Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.472
Filtrar
1.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485256

RESUMO

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Assuntos
Prosencéfalo Basal , Cocaína , Vias Neurais , Recompensa , Animais , Camundongos , Prosencéfalo Basal/fisiologia , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/citologia
2.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514654

RESUMO

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Metabolismo Energético
3.
Genes (Basel) ; 15(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397159

RESUMO

BACKGROUND: Internet addiction disorder (IAD) is characterized by an excess of uncontrolled preoccupations, urges, or behaviors related to computer use and Internet access that culminate in negative outcomes or individual distress. PIU includes excessive online activities (such as video gaming, social media use, streaming, pornography viewing, and shopping). The aim of this study was to analyze the association of gene polymorphisms that may influence the severity of risky behaviors in young men with the frequency of Internet use. We speculate that there are individual differences in the mechanisms of Internet addiction and that gene-hormone associations may represent useful biomarkers for subgroups of individuals. MATERIALS AND METHODS: The study was conducted in a sample of 407 adult males. Subjects were asked to complete the Problematic Internet Use Test (PIUT). Serum was analyzed to determine concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (TT), sex hormone binding protein (SHBG), dehydroepiandrosterone sulfate (DHEA-S), estradiol (E2), prolactin (PRL), insulin (I), serotonin (5-HT), and dopamine (DA), as well as DRD2, ANKK1, and NTRK3 gene polymorphisms. RESULTS: In the analysis of the ANKK1 gene, there was a specific association between ANKK1 polymorphisms and PRL and 5-HT blood concentrations. There was also an association between the ANKK1 polymorphisms and LH and DA concentrations. When analyzing the DRD2 gene polymorphism, we found that in the group with a moderate level of Internet dependence, there was an association between both the G/GG and GG/GG polymorphisms and FSH concentration. CONCLUSIONS: Our study found that there may be an association between the NTRK3 gene polymorphism and PIU. The polymorphisms of ANKK1 and DRD2 genes may be factors that influence the concentrations of hormones (PRL, 5-HT, DA) that are associated with the results obtained in PIU.


Assuntos
Uso da Internet , Serotonina , Masculino , Adulto , Humanos , Genótipo , Polimorfismo de Nucleotídeo Único , Receptores de Dopamina D2/genética , Proteínas Serina-Treonina Quinases/genética , Hormônio Foliculoestimulante/genética
4.
Neuro Oncol ; 26(Supplement_2): S165-S172, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38386699

RESUMO

BACKGROUND: Diffuse midline glioma, H3 K27-altered (H3 K27M-altered DMG) are invariably lethal, disproportionately affecting the young and without effective treatment besides radiotherapy. The 2016 World Health Organization (WHO) Central Nervous System (CNS) Tumors Classification defined H3 K27M mutations as pathognomonic but restricted diagnosis to diffuse gliomas involving midline structures by 2018. Dordaviprone (ONC201) is an oral investigational small molecule, DRD2 antagonist, and ClpP agonist associated with durable responses in recurrent H3 K27M-mutant DMG. Activity of ONC201 in non-midline H3 K27M-mutant diffuse gliomas has not been reported. METHODS: Patients with recurrent non-midline H3 K27M-mutant diffuse gliomas treated with ONC201 were enrolled in 5 trials. Eligibility included measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma, Karnofsky/Lansky performance score ≥60, and ≥90 days from radiation. The primary endpoint was overall response rate (ORR). RESULTS: Five patients with cerebral gliomas (3 frontal, 1 temporal, and 1 parietal) met inclusion. One complete and one partial response were reported by investigators. Blinded independent central review confirmed ORR by RANO criteria for 2, however, 1 deemed nonmeasurable and another stable. A responding patient also noted improved mobility and alertness. CONCLUSIONS: H3 K27M-mutant diffuse gliomas occasionally occur in non-midline cerebrum. ONC201 exhibits activity in H3 K27M-mutant gliomas irrespective of CNS location.


Assuntos
Neoplasias Encefálicas , Glioma , Imidazóis , Mutação , Recidiva Local de Neoplasia , Receptores de Dopamina D2 , Humanos , Glioma/genética , Glioma/tratamento farmacológico , Glioma/patologia , Masculino , Feminino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Receptores de Dopamina D2/genética , Adulto , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética , Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Antagonistas dos Receptores de Dopamina D2/farmacologia , Pirimidinas/uso terapêutico , Prognóstico , Adulto Jovem , Seguimentos , Estudos de Coortes , Agonistas de Dopamina/uso terapêutico , Piridinas/uso terapêutico , Piridinas/farmacologia
5.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 433-443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37400684

RESUMO

BACKGROUND: Dopamine receptor D2 (DRD2) TaqIA polymorphism has an influence on addiction treatment response and prognosis by mediating brain dopaminergic system efficacy. Insula is crucial for conscious urges to take drugs and maintain drug use. However, it remains unclear about the contribution of DRD2 TaqIA polymorphism to the regulation of insular on addiction behavioral and its relation with the therapeutic effect of methadone maintenance treatment (MMT). METHODS: 57 male former heroin dependents receiving stable MMT and 49 matched male healthy controls (HC) were enrolled. Salivary genotyping for DRD2 TaqA1 and A2 alleles, brain resting-state functional MRI scan and a 24-month follow-up for collecting illegal-drug-use information was conducted and followed by clustering of functional connectivity (FC) patterns of HC insula, insula subregion parcellation of MMT patients, comparing the whole brain FC maps between the A1 carriers and non-carriers and analyzing the correlation between the genotype-related FC of insula sub-regions with the retention time in MMT patients by Cox regression. RESULTS: Two insula subregions were identified: the anterior insula (AI) and the posterior insula (PI) subregion. The A1 carriers had a reduced FC between the left AI and the right dorsolateral prefrontal cortex (dlPFC) relative to no carriers. And this reduced FC was a poor prognostic factor for the retention time in MMT patients. CONCLUSION: DRD2 TaqIA polymorphism affects the retention time in heroin-dependent individuals under MMT by mediating the functional connectivity strength between left AI and right dlPFC, and the two brain regions are promising therapeutic targets for individualized treatment.


Assuntos
Dependência de Heroína , Heroína , Humanos , Masculino , Heroína/uso terapêutico , Córtex Pré-Frontal Dorsolateral , Polimorfismo Genético/genética , Dependência de Heroína/diagnóstico por imagem , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/genética , Metadona/uso terapêutico , Imageamento por Ressonância Magnética , Receptores de Dopamina D2/genética
6.
Endocrine ; 83(2): 378-391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752366

RESUMO

PURPOSE: To evaluate the dopaminergic signaling in human adipose tissue in the context of obesity and type 2 diabetes (T2D) and potential direct implications in adipose tissue metabolism. METHODS: mRNA and protein expression of dopamine receptors D1 and D2 (DRD1 and DRD2) were determined in subcutaneous adipose tissue from subjects without or with T2D and with different body weight, and correlated with markers of obesity, hyperglycemia, and insulin resistance. Glucose uptake and lipolysis were measured in adipocytes ex vivo following short-term exposure to dopamine, DRD1 receptor agonist (SKF81297), or DRD2 receptor agonist (bromocriptine). RESULTS: DRD1 and DRD2 gene expression in subcutaneous adipose tissue correlated positively with clinical markers of insulin resistance (e.g. HOMA-IR, insulin, and triglycerides) and central obesity in subjects without T2D. Protein expression of DRD2 in subcutaneous adipose tissue, but not DRD1, is higher in subjects with impaired fasting glucose and T2D and correlated positively with hyperglycemia, HbA1c, and glucose AUC, independent of obesity status. DRD1 and DRD2 proteins were mainly expressed in adipocytes, compared to stromal vascular cells. Dopamine and dopaminergic agonists did not affect adipocyte glucose uptake ex vivo, but DRD1 and DRD2 agonist treatment inhibited isoproterenol-stimulated lipolysis. CONCLUSION: The results suggest that protein expression of DRD2 in subcutaneous adipose tissue is up-regulated with hyperglycemia and T2D. Whether DRD2 protein levels contribute to T2D development or occur as a secondary compensatory mechanism needs further investigation. Additionally, dopamine receptor agonists inhibit adipocyte beta-adrenergic stimulation of lipolysis, which might contribute to the beneficial effects in lipid metabolism as observed in patients taking bromocriptine.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Estado Pré-Diabético , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Estado Pré-Diabético/metabolismo , Bromocriptina , Dopamina/metabolismo , Tecido Adiposo/metabolismo , Gordura Subcutânea/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Obesidade/metabolismo , Agonistas de Dopamina , Receptores de Dopamina D2/genética
7.
Mol Neurobiol ; 61(1): 42-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37578679

RESUMO

Attention-deficit hyperactivity disorder is a highly inherited neurodevelopmental disorder. Previous genetic research has linked ADHD to certain genes in the dopaminergic synaptic pathway. Nonetheless, research on this relationship has produced varying results across various populations. China is a multi-ethnic country with its own unique genetic characteristics. Therefore, such a population can provide useful information about the relationship between gene polymorphisms in dopaminergic synaptic pathways and ADHD. This study looked at the genetic profiles of 284 children in China's Xinjiang. In total, 142 ADHD children and 142 control subjects were enrolled. Following the extraction of DNA from oral mucosal cells, 13 SNPs for three candidate genes (SLC6A3, DRD2, and GRIN2B) in the dopaminergic synaptic pathway of ADHD were screened. Based on the results of single nucleotide polymorphism (SNP) analyses, we found that the DRD2 gene variants rs6277 and rs6275, and the SLC6A3 gene variant rs2652511, were significantly associated with ADHD in boys and girls, respectively, after adjusting for false discovery rate (FDR) in terms of allele frequencies. Furthermore, our generalized multifactorial downscaling approach identified a significant association between rs6275 and rs1012586. These findings suggest that DRD2 and SLC6A3 genes have a crucial role in ADHD susceptibility. Additionally, we observed that the interaction between GRIN2B and DRD2 genes may contribute to the susceptibility of Chinese children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Proteínas da Membrana Plasmática de Transporte de Dopamina , Receptores de Dopamina D2 , Receptores de N-Metil-D-Aspartato , Criança , Feminino , Humanos , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Receptores de Dopamina D2/genética , Receptores de N-Metil-D-Aspartato/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-37858736

RESUMO

The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.


Assuntos
Dopamina , Síndrome de Wolfram , Animais , Feminino , Masculino , Aprendizagem da Esquiva , Neurônios/fisiologia , Receptores de Dopamina D1 , Receptores de Dopamina D2/genética
9.
Proc Natl Acad Sci U S A ; 120(50): e2307509120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064513

RESUMO

Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. A defining feature of MCs is the promoter activity of the dopamine D2 receptor (D2R) gene (Drd2), and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well known. Surprisingly, though, the function of MC D2Rs remains largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior, and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells (GCs). D2R activation by exogenous and endogenous dopamine reduced MC to dentate GC synaptic transmission, most likely by a presynaptic mechanism. In contrast, exogenous dopamine had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.


Assuntos
Epilepsia , Fibras Musgosas Hipocampais , Receptores de Dopamina D2 , Animais , Camundongos , Giro Denteado/metabolismo , Dopamina/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Hipocampo/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Ansiedade/genética , Ansiedade/metabolismo
10.
Sci Rep ; 13(1): 19473, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945756

RESUMO

Abnormal dopamine neurotransmission is a common trait of some psychiatric diseases, like schizophrenia or bipolar disorder. Excessive dopaminergic tone in subcortical brain regions is associated with psychotic episodes, while reduced prefrontal dopaminergic activity is associated with impaired cognitive performance and reduced motivation, among other symptoms. Inhibitory interneurons expressing the calcium binding protein parvalbumin are particularly affected in both schizophrenia and bipolar disorder, as they set a fine-tuned physiological inhibitory/excitatory balance. Parvalbumin and somatostatin interneuron subtypes, are born from the medial ganglionic eminence and require the sequential expression of specific transcription factors for their specification, such as Nkx6.2. Here, we aimed at characterizing in detail interneuron subtypes derived from Nkx6.2 expressing progenitors by the generation of an Nkx6.2 Cre transgenic mouse line. We show that Nkx6.2 specifies over a third part of the total population of cortical somatostatin interneurons, preferentially at early developmental time points, whereas at late developmental stages, Nkx6.2 expressing progenitors shift to parvalbumin interneuron specification. Dopamine D2 receptor deletion from Nkx6.2 expressing progenitors causes abnormal phenotypes restricted to cognitive, motivation and anxiety domains. Our results show that Nkx6.2 have the potential to specify both somatostatin and parvalbumin interneurons in an opposite timed program and that DRD2 expression is required in Nkx6.2 expressing progenitors to avoid impaired phenotypes commonly associated to the pathophysiology of psychiatric diseases.


Assuntos
Motivação , Parvalbuminas , Animais , Camundongos , Ansiedade/genética , Cognição , Interneurônios/metabolismo , Camundongos Transgênicos , Parvalbuminas/metabolismo , Fenótipo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
11.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003274

RESUMO

Traumatic brain injury (TBI) is a major health concern. Each year, over 50 million individuals worldwide suffer from TBI, and this leads to a number of acute and chronic health issues. These include affective and cognitive impairment, as well as an increased risk of alcohol and drug use. The dopaminergic system, a key component of reward circuitry, has been linked to alcohol and other substance use disorders, and previous research indicates that TBI can induce plasticity within this system. Understanding how TBI modifies the dopaminergic system may offer insights into the heightened substance use and reward-seeking behavior following TBI. The hippocampus, a critical component of the reward circuit, is responsible for encoding and integrating the spatial and salient aspects of rewarding stimuli. This study explored TBI-related changes in neuronal D2 receptor expression within the hippocampus, examining the hypothesis that sex differences exist in both baseline hippocampal D2 receptor expression and its response to TBI. Utilizing D2-expressing tdTomato transgenic male and female mice, we implemented either a sham injury or the lateral fluid percussion injury (FPI) model of TBI and subsequently performed a region-specific quantification of D2 expression in the hippocampus. The results show that male mice exhibit higher baseline hippocampal D2 expression compared to female mice. Additionally, there was a significant interaction effect between sex and injury on the expression of D2 in the hippocampus, particularly in regions of the dentate gyrus. Furthermore, TBI led to significant reductions in hippocampal D2 expression in male mice, while female mice remained mostly unaffected. These results suggest that hippocampal D2 expression varies between male and female mice, with the female dopaminergic system demonstrating less susceptibility to TBI-induced plasticity.


Assuntos
Lesões Encefálicas Traumáticas , Dopamina , Feminino , Masculino , Camundongos , Animais , Dopamina/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
13.
BMC Psychiatry ; 23(1): 781, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880658

RESUMO

Antipsychotic drugs are the first line of treatment in schizophrenia; although antipsychotic responses indicate a wide interindividual variety in patients with schizophrenia. This study aimed to investigate the association between four polymorphisms in DRD2, DRD4 and COMT genes and their gene-gene interactions with antipsychotic treatment response in patients with schizophrenia. A total of 101 patients with schizophrenia were recruited and stratified in treatment responder and treatment resistant groups based on the published criteria of resistant to treatment using PANSS. Clinical and demographic factors were analyzed. Genomic DNA was extracted from whole blood and genotyping for the four polymorphisms were done by ARMS-PCR, PCR-RFLP and gap-PCR. Gene-gene interactions were analyzed by logistic regression. In case of DRD2 A-241G, G allele was significantly associated with resistant to treatment. Regarding DRD4 120-bp duplication, 240/240 genotype was significantly associated with resistant to treatment comparing to other genotypes in a dominant model. The genotype combination of DRD4 240/240 and COMT Val/Val was significantly associated with treatment resistant. Among DRD2 AA genotype, COMT met allele carriers which also had a 120 bp allele of DRD4 had a significantly better response to antipsychotics. Moreover, analysis of clinical and demographic factors demonstrated a significantly longer duration of hospitalization and higher chlorpromazine-equivalent daily dose in resistant to treatment patients. Discovering the polymorphisms which effect treatment response to antipsychotics will provide the possibility of genetic screening before starting an antipsychotic treatment which enhances the chance of responding to antipsychotics and decreases drugs side effects and costs.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/uso terapêutico , Catecol O-Metiltransferase/genética , Epistasia Genética , Genótipo , Polimorfismo Genético , Receptores de Dopamina D2/genética , Receptores de Dopamina D4/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/diagnóstico
14.
Cancer Genet ; 278-279: 71-78, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37729778

RESUMO

We investigated the effect of stem cell marker dopamine receptor D2 (DRD2) on the proliferation of hormone-receptor-negative breast cancer cells. High-throughput DNA methylation sequencing on an 850 K chip was used to pre-screen breast cancer tissues with significant methylation differences. The expression of DRD2 in breast cancer and normal breast tissues, and clinical risk factors, were detected by pyrophosphoric acid validation and immunohistochemistry. In vitro and in vivo experiments verified the possible molecular signaling pathways. DRD2 promoter region was hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors compared to the normal tissues. The proliferation of breast cancer cells was enhanced after DRD2 was upregulated and decreased after DRD2 was downregulated. In vivo experiments found that tumor growth and the expression of antigen KI-67 (Ki67) and the cluster of differentiation 31 (CD31) were improved by the overexpression of DRD2 and inhibited by the down expression of DRD2. In vivo and in vitro experiments demonstrated the phosphorylation of filamin A and extracellular signal-regulated kinase (FLNA-ERK) was influenced by the expression of DRD2, suggesting DRD2 plays a role in the FLNA-ERK signaling pathway. Methylation inhibitors (5-aza-2-deoxycytidine, 5-azadc) partially reversed the inhibitory effect of DRD2 down expression on cell proliferation, migration, and tumor growth in animal models, indicating that inhibition of DRD2 methylation promotes cancer development. This study demonstrated the DRD2 promoter region is hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors. The methylation status of the DRD2 promoter and FLNA-ERK signaling pathway and the DRD2 expression in breast cancer treatment need to be considered.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Filaminas/genética , Filaminas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Metilação de DNA/genética , Hormônios , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
15.
J Ovarian Res ; 16(1): 158, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563671

RESUMO

Polycystic ovarian syndrome (PCOS) is a disorder with a foundation of neuroendocrine dysfunction, characterized by increased gonadotropin-releasing hormone (GnRH) pulsatility, which is antagonized by dopamine. The dopamine receptor 2 (DRD2), encoded by the DRD2 gene, has been shown to mediate dopamine's inhibition of GnRH neuron excitability through pre- and post-synaptic interactions in murine models. Further, DRD2 is known to mediate prolactin (PRL) inhibition by dopamine, and high blood level of PRL have been found in more than one third of women with PCOS. We recently identified PRL as a gene contributing to PCOS risk and reported DRD2 conferring risk for type 2 diabetes and depression, which can both coexist with PCOS. Given DRD2 mediating dopamine's action on neuroendocrine profiles and association with metabolic-mental states related to PCOS, polymorphisms in DRD2 may predispose to development of PCOS. Therefore, we aimed to investigate whether DRD2 variants are in linkage to and/or linkage disequilibrium (i.e., linkage and association) with PCOS in Italian families. In 212 Italian families, we tested 22 variants within the DRD2 gene for linkage and linkage disequilibrium with PCOS. We identified five novel variants significantly linked to the risk of PCOS. This is the first study to identify DRD2 as a risk gene in PCOS, however, functional studies are needed to confirm these results.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Receptores de Dopamina D2 , Feminino , Humanos , Dopamina/fisiologia , Hormônio Liberador de Gonadotropina , Síndrome do Ovário Policístico/genética , Receptores de Dopamina D2/genética
16.
Eur J Nucl Med Mol Imaging ; 50(13): 3928-3936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581725

RESUMO

PURPOSE: The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution. METHODS: We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman's rank correlation. RESULTS: We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140). CONCLUSION: We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.


Assuntos
Encéfalo , Dopamina , Humanos , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
17.
FEBS Lett ; 597(21): 2601-2610, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37643893

RESUMO

The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue-outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). Despite the well-established role of NAc neurons in encoding reward/aversion, the underlying processing by D1-/D2-MSNs remains largely unknown. Recent electrophysiological, optogenetic and calcium imaging studies provided insight on the complex role of D1- and D2-MSNs in these behaviours and helped to clarify their involvement in associative learning. Here, we critically discuss findings supporting an intricate and complementary role of NAc D1- and D2-MSNs in associative learning, emphasizing the need for additional studies in order to fully understand the role of these neurons in behaviour.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Animais , Camundongos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
Pharmacogenet Genomics ; 33(7): 139-152, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466123

RESUMO

OBJECTIVE: We carried out a meta-analysis of four opioid and dopamine candidate gene polymorphisms having conflicting results in prior literature, namely OPRM1 rs1799971, DAT VNTR 9-10 repeat, DRD1 rs4532 and DRD2 rs1799732, to clarify their association with alcohol dependence and further stratified results by ethnicity to analyze possible ethnicity-mediated effects. METHODS: Inclusion criteria: case-control studies assessing the association between OPRM1 rs1799971, DAT VNTR 9/10 repeat allele, DRD1 rs4532 and DRD2 rs1799732 with alcohol dependence, with sufficient data available to calculate the odds ratio (OR) within a 95% confidence interval. Exclusion criteria: studies of quantitative measures of alcohol consumption, response to medications or analyses of other markers in the candidate genes, studies without controls, animal studies and lack of genotyping data. Information sources were PubMed, Google Scholar and ScienceDirect databases, all of which were searched for articles published till 2021. Heterogeneity between studies and publication bias, subgroup analyses and sensitivity analyses were carried out. RESULTS: A total of 41 published studies were included in the current meta-analysis. For the OPRM1 gene, there was a statistically significant association in the Asian population with a pooled OR of 1.707 (95% CI, 1.32-2.20 P < 0.0001) and 1.618 (95% CI, 1.16-2.26 P = 0.005) in the additive and dominant genetic models. For DAT VNTR 9/10 repeat, a statistically significant association of the risk vs. common allele was observed in AD with a pooled OR of 1.104 (95% CI, 1.00-1.21 P = 0.046) in the allele model and the additive genetic model in the Caucasian population with pooled OR of 1.152 (95% CI, 1.01-1.31 P = 0.034). CONCLUSION: Results indicate that some of the effects may be ethnicity-specific. OTHER: The meta-analysis has been registered in the CRD PROSPERO (CRD42023411576).


Assuntos
Alcoolismo , Analgésicos Opioides , Humanos , Alelos , Alcoolismo/genética , Etnicidade , Polimorfismo Genético , Receptores de Dopamina D2/genética , Predisposição Genética para Doença , Receptores Opioides mu/genética , Receptores de Dopamina D1/genética
19.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(3): 436-441, 2023 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-37291918

RESUMO

OBJECTIVE: To explore the association between rs2587552 polymorphism (has a strong lin-kage disequilibrium with rs1800497 which had been found in many studies to be related to obesity, r2=0.85) of DRD2 gene and the effect of a childhood obesity intervention in Chinese population, and provide a scientific basis for future personalized childhood obesity intervention based on genetic background. METHODS: From a multi-center cluster randomized controlled trial studying the effect of a childhood obesity intervention, we enrolled 382 children from 8 primary schools (192 and 190 children from intervention and control groups, respectively) in Beijing as study subjects. Saliva was collected and DNA was extracted to detect the rs2587552 polymorphism of DRD2 gene, and the interactions between the gene and study arms on childhood obesity indicators [including body weight, body mass index (BMI), BMI Z-score, waist circumference, hip circumference, waist-to-hip ratio, waist-to-height ratio, and body fat percentage] were analyzed. RESULTS: No association was found between rs2587552 polymorphism and the changes in hip circumference or body fat percentage in the intervention group (P>0.05). However, in the control group, children carrying the A allele at DRD2 rs2587552 locus showed a greater increase in hip circumference and body fat percentage compared with those not carrying A allele (P < 0.001). There were interactions between rs2587552 polymorphism of DRD2 gene and study arms on the changes in hip circumference and body fat percentage (P=0.007 and 0.015, respectively). Compared with the control group, children in the intervention group carrying the A allele at DRD2 rs2587552 locus showed decrease in hip circumference by (-1.30 cm, 95%CI: -2.25 to -0.35, P=0.007) and decrease in body fat percentage by (-1.34%, 95%CI: -2.42 to -0.27, P=0.015) compared with those not carrying A allele. The results were consistent between the dominant model and the additive model (hip circumfe-rence: -0.66 cm, 95%CI: -1.28 to -0.03, P=0.041; body fat percentage: -0.69%, 95%CI: -1.40 to 0.02, P=0.056). No interaction was found between rs2587552 polymorphism and study arms on the changes in other childhood obesity-related indicators (P>0.05). CONCLUSION: Children carrying the A allele at rs2587552 polymorphism of DRD2 gene are more sensitive to intervention and showed more improvement in hip circumference and body fat percentage after the intervention, suggesting that future personalized childhood obesity lifestyle intervention can be carried out based on the rs2587552 polymorphism of DRD2 gene.


Assuntos
Obesidade Infantil , Humanos , Criança , Obesidade Infantil/genética , Obesidade Infantil/terapia , Estudos Prospectivos , Polimorfismo Genético , Índice de Massa Corporal , Circunferência da Cintura , Receptores de Dopamina D2/genética
20.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373182

RESUMO

A class-A GPCR dopamine D2 receptor (D2R) plays a critical role in the proper functioning of neuronal circuits through the downstream activation of both G-protein- and ß-arrestin-dependent signaling pathways. Understanding the signaling pathways downstream of D2R is critical for developing effective therapies with which to treat dopamine (DA)-related disorders such as Parkinson's disease and schizophrenia. Extensive studies have focused on the regulation of D2R-mediated extracellular-signal-regulated kinase (ERK) 1/2 signaling; however, the manner in which ERKs are activated upon the stimulation of a specific signaling pathway of D2R remains unclear. The present study conducted a variety of experimental techniques, including loss-of-function experiments, site-directed mutagenesis, and the determination of protein interactions, in order to investigate the mechanisms underlying ß-arrestin-biased signaling-pathway-mediated ERK activation. We found that the stimulation of the D2R ß-arrestin signaling pathway caused Mdm2, an E3 ubiquitin ligase, to move from the nucleus to the cytoplasm and interact with tyrosine phosphorylated G-protein-coupled receptor kinase 2 (GRK2), which was facilitated by Src, a non-receptor tyrosine kinase. This interaction led to the ubiquitination of GRK2, which then moved to the plasma membrane and interacted with activated D2R, followed by the phosphorylation of D2R as well as the mediation of ERK activation. In conclusion, Mdm2-mediated GRK2 ubiquitination, which is selectively triggered by the stimulation of the D2R ß-arrestin signaling pathway, is necessary for GRK2 membrane translocation and its interaction with D2R, which in turn mediates downstream ERK signaling. This study is primarily novel and provides essential information with which to better understand the detailed mechanisms of D2R-dependent signaling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , Transdução de Sinais , beta-Arrestinas/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestina 1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Fosforilação/fisiologia , Dopamina , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA