and 100 mg were superior to placebo in cytokeratin-18 (M30) reduction. Greater reductions in liver enzymes, lipids, and reverse triiodothyronine were observed in the resmetirom arms with no impact on triiodothyronine. Nausea and diarrhea were more common with resmetirom than with placebo; other adverse events were comparable. CONCLUSION: Resmetirom improves hepatic fat content, liver enzymes, and fibrosis biomarkers in NASH patients. Resmetirom generally does not affect thyroid function and is well-tolerated.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores beta dos Hormônios Tireóideos , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores beta dos Hormônios Tireóideos/agonistas , Fígado/efeitos dos fármacos , Fígado/diagnóstico por imagem , Fígado/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Piridazinas , Uracila/análogos & derivados
5.
Drugs ; 84(6): 729-735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38771485

RESUMO

Resmetirom (Rezdiffra™) is an oral thyroid hormone receptor-ß (THR-ß) agonist being developed by Madrigal Pharmaceuticals, Inc., to target the key underlying causes of metabolic dysfunction associated steatohepatitis (MASH) [previously known as nonalcoholic steatohepatitis (NASH)]. In March 2024, resmetirom was approved for use (under accelerated approval) in conjunction with diet and exercise for the treatment of adults with noncirrhotic NASH with moderate to advanced liver fibrosis (consistent with stages F2 to F3 fibrosis) in the USA. Resmetirom is also under regulatory review in the EU for the treatment of MASH/NASH. This article summarizes the milestones in the development of resmetirom leading to this first approval for the treatment of adults with MASH/NASH.


Assuntos
Aprovação de Drogas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores beta dos Hormônios Tireóideos/agonistas , Receptores beta dos Hormônios Tireóideos/metabolismo , Estados Unidos , Cirrose Hepática/tratamento farmacológico , Adulto , Piridazinas , Uracila/análogos & derivados
6.
Thyroid ; 34(6): 785-795, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757582

RESUMO

Background: Stimulation of ventricular hypertrophy and heart rate are two major cardiac effects of thyroid hormone (TH). The aim of this study was to determine in vivo which TH receptor (TR)-α or ß-and which mode of TR action-canonical gene expression or DNA-binding independent noncanonical action-mediate these effects. Methods: We compared global TRα and TRß knockout mice (TRαKO; TRßKO) with wild-type (WT) mice to determine the TR isoform responsible for T3 effects. The relevance of TR DNA binding was studied in mice with a mutation in the DNA-binding domain that selectively abrogates DNA binding and canonical TR action (TRαGS; TRßGS). Hearts were studied with echocardiography at baseline and after 7 weeks of T3 treatment. Gene expression was measured with real-time polymerase chain reaction. Heart rate was recorded with radiotelemetry transmitters for 7 weeks in untreated, hypothyroid, and T3-treated mice. Results: T3 induced ventricular hypertrophy in WT and TRßKO mice, but not in TRαKO mice. Hypertrophy was also induced in TRαGS mice. Thus, hypertrophy is mostly mediated by noncanonical TRα action. Similarly, repression of Mhy7 occurred in WT and TRαGS mice. Basal heart rate was largely dependent on canonical TRα action. But responsiveness to hypothyroidism and T3 treatment as well as expression of pacemaker gene Hcn2 were still preserved in TRαKO mice, demonstrating that TRß could compensate for absence of TRα. Conclusions: T3-induced cardiac hypertrophy could be attributed to noncanonical TRα action, whereas heart rate regulation was mediated by canonical TRα action. TRß could substitute for canonical but not noncanonical TRα action.


Assuntos
Cardiomegalia , Frequência Cardíaca , Camundongos Knockout , Receptores alfa dos Hormônios Tireóideos , Receptores beta dos Hormônios Tireóideos , Tri-Iodotironina , Animais , Masculino , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/genética , Isoformas de Proteínas/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo
7.
Drug Discov Today ; 29(6): 104013, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705510

RESUMO

Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor ß (TRß) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRß in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRß agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRß agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.


Assuntos
Alopecia , Receptores beta dos Hormônios Tireóideos , Humanos , Alopecia/tratamento farmacológico , Animais , Receptores beta dos Hormônios Tireóideos/agonistas , Receptores beta dos Hormônios Tireóideos/metabolismo , Relação Estrutura-Atividade , Desenvolvimento de Medicamentos/métodos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Terapia de Alvo Molecular
10.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609183

RESUMO

Elevated ER stress has been linked to the pathogenesis of several disease conditions including neurodegeneration. In this study, we have holistically determined the differential expression of all the nuclear receptors (NRs) in the presence of classical ER stress inducers. Activation of Nr1h4 and Thrb by their cognate ligands (GW4064 and T3) ameliorates the tunicamycin (TM)-induced expression of ER stress genes. A combination of both ligands is effective in mitigating cell death induced by TM. Further exploration of their protective effects in the Parkinson's disease (PD) model shows that they reduce MPP+-induced dissipation of mitochondrial membrane potential and ROS generation in an in vitro PD model in neuronal cells. Furthermore, the generation of an experimental murine PD model reveals that simultaneous treatment of GW4064 and T3 protects mice from ER stress, dopaminergic cell death, and functional deficits in the MPTP mouse model of PD. Thus, activation of Nr1h4 and Thrb by their respective ligands plays an indispensable role in ER stress amelioration and mounts protective effects in the MPTP mouse model of PD.


Assuntos
Doença de Parkinson , Animais , Camundongos , Morte Celular , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos , Receptores beta dos Hormônios Tireóideos
11.
Liver Int ; 44(7): 1526-1536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578141

RESUMO

The rising prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) poses a significant global health challenge, affecting over 30% of adults worldwide. MASLD is linked to increased mortality rates and substantial healthcare costs, primarily driven by its progression to metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver complications including cirrhosis and hepatocellular carcinoma. Despite its growing burden, effective pharmacotherapy for MASLD/MASH has been lacking until the recent conditional approval of resmetirom by the FDA. Resmetirom, a liver-targeted thyroid hormone receptor-ß selective drug, has shown promise in clinical trials for treating non-cirrhotic MASH with moderate to advanced fibrosis. It has demonstrated efficacy in reducing hepatic fat content, improving liver histology (both MASH resolution and fibrosis improvement), and ameliorating biomarkers of liver damage without significant effects on body weight or glucose metabolism. Notably, resmetirom also exhibits favourable effects on circulating lipids, potentially reducing cardiovascular risk in MASLD/MASH patients. The safety profile of resmetirom appears acceptable, with gastrointestinal adverse events being the most common, though generally mild or moderate. However, long-term surveillance is warranted to monitor for potential risks related to thyroid, gonadal, or bone diseases. Clinical implementation of resmetirom faces challenges in patient selection and monitoring treatment response, and will heavily rely on non-invasive tests for liver fibrosis assessment. Nonetheless, resmetirom represents a landmark breakthrough in MASLD/MASH treatment, paving the way for future therapeutic strategies aiming to mitigate the multifaceted risks associated with this complex metabolic liver disease.


Assuntos
Fígado Gorduroso , Humanos , Fígado Gorduroso/tratamento farmacológico , Receptores beta dos Hormônios Tireóideos/metabolismo , Cirrose Hepática/tratamento farmacológico , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Piridazinas , Uracila/análogos & derivados
12.
Thyroid ; 34(6): 796-805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526409

RESUMO

Background: Thyroid hormones regulate cardiac functions mainly through direct actions in the heart and by binding to the thyroid hormone receptor (TR) isoforms α1 and ß. While the role of the most abundantly expressed isoform, TRα1, is widely studied and well characterized, the role of TRß in regulating heart functions is still poorly understood, primarily due to the accompanying elevation of circulating thyroid hormone in TRß knockout mice (TRß-KO). However, their hyperthyroidism is ameliorated at thermoneutrality, which allows studying the role of TRß without this confounding factor. Methods: Here, we noninvasively monitored heart rate in TRß-KO mice over several days using radiotelemetry at different housing temperatures (22°C and 30°C) and upon 3,3',5-triiodothyronine (T3) administration in comparison to wild-type animals. Results: TRß-KO mice displayed normal average heart rate at both 22°C and 30°C with only minor changes in heart rate frequency distribution, which was confirmed by independent electrocardiogram recordings in freely-moving conscious mice. Parasympathetic nerve activity was, however, impaired in TRß-KO mice at 22°C, and only partly rescued at 30°C. As expected, oral treatment with pharmacological doses of T3 at 30°C led to tachycardia in wild-types, accompanied by broader heart rate frequency distribution and increased heart weight. The TRß-KO mice, in contrast, showed blunted tachycardia, as well as resistance to changes in heart rate frequency distribution and heart weight. At the molecular level, these observations were paralleled by a blunted cardiac mRNA induction of several important genes, including the pacemaker channels Hcn2 and Hcn4, as well as Kcna7. Conclusions: The phenotyping of TRß-KO mice conducted at thermoneutrality allows novel insights on the role of TRß in cardiac functions in the absence of the usual confounding hyperthyroidism. Even though TRß is expressed at lower levels than TRα1 in the heart, our findings demonstrate an important role for this isoform in the cardiac response to thyroid hormones.


Assuntos
Cardiomegalia , Frequência Cardíaca , Camundongos Knockout , Taquicardia , Receptores beta dos Hormônios Tireóideos , Tri-Iodotironina , Animais , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Taquicardia/fisiopatologia , Taquicardia/metabolismo , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Cardiomegalia/genética , Tri-Iodotironina/sangue , Masculino , Hormônios Tireóideos/metabolismo , Sistema Nervoso Parassimpático/fisiopatologia , Temperatura , Eletrocardiografia
13.
Exp Cell Res ; 437(2): 114017, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555013

RESUMO

Thyroid hormone receptor ß (THRß) is a member of the nuclear receptor superfamily of ligand-modulated transcription factors. Upon ligand binding, THRß sequentially recruits the components of transcriptional machinery to modulate target gene expression. In addition to regulating diverse physiological processes, THRß plays a crucial role in hypothalamus-pituitary-thyroid axis feedback regulation. Anomalies in THRß gene/protein structure are associated with onset of diverse disease states. In this study, we investigated disease-inflicting truncated variants of THRß using in-silico analysis and cell-based assays. We examined the THRß truncated variants on multiple test parameters, including subcellular localization, ligand-receptor interactions, transcriptional functions, interaction with heterodimeric partner RXR, and receptor-chromatin interactions. Moreover, molecular dynamic simulation approaches predicted that shortened THRß-LBD due to point mutations contributes proportionally to the loss of structural integrity and receptor stability. Deviant subcellular localization and compromised transcriptional function were apparent with these truncated variants. Present study shows that 'mitotic bookmarking' property of some THRß variants is also affected. The study highlights that structural and conformational attributes of THRß are necessary for normal receptor functioning, and any deviations may contribute to the underlying cause of the inflicted diseases. We anticipate that insights derived herein may contribute to improved mechanistic understanding to assess disease predisposition.


Assuntos
Receptores beta dos Hormônios Tireóideos , Fatores de Transcrição , Receptores beta dos Hormônios Tireóideos/genética , Ligantes , Fatores de Transcrição/genética , Mutação Puntual , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo
14.
N Engl J Med ; 390(6): 497-509, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38324483

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a progressive liver disease with no approved treatment. Resmetirom is an oral, liver-directed, thyroid hormone receptor beta-selective agonist in development for the treatment of NASH with liver fibrosis. METHODS: We are conducting an ongoing phase 3 trial involving adults with biopsy-confirmed NASH and a fibrosis stage of F1B, F2, or F3 (stages range from F0 [no fibrosis] to F4 [cirrhosis]). Patients were randomly assigned in a 1:1:1 ratio to receive once-daily resmetirom at a dose of 80 mg or 100 mg or placebo. The two primary end points at week 52 were NASH resolution (including a reduction in the nonalcoholic fatty liver disease [NAFLD] activity score by ≥2 points; scores range from 0 to 8, with higher scores indicating more severe disease) with no worsening of fibrosis, and an improvement (reduction) in fibrosis by at least one stage with no worsening of the NAFLD activity score. RESULTS: Overall, 966 patients formed the primary analysis population (322 in the 80-mg resmetirom group, 323 in the 100-mg resmetirom group, and 321 in the placebo group). NASH resolution with no worsening of fibrosis was achieved in 25.9% of the patients in the 80-mg resmetirom group and 29.9% of those in the 100-mg resmetirom group, as compared with 9.7% of those in the placebo group (P<0.001 for both comparisons with placebo). Fibrosis improvement by at least one stage with no worsening of the NAFLD activity score was achieved in 24.2% of the patients in the 80-mg resmetirom group and 25.9% of those in the 100-mg resmetirom group, as compared with 14.2% of those in the placebo group (P<0.001 for both comparisons with placebo). The change in low-density lipoprotein cholesterol levels from baseline to week 24 was -13.6% in the 80-mg resmetirom group and -16.3% in the 100-mg resmetirom group, as compared with 0.1% in the placebo group (P<0.001 for both comparisons with placebo). Diarrhea and nausea were more frequent with resmetirom than with placebo. The incidence of serious adverse events was similar across trial groups: 10.9% in the 80-mg resmetirom group, 12.7% in the 100-mg resmetirom group, and 11.5% in the placebo group. CONCLUSIONS: Both the 80-mg dose and the 100-mg dose of resmetirom were superior to placebo with respect to NASH resolution and improvement in liver fibrosis by at least one stage. (Funded by Madrigal Pharmaceuticals; MAESTRO-NASH ClinicalTrials.gov number, NCT03900429.).


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Piridazinas , Uracila , Adulto , Humanos , Método Duplo-Cego , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Piridazinas/uso terapêutico , Resultado do Tratamento , Uracila/análogos & derivados , Receptores beta dos Hormônios Tireóideos/agonistas , Biópsia , Relação Dose-Resposta a Droga
17.
Mil Med ; 189(1-2): e439-e442, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37531455

RESUMO

Clinicians may confuse an impaired sensitivity to thyroid hormone with hyperthyroidism and offer an inappropriate treatment. We report a diagnosis of resistance to thyroid hormone (RTH) caused by a rare mutation in the thyroid hormone receptor beta gene in a patient previously presumed to have Graves' disease. We have found only one published case of a novel point mutation, c.749T>C (p.Ile250Thr variant) associated with 50% reduction in thyroid hormone receptor binding affinity for triiodothyronine in the I250T mutant; it was found in this patient. A 66-year-old male veteran, with a history of non-ischemic cardiomyopathy and arrhythmias, was referred by a cardiologist with concerns for a possible thyrotropin (TSH) adenoma on account of elevated TSH and free thyroxine (FT4) levels. Pituitary imaging was negative. He was previously treated with radioiodine for presumptive Graves' disease in the civilian sector. Examination revealed a goiter with no nodules. Repeat TSH and FT4 levels were elevated and also free triiodothyronine (FT3) and reverse triiodothyronine. These findings and other test results were consistent with RTH, which was confirmed by genetic testing. Mutation analysis showed the patient to be heterozygous for the p.Ile250Thr variant. He later developed hypothyroidism. Resistance to thyroid hormone can be misdiagnosed as hyperthyroidism with consequent inappropriate treatment. Treatment is not needed in most RTH-beta patients. Thyroid ablation should generally be avoided. Clinicians must be cautious whenever they encounter concurrent elevation of TSH, FT4, and FT3. This RTH-beta patient has a rare I250T mutant of the thyroid hormone receptor beta gene, the second reported case in the literature.


Assuntos
Doença de Graves , Hipertireoidismo , Síndrome da Resistência aos Hormônios Tireóideos , Masculino , Humanos , Idoso , Tri-Iodotironina , Receptores beta dos Hormônios Tireóideos/genética , Radioisótopos do Iodo , Hormônios Tireóideos , Doença de Graves/diagnóstico , Doença de Graves/genética , Doença de Graves/complicações , Tireotropina , Mutação , Hipertireoidismo/genética , Hipertireoidismo/complicações , Síndrome da Resistência aos Hormônios Tireóideos/diagnóstico , Síndrome da Resistência aos Hormônios Tireóideos/genética , Síndrome da Resistência aos Hormônios Tireóideos/complicações
18.
Stem Cell Res ; 74: 103275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100912

RESUMO

THRB is a nuclear receptor, regulating gene expression dependent on thyroid hormone (TH) binding. The same receptor mediates signaling pathway activation in the cytosol. The challenge is to distinguish which of the two mechanisms is responsible for physiological effects of TH. We established an iPSC cell line with two mutations (E125G_G126S) in the THRB DNA-binding domain, which abrogates nuclear action and, thus, allows to study signaling pathway activation exclusively. We also generated a THRB knockout cell line to abolish all THRB effects. Comparison of WT and these two cell lines allows attribution of thyroid hormone effects to the underlying mechanism.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Hormônios Tireóideos , Transdução de Sinais , Mutação/genética , Linhagem Celular , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo
19.
Commun Biol ; 6(1): 1253, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081939

RESUMO

Thyroid hormone (3,5,3'-triiodothyronine, T3) is a key regulator of pituitary gland function. The response to T3 is thought to hinge crucially on interactions of nuclear T3 receptors with enhancers but these sites in pituitary chromatin remain surprisingly obscure. Here, we investigate genome-wide receptor binding in mice using tagged endogenous thyroid hormone receptor ß (TRß) and analyze T3-regulated open chromatin using an anterior pituitary-specific Cre driver (Thrbb2Cre). Strikingly, T3 regulates histone modifications and chromatin opening primarily at sites that maintain TRß binding regardless of T3 levels rather than at sites where T3 abolishes or induces de novo binding. These sites associate more frequently with T3-activated than T3-suppressed genes. TRß-deficiency blunts T3-regulated gene expression, indicating that TRß confers transcriptional sensitivity. We propose a model of gene activation in which poised receptor-enhancer complexes facilitate adjustable responses to T3 fluctuations, suggesting a genomic basis for T3-dependent pituitary function or pituitary dysfunction in thyroid disorders.


Assuntos
Cromatina , Hormônios Tireóideos , Camundongos , Animais , Cromatina/genética , Cromatina/metabolismo , Hormônios Tireóideos/metabolismo , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo , Hipófise/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo
20.
J Cell Biochem ; 124(12): 1948-1960, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992217

RESUMO

Thyroid hormones (TH) are important modulators of bone remodeling and thus, thyroid diseases, in particular hyperthyroidism, are able to compromise bone quality and fracture resistance. TH actions on bone are mediated by the thyroid hormone receptors (TR) TRα1 and TRß1, encoded by Thra and Thrb, respectively. Skeletal phenotypes of mice lacking Thra (Thra0/0 ) and Thrb (Thrb-/- ) are well-described and suggest that TRα1 is the predominant mediator of TH actions in bone. Considering that bone cells might be affected by systemic TH changes seen in these mutant mice, here we investigated the effects of TR knockout on osteoblasts exclusively at the cellular level. Primary osteoblasts obtained from Thra0/0 , Thrb-/- , and respective wildtype (WT) mice were analyzed regarding their differentiation potential, activity and TH responsiveness in vitro. Thra, but not Thrb knockout promoted differentiation and activity of early, mature and late osteoblasts as compared to respective WT cells. Interestingly, while mineralization capacity and expression of osteoblast marker genes and TH target gene Klf9 was increased by TH in WT and Thra-deficient osteoblasts, Thrb knockout mitigated the responsiveness of osteoblasts to short (48 h) and long term (10 d) TH treatment. Further, we found a low ratio of Rankl, a potent osteoclast stimulator, over osteoprotegerin, an osteoclast inhibitor, in Thrb-deficient osteoblasts and in line, supernatants obtained from Thrb-/- osteoblasts reduced numbers of primary osteoclasts in vitro. In accordance to the increased Rankl/Opg ratio in TH-treated WT osteoblasts only, supernatants from these cells, but not from TH-treated Thrb-/- osteoblasts increased the expression of Trap and Ctsk in osteoclasts, suggesting that osteoclasts are indirectly stimulated by TH via TRß1 in osteoblasts. In conclusion, our study shows that both Thra and Thrb differentially affect activity, differentiation and TH response of osteoblasts in vitro and emphasizes the importance of TRß1 to mediate TH actions in bone.


Assuntos
Receptores dos Hormônios Tireóideos , Receptores alfa dos Hormônios Tireóideos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Biologia , Ligante RANK/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA