Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125997

RESUMO

The transmembrane protein ß-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer's disease (AD). The ß-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic ß-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.


Assuntos
Precursor de Proteína beta-Amiloide , Proteínas de Drosophila , Junção Neuromuscular , Proteínas rab de Ligação ao GTP , Animais , Junção Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Transmissão Sináptica , Sinapses/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas de Membrana , Proteínas do Tecido Nervoso , Proteínas de Homeodomínio , Receptores Ionotrópicos de Glutamato
2.
Proc Natl Acad Sci U S A ; 121(28): e2317833121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968112

RESUMO

Parkinson's disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs in dorsomedial striatum to favor the incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D1R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD.


Assuntos
Corpo Estriado , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Transporte Proteico , Receptores de AMPA , Animais , Humanos , Camundongos , Corpo Estriado/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação de Sentido Incorreto , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Sinapses/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891858

RESUMO

Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the GLR family in oilseed rape (Brassica napus) and their role in resistance to the fungal pathogen Sclerotinia sclerotiorum. A total of 61 GLRs were identified in oilseed rape. They comprised three groups, as in Arabidopsis thaliana. Detailed computational analyses, including prediction of domain and motifs, cellular localization, cis-acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of BnGLRs in oilseed rape and Arabidopsis mutants of BnGLR homologs demonstrated that BnGLR35/AtGLR2.5 positively, while BnGLR12/AtGLR1.2 and BnGLR53/AtGLR3.2 negatively, regulated plant resistance to S. sclerotiorum, indicating that GLR genes were differentially involved in this resistance. Our findings reveal the complex involvement of GLRs in B. napus resistance to S. sclerotiorum and provide clues for further functional characterization of BnGLRs.


Assuntos
Ascomicetos , Brassica napus , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas , Receptores de Glutamato , Brassica napus/genética , Brassica napus/microbiologia , Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/microbiologia , Estudo de Associação Genômica Ampla , Família Multigênica , Genoma de Planta
4.
Methods Mol Biol ; 2757: 259-268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668971

RESUMO

The functional analysis of ctenophore neurotransmitter receptors, transporters, and ion channels can be greatly simplified by use of heterologous expression systems. Heterologous expression allows the characterization of individual membrane proteins, expressed at high levels in cells, where background activity by endogenous ion channels and transporters is with few exceptions minimal. The goal of such experiments is to gain an in-depth understanding of the behavior and regulation of individual molecular species, which is challenging in native tissue, but especially so in the case of ctenophores and other marine organisms. Coupled with transcriptome analysis, and immunohistochemical studies of receptor expression in vivo, experiments with heterologous expression systems can provide valuable insight into cellular activity, prior to more challenging functional studies on native tissues.


Assuntos
Ctenóforos , Receptores de Glutamato , Animais , Ctenóforos/genética , Ctenóforos/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Perfilação da Expressão Gênica/métodos , Imuno-Histoquímica , Transcriptoma/genética
5.
Sci Adv ; 10(9): eadg2636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427737

RESUMO

Human genome-wide association studies (GWAS) suggest a functional role for central glutamate receptor signaling and plasticity in body weight regulation. Here, we use UK Biobank GWAS summary statistics of body mass index (BMI) and body fat percentage (BF%) to identify genes encoding proteins known to interact with postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors. Loci in/near discs large homolog 4 (DLG4) and protein interacting with C kinase 1 (PICK1) reached genome-wide significance (P < 5 × 10-8) for BF% and/or BMI. To further evaluate the functional role of postsynaptic density protein-95 (PSD-95; gene name: DLG4) and PICK1 in energy homeostasis, we used dimeric PSD-95/disc large/ZO-1 (PDZ) domain-targeting peptides of PSD-95 and PICK1 to demonstrate that pharmacological inhibition of PSD-95 and PICK1 induces prolonged weight-lowering effects in obese mice. Collectively, these data demonstrate that the glutamate receptor scaffolding proteins, PICK1 and PSD-95, are genetically linked to obesity and that pharmacological targeting of their PDZ domains represents a promising therapeutic avenue for sustained weight loss.


Assuntos
Estudo de Associação Genômica Ampla , Receptores de AMPA , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética
6.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519128

RESUMO

As the global elderly population grows, age-related cognitive decline is becoming an increasingly significant healthcare issue, often leading to various neuropsychiatric disorders. Among the many molecular players involved in memory, AMPA-type glutamate receptors are known to regulate learning and memory, but how their dynamics change with age and affect memory decline is not well understood. Here, we examined the in vivo properties of the AMPA-type glutamate receptor GLR-1 in the AVA interneuron of the Caenorhabditis elegans nervous system during physiological aging. We found that both total and membrane-bound GLR-1 receptor levels decrease with age in wild-type worms, regardless of their location along the axon. Using fluorescence recovery after photobleaching, we also demonstrated that a reduction in GLR-1 abundance correlates with decreased local, synaptic GLR-1 receptor dynamics. Importantly, we found that reduced GLR-1 levels strongly correlate with the age-related decline in short-term associative memory. Genetic manipulation of GLR-1 stability, by either deleting msi-1 or expressing a ubiquitination-defective GLR-1 (4KR) variant, prevented this age-related reduction in receptor abundance and improved the short-term memory performance in older animals, which reached performance levels similar to those of young animals. Overall, our data indicate that AMPA-type glutamate receptor abundance and dynamics are key factors in maintaining memory function and that changes in these parameters are linked to age-dependent short-term memory decline.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Memória de Curto Prazo , Mutação , Receptores de AMPA , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
7.
Mol Psychiatry ; 29(4): 1205-1215, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418578

RESUMO

The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.


Assuntos
Deficiência Intelectual , Receptores de Glutamato Metabotrópico , Transdução de Sinais , Sinapses , Humanos , Deficiência Intelectual/genética , Masculino , Sinapses/metabolismo , Sinapses/genética , Feminino , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/genética , Homozigoto , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Linhagem , Adulto , Paraplegia/genética , Paraplegia/metabolismo , Animais , Criança , Neurônios/metabolismo , Adolescente , Células HEK293 , Mutação/genética
8.
Nat Plants ; 10(1): 145-160, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38168609

RESUMO

Plants rely on systemic signalling mechanisms to establish whole-body defence in response to insect and nematode attacks. GLUTAMATE RECEPTOR-LIKE (GLR) genes have been implicated in long-distance transmission of wound signals to initiate the accumulation of the defence hormone jasmonate (JA) at undamaged distal sites. The systemic signalling entails the activation of Ca2+-permeable GLR channels by wound-released glutamate, triggering membrane depolarization and cytosolic Ca2+ influx throughout the whole plant. The systemic electrical and calcium signals rapidly dissipate to restore the resting state, partially due to desensitization of the GLR channels. Here we report the discovery of calmodulin-mediated, Ca2+-dependent desensitization of GLR channels, revealing a negative feedback loop in the orchestration of plant systemic wound responses. A CRISPR-engineered GLR3.3 allele with impaired desensitization showed prolonged systemic electrical signalling and Ca2+ waves, leading to enhanced plant defence against herbivores. Moreover, this Ca2+/calmodulin-mediated desensitization of GLR channels is a highly conserved mechanism in plants, providing a potential target for engineering anti-herbivore defence in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Calmodulina , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais/genética , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Plantas/metabolismo
9.
Plant Cell Physiol ; 65(4): 660-670, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195149

RESUMO

In response to both biotic and abiotic stresses, vascular plants transmit long-distance Ca2+ and electrical signals from localized stress sites to distant tissues through their vasculature. Various models have been proposed for the mechanisms underlying the long-distance signaling, primarily centered around the presence of vascular bundles. We here demonstrate that the non-vascular liverwort Marchantia polymorpha possesses a mechanism for propagating Ca2+ waves and electrical signals in response to wounding. The propagation velocity of these signals was approximately 1-2 mm s-1, equivalent to that observed in vascular plants. Both Ca2+ waves and electrical signals were inhibited by La3+ as well as tetraethylammonium chloride, suggesting the crucial importance of both Ca2+ channel(s) and K+ channel(s) in wound-induced membrane depolarization as well as the subsequent long-distance signal propagation. Simultaneous recordings of Ca2+ and electrical signals indicated a tight coupling between the dynamics of these two signaling modalities. Furthermore, molecular genetic studies revealed that a GLUTAMATE RECEPTOR-LIKE (GLR) channel plays a central role in the propagation of both Ca2+ waves and electrical signals. Conversely, none of the three two-pore channels were implicated in either signal propagation. These findings shed light on the evolutionary conservation of rapid long-distance Ca2+ wave and electrical signal propagation involving GLRs in land plants, even in the absence of vascular tissue.


Assuntos
Sinalização do Cálcio , Cálcio , Marchantia , Marchantia/fisiologia , Marchantia/genética , Marchantia/metabolismo , Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lantânio/farmacologia , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Tetraetilamônio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/genética
10.
Acta Physiol (Oxf) ; 240(3): e14090, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38230587

RESUMO

AIM: Offspring of obese mothers are at high risk of developing metabolic syndrome and cognitive disabilities. Impaired metabolism has also been reported in the offspring of obese fathers. However, whether brain function can also be affected by paternal obesity has barely been examined. This study aimed to characterize the learning deficits resulting from paternal obesity versus those induced by maternal obesity and to identify the underlying mechanisms. METHODS: Founder control and obese female and male Wistar rats were mated to constitute three first-generation (F1) experimental groups: control mother/control father, obese mother/control father, and obese father/control mother. All F1 animals were weaned onto standard chow and underwent a learning test at 4 months of age, after which several markers of glutamate-mediated synaptic plasticity together with the expression of miRNAs targeting glutamate receptors and the concentration of kynurenic and quinolinic acids were quantified in the hippocampus and frontal cortex. RESULTS: Maternal obesity induced a severe learning deficit by impairing memory encoding and memory consolidation. The offspring of obese fathers also showed reduced memory encoding but not impaired long-term memory formation. Memory deficits in offspring of obese fathers and obese mothers were associated with a down-regulation of genes encoding NMDA glutamate receptors subunits and several learning-related genes along with impaired expression of miR-296 and miR-146b and increased concentration of kynurenic acid. CONCLUSION: Paternal and maternal obesity impair offspring's learning abilities by affecting different processes of memory formation. These cognitive deficits are associated with epigenetic and neurochemical alterations leading to impaired glutamate-mediated synaptic plasticity.


Assuntos
MicroRNAs , Obesidade Materna , Humanos , Adulto , Ratos , Feminino , Masculino , Gravidez , Animais , Obesidade Materna/complicações , Obesidade Materna/genética , Ratos Wistar , Obesidade , Pai , Encéfalo , Receptores de Glutamato/genética , Glutamatos/genética , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA