Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.672
Filtrar
1.
J Am Chem Soc ; 146(38): 26297-26312, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39279763

RESUMO

Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson's correlation coefficient, yielding a value of -0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.


Assuntos
Glicina , Receptores de Glicina , Receptores de Glicina/metabolismo , Receptores de Glicina/química , Humanos , Glicina/química , Glicina/metabolismo , Sítios de Ligação , Mutação , Conformação Proteica , Modelos Moleculares
3.
J Integr Neurosci ; 23(8): 145, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39207064

RESUMO

BACKGROUND: Ischemic stroke is mainly caused by cerebral artery thrombosis. This study investigated the role of glycine receptor beta subunit (GlyR-ß) in the recovery from cerebral ischemia stroke/reperfusion. METHODS: The oxygen glucose deprivation and recovery (OGD/R) bEnd3 cell model and the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model were used in this study. RESULTS: Expression of both the GlyR-ß gene and vascular endothelial growth factor (Vegf), cell proliferation, and tube formation ability was decreased in bEnd3 cells after OGD/R, and was reversed by overexpression of GlyR-ß. Neurological function, asindicated by Zea Longa scores, area of cerebral ischemia, and pathological changes were increased in mice after MCAO/R, and were ameliorated by overexpression of the glycine receptor beta (Glrb) gene at 24 h and 7 d after MCAO/R. Expression of GlyR-ß and Gap-43 was decreased, and the expression of CD34, Vegf, and Bdnf, and cell growth as determined by a bromodeoxyuridine (BrdU) assay, increased in the affected brain tissue of MCAO/R mice in a time-dependent manner. GlyR-ß overexpression resulted in enhanced expression of CD34, Vegf, Growth association protein 43 (Gap-43), and brain-derived neurotrophic factor (Bdnf) and cell growth in affected brain tissue of MCAO/R mice in a time-dependent manner. CONCLUSIONS: GlyR-ß promoted potential angiogenesis and neurological regeneration in affected brain tissue, thus promoting recovery from cerebral ischemia stroke/reperfusion.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Receptores de Glicina , Animais , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Receptores de Glicina/metabolismo , Camundongos , Masculino , Neovascularização Fisiológica/fisiologia , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Camundongos Endogâmicos C57BL , Isquemia Encefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese
4.
Neurol Neuroimmunol Neuroinflamm ; 11(6): e200298, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39213470

RESUMO

OBJECTIVES: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a severe form of stiff-person spectrum disorder that can be associated with antibodies against surface antigens (glycine receptor (GlyR), dipeptidyl-peptidase-like-protein-6) and intracellular antigens (glutamate decarboxylase (GAD65), amphiphysin). METHODS: We report clinico-pathologic findings of a PERM patient with coexisting GlyR and GAD65 antibodies. RESULTS: A 75-year-old man presented with myoclonus and pain of the legs, subsequently developed severe motor symptoms, hyperekplexia, a pronounced startle reflex, hallucinations, dysautonomia, and died 10 months after onset despite extensive immunotherapy, symptomatic treatment, and continuous intensive care support. Immunotherapy comprised corticosteroids, IVIG, plasmapheresis, immunoadsorption, cyclophosphamide, and bortezomib. Intensive care treatment and permanent isoflurane sedation was required for more than 20 weeks. CNS tissue revealed neuronal loss, astrogliosis and microgliosis, representing a pallido-nigro-dentato-bulbar-spinal degeneration pattern, specifically along GlyR and GAD expression sites. Neurons showed pSTAT1, MHC class I, and GRP78 upregulation. Inflammation was moderate and characterized by CD8+ T cells and single CD20+/CD79a+ B/plasma cells. Focal tau-positive thread-like deposits were detected in gliotic brainstem areas. In the spinal cord, GlyR, glycine transporter-2, and GAD67 expression were strongly reduced. DISCUSSION: A possible potentiating effect of pathogenic GlyR antibodies together with T cells directed against neurons may have led to the severe and progressive clinical course.


Assuntos
Autoanticorpos , Encefalomielite , Glutamato Descarboxilase , Rigidez Muscular , Mioclonia , Receptores de Glicina , Humanos , Masculino , Idoso , Glutamato Descarboxilase/imunologia , Rigidez Muscular/etiologia , Rigidez Muscular/imunologia , Autoanticorpos/sangue , Encefalomielite/imunologia , Encefalomielite/complicações , Mioclonia/etiologia , Receptores de Glicina/imunologia , Rigidez Muscular Espasmódica/imunologia , Rigidez Muscular Espasmódica/complicações , Evolução Fatal
5.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125713

RESUMO

Endometriosis, often associated with chronic pelvic pain, can lead to anxiety and depression. This study investigates the role and mechanism of Glycine receptor alpha 3 (Glrα3) in the central sensitization of pain in endometriosis, aiming to identify new therapeutic targets. Using a Glrα3 knockout mouse model of endometriosis, we employed behavioral tests, qPCR, immunofluorescence, Nissl staining, MRI, and Western blot to assess the involvement of Glrα3 in central pain sensitization. Our results indicate that endometriosis-induced hyperalgesia and anxiety-depressive-like behaviors are linked to increased Glrα3 expression. Chronic pain in endometriosis leads to gray matter changes in the sensory and insular cortices, with Glrα3 playing a significant role. The inhibition of Glrα3 alleviates pain, reduces neuronal abnormalities, and decreases glial cell activation. The absence of Glrα3 effectively regulates the central sensitization of pain in endometriosis by inhibiting glial cell activation and maintaining neuronal stability. This study offers new therapeutic avenues for the clinical treatment of endometriosis-related pain.


Assuntos
Endometriose , Camundongos Knockout , Animais , Feminino , Camundongos , Ansiedade , Dor Crônica/metabolismo , Dor Crônica/etiologia , Dor Crônica/patologia , Dor Crônica/genética , Modelos Animais de Doenças , Endometriose/metabolismo , Endometriose/patologia , Endometriose/complicações , Endometriose/genética , Hiperalgesia/metabolismo , Hiperalgesia/etiologia , Camundongos Endogâmicos C57BL , Dor Pélvica/etiologia , Dor Pélvica/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo
6.
J Child Neurol ; 39(7-8): 260-267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39051604

RESUMO

BACKGROUND: Hyperekplexia is a rare neurogenetic disorder that is classically characterized by an exaggerated startle response to sudden unexpected stimuli. This study aimed to determine clinical and genetic characteristics of our patients with hyperekplexia. METHODS: The age of onset and diagnosis, familial and perinatal history, clinical course, complications, metabolic screening tests, magnetic resonance imaging (MRI), medications, neuropsychometric evaluations, and gene mutations of patients diagnosed with hyperekplexia were reviewed retrospectively. RESULTS: All hyperekplexia patients had displayed neonatal excessive startle response and muscle stiffness, which we accepted as the major form of the disorder. Sixteen patients had mutations in genes associated with hyperekplexia. The ages at clinical diagnosis and genetic confirmation ranged from newborn to 16 years old and from 2.5 to 19 years, respectively. Nine patients (56.25%) were initially misdiagnosed with epilepsy. Seven patients (43.75%) carried a diagnosis of intellectual disability, defined here as a total IQ <80. Delayed gross motor development was detected in 4 patients (25%), and speech delay was reported in 3 (18.75%). Mutations in GLRA1 (NM_000171.4) and SLC6A5 (NM_004211.5) were identified in 13 (81.25%) and 3 patients (18.75%), respectively. Fifteen of the 16 patients (93.75%) showed autosomal recessive inheritance. Only 1 patient (6.25%) showed autosomal dominant inheritance. CONCLUSION: Although hyperekplexia is a potentially treatable disease, it can be complicated by delayed speech and/or motor acquisition and also by intellectual disability. This study shows that hyperekplexia is not always a benign condition and that all patients diagnosed with hyperekplexia should be evaluated for neuropsychiatric status and provided with genetic testing.


Assuntos
Hiperecplexia , Humanos , Masculino , Criança , Feminino , Adolescente , Pré-Escolar , Estudos Retrospectivos , Hiperecplexia/genética , Hiperecplexia/diagnóstico , Lactente , Mutação/genética , Receptores de Glicina/genética , Adulto Jovem , Sistemas de Transporte de Aminoácidos Neutros/genética , Recém-Nascido , Reflexo de Sobressalto/genética , Imageamento por Ressonância Magnética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico
7.
Front Immunol ; 15: 1387591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953026

RESUMO

Background and objectives: Antiglycine receptor (anti-GlyR) antibody mediates multiple immune-related diseases. This study aimed to summarize the clinical features to enhance our understanding of anti-GlyR antibody-related disease. Methods: By collecting clinical information from admitted patients positive for glycine receptor (GlyR) antibody, the clinical characteristics of a new patient positive for GlyR antibody were reported in this study. To obtain additional information regarding anti-GlyR antibody-linked illness, clinical data and findings on both newly reported instances in this study and previously published cases were merged and analyzed. Results: A new case of anti-GlyR antibody-related progressive encephalomyelitis with rigidity and myoclonus (PERM) was identified in this study. A 20-year-old man with only positive cerebrospinal fluid anti-GlyR antibody had a good prognosis with first-line immunotherapy. The literature review indicated that the common clinical manifestations of anti-GlyR antibody-related disease included PERM or stiff-person syndrome (SPS) (n = 179, 50.1%), epileptic seizure (n = 94, 26.3%), and other neurological disorders (n = 84, 24.5%). Other neurological issues included demyelination, inflammation, cerebellar ataxia and movement disorders, encephalitis, acute psychosis, cognitive impairment or dementia, celiac disease, Parkinson's disease, neuropathic pain and allodynia, steroid-responsive deafness, hemiballism/tics, laryngeal dystonia, and generalized weakness included respiratory muscles. The group of PERM/SPS exhibited a better response to immunotherapy than others. Conclusions: The findings suggest the presence of multiple clinical phenotypes in anti-GlyR antibody-related disease. Common clinical phenotypes include PERM, SPS, epileptic seizure, and paraneoplastic disease. Patients with RERM/SPS respond well to immunotherapy.


Assuntos
Autoanticorpos , Encefalomielite , Rigidez Muscular , Receptores de Glicina , Humanos , Masculino , Receptores de Glicina/imunologia , Autoanticorpos/imunologia , Autoanticorpos/sangue , Adulto Jovem , Encefalomielite/imunologia , Encefalomielite/diagnóstico , Rigidez Muscular/imunologia , Rigidez Muscular/etiologia , Rigidez Muscular/diagnóstico , Mioclonia/imunologia , Mioclonia/diagnóstico , Rigidez Muscular Espasmódica/imunologia , Rigidez Muscular Espasmódica/diagnóstico , Rigidez Muscular Espasmódica/terapia , Adulto
8.
Neural Dev ; 19(1): 14, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068495

RESUMO

Gephyrin is thought to play a critical role in clustering glycine receptors at synapses within the central nervous system (CNS). The main in vivo evidence for this comes from Gephyrin (Gphn)-null mice, where glycine receptors are depleted from synaptic regions. However, these mice die at birth, possibly due to impaired molybdenum cofactor (MoCo) synthesis, an essential role Gephyrin assumes throughout an animal. This complicates the interpretation of synaptic phenotypes in Gphn-null mice and raises the question whether the synaptic and enzymatic functions of Gephyrin can be investigated separately. Here, we generated a gephyrinb zebrafish mutant, vo84, that almost entirely lacks Gephyrin staining in the spinal cord. gephyrinbvo84 mutants exhibit normal gross morphology at both larval and adult stages. In contrast to Gphn-null mice, gephyrinbvo84 mutants exhibit normal motor activity and MoCo-dependent enzyme activity. Instead, gephyrinbvo84 mutants display impaired rheotaxis and increased mortality in late development. To investigate what may mediate these defects in gephyrinbvo84 mutants, we examined the cell density of neurons and myelin in the spinal cord and found no obvious changes. Surprisingly, in gephyrinbvo84 mutants, glycine receptors are still present in the synaptic regions. However, their abundance is reduced, potentially contributing to the observed defects. These findings challenge the notion that Gephyrin is absolutely required to cluster glycine receptors at synapses and reveals a new role of Gephyrin in regulating glycine receptor abundance and rheotaxis. They also establish a powerful new model for studying the mechanisms underlying synaptic, rather than enzymatic, functions of Gephyrin.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Mutação , Medula Espinal , Sinapses , Peixe-Zebra , Animais , Sinapses/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Medula Espinal/metabolismo , Mutação/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Receptores de Glicina/metabolismo , Receptores de Glicina/genética , Cofatores de Molibdênio , Pteridinas , Neurônios/metabolismo , Bainha de Mielina/metabolismo , Atividade Motora/fisiologia , Atividade Motora/genética , Animais Geneticamente Modificados
10.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884814

RESUMO

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Assuntos
Potenciais de Ação , Glicina , Neurônios , Núcleo Accumbens , Receptores Acoplados a Proteínas G , Animais , Glicina/farmacologia , Glicina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/citologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Potenciais de Ação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glicina/metabolismo , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Neurônios Espinhosos Médios
11.
Behav Brain Res ; 471: 115086, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-38825024

RESUMO

The effects of intra-hippocampal manipulation of glycine receptors on the reconsolidation of recent and late long-term spatial memory were evaluated and assessed in the Morris water maze. The results obtained from the intra-hippocampal infusion of glycine and taurine demonstrated that taurine at a 100 nmol/side dose impaired the reconsolidation of recent and late long-term spatial memory. In comparison, at a dose of 10 nmol/side, it only affected the reconsolidation of late long-term spatial memory, reinforcing that there are differences between molecular mechanisms underlying recent and late long-term memory reconsolidation. On the other hand, glycine impaired the reconsolidation of early and late spatial memory when infused at a dose of 10 nmol/side, but not at a dose of 100 nmol/side, unless it is co-infused with an allosteric site antagonist of the NMDA receptor. Altogether these results show that glycine acting in situ in the hippocampal CA1 region exerts a pharmacological effect on U-curve, which can be explained by its concomitant action on its ionotropic receptor GlyR and on its NMDA receptor co-agonist site.


Assuntos
Glicina , Memória de Longo Prazo , Ratos Wistar , Receptores de Glicina , Memória Espacial , Taurina , Animais , Receptores de Glicina/metabolismo , Receptores de Glicina/efeitos dos fármacos , Masculino , Glicina/farmacologia , Ratos , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Taurina/farmacologia , Taurina/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
12.
J Phys Chem B ; 128(20): 4996-5007, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38747451

RESUMO

Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.


Assuntos
Colesterol , Simulação de Dinâmica Molecular , Receptores de Glicina , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Colesterol/química , Colesterol/metabolismo , Animais , Sítio Alostérico , Peixe-Zebra
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 720-724, 2024 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-38818557

RESUMO

OBJECTIVE: To explore the clinical and genetic characteristics of three children with Hyperekplexia. METHODS: Three children who were diagnosed with Hyperekplexia at the Third Affiliated Hospital of Zhengzhou University between June 2018 and March 2020 were selected as the study subjects. Clinical data of the three children were collected. All children were subjected to whole exome sequencing. Pathogenicity of candidate variants were verified by Sanger sequencing and bioinformatic analysis. RESULTS: The three children were all males, and had presented exaggerated startle reflexes and generalized stiffness in response to unexpected auditory or tactile stimulation, or had frequent traumatic falls following exaggerated startle. All children had shown positive nose-tapping reflex, though EEG and cranial MRI exams were all negative. Whole exome sequencing revealed that two children had harbored homozygous variants of the GLRB gene, of which the c.1017_c.1018insAG (p.G340Rfs*14) was unreported previously. The third child had harbored compound heterozygous variants of the GLRA1 gene, among which the c.1262T>A (p.IIe421Asn) variant showed an unreported autosomal recessive inheritance. All children had responded well to clonazepam treatment. CONCLUSION: Patients with Hyperekplexia have typical clinical manifestations. Early clinical identification and genetic analysis can facilitate their diagnosis.


Assuntos
Sequenciamento do Exoma , Hiperecplexia , Receptores de Glicina , Humanos , Masculino , Receptores de Glicina/genética , Criança , Hiperecplexia/genética , Hiperecplexia/fisiopatologia , Mutação , Pré-Escolar , Receptores de GABA-A/genética , Testes Genéticos , Homozigoto
14.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723884

RESUMO

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Assuntos
Doença de Alzheimer , Núcleo Accumbens , Receptores de Glicina , Camundongos , Doença de Alzheimer/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Glicina/metabolismo , Camundongos Endogâmicos C57BL , Etanol , Camundongos Transgênicos , Cálcio/metabolismo , Recompensa , Sacarose/metabolismo , Atividade Motora , Ansiedade , Neurônios/metabolismo
15.
Life Sci ; 348: 122673, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679193

RESUMO

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Assuntos
Etanol , Técnicas de Introdução de Genes , Receptores de Glicina , Animais , Etanol/farmacologia , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Camundongos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Transgênicos , Receptores de GABA-A
16.
JAMA Neurol ; 81(7): 771-772, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557729

RESUMO

This case report describes a 54-year-old woman with naming deficits, comprehension impairment, and memory loss. Initial physical and neurological examination results were unremarkable.


Assuntos
Afasia Primária Progressiva , Autoanticorpos , Receptores de Glicina , Humanos , Autoanticorpos/imunologia , Afasia Primária Progressiva/imunologia , Receptores de Glicina/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
17.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598639

RESUMO

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Assuntos
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona , Microscopia Crioeletrônica , Glicina/metabolismo , Neurotransmissores , Mamíferos/metabolismo
18.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38553047

RESUMO

Glycinergic neurons regulate nociceptive and pruriceptive signaling in the spinal cord, but the identity and role of the glycine-regulated neurons are not fully known. Herein, we have characterized spinal glycine receptor alpha 3 (Glra3) subunit-expressing neurons in Glra3-Cre female and male mice. Glra3-Cre(+) neurons express Glra3, are located mainly in laminae III-VI, and respond to glycine. Chemogenetic activation of spinal Glra3-Cre(+) neurons induced biting/licking, stomping, and guarding behaviors, indicative of both a nociceptive and pruriceptive role for this population. Chemogenetic inhibition did not affect mechanical or thermal responses but reduced behaviors evoked by compound 48/80 and chloroquine, revealing a pruriceptive role for these neurons. Spinal cells activated by compound 48/80 or chloroquine express Glra3, further supporting the phenotype. Retrograde tracing revealed that spinal Glra3-Cre(+) neurons receive input from afferents associated with pain and itch, and dorsal root stimulation validated the monosynaptic input. In conclusion, these results show that spinal Glra3(+) neurons contribute to acute communication of compound 48/80- and chloroquine-induced itch in hairy skin.


Assuntos
Prurido , Receptores de Glicina , Medula Espinal , Animais , Prurido/induzido quimicamente , Prurido/metabolismo , Camundongos , Receptores de Glicina/metabolismo , Masculino , Feminino , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Cloroquina/farmacologia , Camundongos Transgênicos , Pele/inervação , Camundongos Endogâmicos C57BL , p-Metoxi-N-metilfenetilamina/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
19.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38431110

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Assuntos
Lignanas , Compostos Policíclicos , Schisandra , Receptores de Glicina , Lignanas/farmacologia , Dor , Canais de Cálcio Tipo N , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canais de Sódio , Ciclo-Octanos
20.
Sci Adv ; 10(5): eadj3808, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306424

RESUMO

G protein-coupled receptor 39 (GPR39) senses the change of extracellular divalent zinc ion and signals through multiple G proteins to a broad spectrum of downstream effectors. Here, we found that GPR39 was prevalent at inhibitory synapses of spinal cord somatostatin-positive (SOM+) interneurons, a mechanosensitive subpopulation that is critical for the conveyance of mechanical pain. GPR39 complexed specifically with inhibitory glycine receptors (GlyRs) and helped maintain glycinergic transmission in a manner independent of G protein signalings. Targeted knockdown of GPR39 in SOM+ interneurons reduced the glycinergic inhibition and facilitated the excitatory output from SOM+ interneurons to spinoparabrachial neurons that engaged superspinal neural circuits encoding both the sensory discriminative and affective motivational domains of pain experience. Our data showed that pharmacological activation of GPR39 or augmenting GPR39 interaction with GlyRs at the spinal level effectively alleviated the sensory and affective pain induced by complete Freund's adjuvant and implicated GPR39 as a promising therapeutic target for the treatment of inflammatory mechanical pain.


Assuntos
Dor , Receptores Acoplados a Proteínas G , Humanos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA