Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.661
Filtrar
1.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738886

RESUMO

Monoclonal antibody-based immunotherapy targeting tumor antigens is now a mainstay of cancer treatment. One of the clinically relevant mechanisms of action of the antibodies is antibody-dependent cellular cytotoxicity (ADCC), where the antibody binds to the cancer cells and engages the cellular component of the immune system, e.g., natural killer (NK) cells, to kill the tumor cells. The effectiveness of these therapies could be improved by identifying adjuvant compounds that increase the sensitivity of the cancer cells or the potency of the immune cells. In addition, undiscovered drug interactions in cancer patients co-medicated for previous conditions or cancer-associated symptoms may determine the success of the antibody therapy; therefore, such unwanted drug interactions need to be eliminated. With these goals in mind, we created a cancer ADCC model and describe here a simple protocol to find ADCC-modulating drugs. Since 3D models such as cancer cell spheroids are superior to 2D cultures in predicting in vivo responses of tumors to anticancer therapies, spheroid co-cultures of EGFP-expressing HER2+ JIMT-1 breast cancer cells and the NK92.CD16 cell lines were set up and induced with Trastuzumab, a monoclonal antibody clinically approved against HER2-positive breast cancer. JIMT-1 spheroids were allowed to form in cell-repellent U-bottom 96-well plates. On day 3, NK cells and Trastuzumab were added. The spheroids were then stained with Annexin V-Alexa 647 to measure apoptotic cell death, which was quantitated in the peripheral zone of the spheroids with an automated microscope. The applicability of our assay to identify ADCC-modulating molecules is demonstrated by showing that Sunitinib, a receptor tyrosine kinase inhibitor approved by the FDA against metastatic cancer, almost completely abolishes ADCC. The generation of the spheroids and image acquisition and analysis pipelines are compatible with high-throughput screening for ADCC-modulating compounds in cancer cell spheroids.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Esferoides Celulares , Humanos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/imunologia , Descoberta de Drogas/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores de IgG/imunologia , Antineoplásicos Imunológicos/farmacologia , Trastuzumab/farmacologia
2.
Clin Immunol ; 263: 110231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692449

RESUMO

Moderate-to-severe systemic lupus erythematosus (SLE) is characterized by extensive autoantibody deposition and persistent autoinflammation. As the existing animal models are limited in accurately reproducing the pathological characteristics of human SLE, we introduced a novel animal model simulating multi-organ autoinflammation through intra-organ injections. The model closely mimicked key features of SLE, including IgG deposition, inflammation, and tissue damage. The model could be used to assess the roles of IgG, immune cells, cytokines, and Fc gamma receptor (FcγR) in the pathogenesis of autoinflammation. The results obtained from this model could be confirmed by lupus MRL/lpr mice. The review suggested that the diagnostic criteria should be reconsidered to incorporate IgG deposition in tissues and highlighted the limitations of current T-cell and B-cell-focused treatments. To summarize, the IgG deposition model can be used to investigate the pathogenesis and treatment of multi-organ tissue damage associated with SLE.


Assuntos
Modelos Animais de Doenças , Imunoglobulina G , Lúpus Eritematoso Sistêmico , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Imunoglobulina G/imunologia , Humanos , Camundongos Endogâmicos MRL lpr , Inflamação/imunologia , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Linfócitos B/imunologia
3.
Front Immunol ; 15: 1360615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646521

RESUMO

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Ascite , Células Matadoras Naturais , Neoplasias Ovarianas , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ascite/imunologia , Feminino , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Imunoglobulinas/metabolismo , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Degranulação Celular/imunologia , Degranulação Celular/efeitos dos fármacos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Cetuximab/farmacologia
4.
Clin Immunol ; 263: 110206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599263

RESUMO

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Camundongos Endogâmicos C57BL , Neutrófilos , Fagocitose , Receptores de IgG , Receptores de Fator de Crescimento Neural , Sepse , Animais , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/etiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Sepse/imunologia , Sepse/complicações , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologia , Camundongos , Masculino , Fagocitose/imunologia , Receptores de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/imunologia , Camundongos Knockout , Lipopolissacarídeos , Citocinas/metabolismo , Citocinas/imunologia , Pulmão/imunologia , Pulmão/patologia , Feminino , NF-kappa B/metabolismo , NF-kappa B/imunologia , Proteínas do Tecido Nervoso
5.
Clin Immunol ; 263: 110223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636890

RESUMO

Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.


Assuntos
Anemia Aplástica , Linfócitos T CD8-Positivos , Proteínas Ligadas por GPI , Células-Tronco Hematopoéticas , Interleucina-15 , Monócitos , Receptores de IgG , Humanos , Anemia Aplástica/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Interleucina-15/farmacologia , Interleucina-15/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Feminino , Masculino , Adulto , Células-Tronco Hematopoéticas/imunologia , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Pessoa de Meia-Idade , Proteína Ligante Fas/metabolismo , Proteína Ligante Fas/imunologia , Adulto Jovem , Adolescente , Interferon gama/imunologia , Interferon gama/metabolismo , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-15/imunologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/imunologia
6.
Front Immunol ; 15: 1341013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655263

RESUMO

Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.


Assuntos
Fator VIII , Proteínas Ligadas por GPI , Fragmentos Fc das Imunoglobulinas , Células Matadoras Naturais , Ativação Linfocitária , Receptores de IgG , Proteínas Recombinantes de Fusão , Humanos , Degranulação Celular/imunologia , Fator VIII/química , Fator VIII/imunologia , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Hemofilia A/imunologia , Hemofilia A/tratamento farmacológico , Fragmentos Fc das Imunoglobulinas/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ligação Proteica , Receptores de IgG/metabolismo , Receptores de IgG/imunologia
7.
Viruses ; 16(4)2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675937

RESUMO

Antibodies that specifically bind to individual human fragment crystallizable γ receptors (FcγRs) are of interest as research tools in studying immune cell functions, as well as components in bispecific antibodies for immune cell engagement in cancer therapy. Monoclonal antibodies for human low-affinity FcγRs have been successfully generated by hybridoma technology and are widely used in pre-clinical research. However, the generation of monoclonal antibodies by hybridoma technology that specifically bind to the high-affinity receptor FcγRI is challenging. Monomeric mouse IgG2a, IgG2b, and IgG3 bind human FcγRI with high affinity via the Fc part, leading to an Fc-mediated rather than a fragment for antigen binding (Fab)-mediated selection of monoclonal antibodies. Blocking the Fc-binding site of FcγRI with an excess of human IgG or Fc during screening decreases the risk of Fc-mediated interactions but can also block the potential epitopes of new antibody candidates. Therefore, we replaced hybridoma technology with phage display of a single-chain fragment variable (scFv) antibody library that was generated from mice immunized with FcγRI-positive cells and screened it with a cellular panning approach assisted by next-generation sequencing (NGS). Seven new FcγRI-specific antibody sequences were selected with this methodology, which were produced as Fc-silent antibodies showing FcγRI-restricted specificity.


Assuntos
Anticorpos Monoclonais , Receptores de IgG , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Animais , Camundongos , Humanos , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Imunização , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Hibridomas , Especificidade de Anticorpos , Feminino , Camundongos Endogâmicos BALB C
8.
Cell Immunol ; 399-400: 104823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520831

RESUMO

AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.


Assuntos
Células Dendríticas , Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Receptor Toll-Like 9 , Transgenes , Animais , Células Dendríticas/imunologia , Dependovirus/genética , Camundongos , Terapia Genética/métodos , Receptor Toll-Like 9/imunologia , Ilhas de CpG/genética , Ilhas de CpG/imunologia , Receptores de IgG/imunologia , Receptores de IgG/genética , Receptores de IgG/metabolismo
9.
Expert Opin Pharmacother ; 25(3): 281-294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38465524

RESUMO

INTRODUCTION: Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. AREAS COVERED: Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. EXPERT OPINION: Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.


Assuntos
Vacinas contra COVID-19 , Heparina , Receptores de IgG , Trombocitopenia , Trombose , Humanos , Anticoagulantes/efeitos adversos , COVID-19/complicações , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Heparina/efeitos adversos , Ativação Plaquetária/efeitos dos fármacos , Fator Plaquetário 4/imunologia , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/imunologia , Tromboinflamação/tratamento farmacológico , Trombose/tratamento farmacológico , Trombose/imunologia
10.
J Immunol ; 212(10): 1564-1578, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551350

RESUMO

HIV-1 infection greatly alters the NK cell phenotypic and functional repertoire. This is highlighted by the expansion of a rare population of FcRγ- NK cells exhibiting characteristics of traditional immunologic memory in people with HIV (PWH). Although current antiretroviral therapy (ART) effectively controls HIV-1 viremia and disease progression, its impact on HIV-1-associated NK cell abnormalities remains unclear. To address this, we performed a longitudinal analysis detailing conventional and memory-like NK cell characteristics in n = 60 PWH during the first 4 y of ART. Throughout this regimen, a skewed repertoire of cytokine unresponsive FcRγ- memory-like NK cells persisted and accompanied an overall increase in NK surface expression of CD57 and KLRG1, suggestive of progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing Ab titers to human CMV, with human CMV viremia detected in approximately one-third of PWH at years 1-4 of ART. Interestingly, 40% of PWH displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis based on single-cell multiomic trajectory analysis. Our findings indicate that NK cell irregularities persist in PWH despite long-term ART, underscoring the need to better understand the causative mechanisms that prevent full restoration of immune health in PWH.


Assuntos
Antígenos CD57 , Infecções por HIV , HIV-1 , Células Matadoras Naturais , Humanos , Células Matadoras Naturais/imunologia , Infecções por HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/imunologia , Masculino , Feminino , Antígenos CD57/imunologia , Adulto , Pessoa de Meia-Idade , Memória Imunológica/imunologia , Lectinas Tipo C/imunologia , Receptores Imunológicos , Viremia/imunologia , Viremia/tratamento farmacológico , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/tratamento farmacológico , Receptores de IgG/imunologia , Estudos Longitudinais , Antirretrovirais/uso terapêutico
11.
Nature ; 627(8004): 646-655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418879

RESUMO

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Antígeno B7-H1 , Células Mieloides , Neoplasias , Receptores Imunológicos , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Quimioterapia Combinada , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ativação de Macrófagos , Células Mieloides/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptores de IgG/imunologia , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
12.
J Virol ; 98(2): e0154623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299865

RESUMO

Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.


Assuntos
Proteínas de Bactérias , Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Lipídeos , Proteínas Recombinantes de Fusão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Camundongos , Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Receptores de IgG/classificação , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Staphylococcus aureus , Desenvolvimento de Vacinas , Carga Viral
13.
Science ; 383(6678): 62-70, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175892

RESUMO

Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+ T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.


Assuntos
Linfócitos T CD4-Positivos , Colite , Inibidores de Checkpoint Imunológico , Ativação Linfocitária , Microbiota , Receptores de IgG , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Colite/etiologia , Colite/microbiologia , Antígeno CTLA-4/antagonistas & inibidores , Microbiota/imunologia , Receptores de IgG/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Camundongos Endogâmicos C57BL
14.
Front Immunol ; 13: 960411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131913

RESUMO

Fc mediated effector functions of antibodies play important roles in immunotherapies and vaccine efficacy but assessing those functions in animal models can be challenging due to species differences. Rhesus macaques, Macaca mulatta (Mm) share approximately 93% sequence identity with humans but display important differences in their adaptive immune system that complicates their use in validating therapeutics and vaccines that rely on Fc effector functions. In contrast to humans, macaques only have one low affinity FcγRIII receptor, CD16, which shares a polymorphism at position 158 with human FcγRIIIa with Ile158 and Val158 variants. Here we describe structure-function relationships of the Ile/Val158 polymorphism in Mm FcγRIII. Our data indicate that the affinity of the allelic variants of Mm FcγRIII for the macaque IgG subclasses vary greatly with changes in glycan composition both on the Fc and the receptor. However, unlike the human Phe/Val158 polymorphism in FcγRIIIa, the higher affinity variant corresponds to the larger, more hydrophobic side chain, Ile, even though it is not directly involved in the binding interface. Instead, this side chain appears to modulate glycan-glycan interactions at the Fc/FcγRIII interface. Furthermore, changes in glycan composition on the receptor have a greater effect for the Val158 variant such that with oligomannose type glycans and with glycans only on Asn45 and Asn162, Val158 becomes the variant with higher affinity to Fc. These results have implications not only for the better interpretation of nonhuman primate studies but also for studies performed with human effector cells carrying different FcγRIIIa alleles.


Assuntos
Imunoglobulina G , Polissacarídeos , Animais , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Macaca mulatta , Polissacarídeos/metabolismo , Receptores de IgG/imunologia
15.
Antiviral Res ; 205: 105385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917968

RESUMO

Natural killer (NK) cells play a crucial role in the control of human viral infections but their activity is significantly impaired in patients infected with chronic hepatitis B (CHB). The mechanism that contributes to NK cell dysfunction in CHB needs further elucidation. In this study, we analyzed the expression and function of the novel inhibitory receptor immunoglobulin-like transcript-2 (ILT2) on NK cells from 131 CHB patients and 36 healthy controls. We observed that ILT2 expression on circulating CD56dimCD16+NK cells was increased in immune-tolerant, immune-active and HBeAg-negative hepatitis patients compared with inactive carriers and controls. The frequency of ILT2+CD56dimNK cells was positively correlated with serum viral load in immune-tolerant patients. The percentage of ILT2+CD56dimNK cells decreased along with HBV load in CHB patients who received antiviral therapy. Functional analysis showed that ILT2+CD56dimNK cells in CHB patients had significantly reduced degranulation and IFN-γ production. Upregulation of ILT2 was associated with high levels of apoptosis in CD56dimCD16+NK cells from CHB patients. ILT2 blockade was shown to increase the cytotoxicity and IFN-γ production of CD56dimNK cells in some CHB patients. Finally, ILT2 was found to be moderately upregulated by TGF-ß1, which was increased in immune-tolerant, immune-active and HBeAg-negative hepatitis patients. Our results show that chronic HBV infection increases the levels of the inhibitory receptor ILT2 on CD56dimNK cells and inhibits their functions, providing a new mechanism of NK-cell disability in CHB patients.


Assuntos
Antígenos CD/imunologia , Hepatite B Crônica , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Antígeno CD56/imunologia , Proteínas Ligadas por GPI/imunologia , Antígenos E da Hepatite B , Vírus da Hepatite B , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais , Receptores de IgG/imunologia
16.
J Biol Chem ; 298(9): 102329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921896

RESUMO

Antibodies engage Fc γ receptors (FcγRs) to elicit healing cellular immune responses following binding to a target antigen. Fc γ receptor IIIa/CD16a triggers natural killer cells to destroy target tissues with cytotoxic proteins and enhances phagocytosis mediated by macrophages. Multiple variables affect CD16a antibody-binding strength and the resulting immune response, including a genetic polymorphism. The predominant CD16a F158 allotype binds antibodies with less affinity than the less common V158 allotype. This polymorphism likewise affects cellular immune responses and clinical efficacy of antibodies relying on CD16a engagement, though it remains unclear how V/F158 affects CD16a structure. Another relevant variable shown to affect affinity is composition of the CD16a asparagine-linked (N)-glycans. It is currently not known how N-glycan composition affects CD16a F158 affinity. Here, we determined N-glycan composition affects the V158 and F158 allotypes similarly, and N-glycan composition does not explain differences in V158 and F158 binding affinity. Our analysis of binding kinetics indicated the N162 glycan slows the binding event, and shortening the N-glycans or removing the N162 glycan increased the speed of binding. F158 displayed a slower binding rate than V158. Surprisingly, we found N-glycan composition had a smaller effect on the dissociation rate. We also identified conformational heterogeneity of CD16a F158 backbone amide and N162 glycan resonances using NMR spectroscopy. Residues exhibiting chemical shift perturbations between V158 and F158 mapped to the antibody-binding interface. These data support a model for CD16a F158 with increased interface conformational heterogeneity, reducing the population of binding-competent forms available and decreasing affinity.


Assuntos
Afinidade de Anticorpos , Antígenos CD1 , Polissacarídeos , Receptores de IgG , Antígenos CD1/genética , Antígenos CD1/imunologia , Asparagina/genética , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Polissacarídeos/imunologia , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/imunologia
17.
Cell Rep ; 40(3): 111099, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858562

RESUMO

Many therapeutic antibodies deplete target cells and elicit immunotherapy by engaging activating Fc gamma receptors (FcγRs) on host effector cells. These antibodies are negatively regulated by the inhibitory FcγRIIB (CD32B). Dogma suggests inhibition is mediated through the FcγRIIB immunoreceptor tyrosine-based inhibition motif (ITIM), negatively regulating immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling from activating FcγR. To assess this, we generated experimental models expressing human (h)FcγRIIB on targets or effectors, lacking or retaining ITIM signaling capacity. We demonstrate that signaling through the hFcγRIIB ITIM is dispensable for impairing monoclonal antibody (mAb)-mediated depletion of normal and malignant murine target cells through three therapeutically relevant surface receptors (CD20, CD25, and OX40) affecting immunotherapy. We demonstrate that hFcγRIIB competition with activating FcγRs for antibody Fc, rather than ITIM signaling, is sufficient to impair activating FcγR engagement, inhibiting effector function and immunotherapy.


Assuntos
Anticorpos Monoclonais , Receptores de IgG/imunologia , Animais , Humanos , Imunoterapia , Camundongos , Receptores de IgG/metabolismo , Transdução de Sinais
18.
Mol Cell Biochem ; 477(8): 2015-2024, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35397683

RESUMO

Daratumumab (DAR) is novel human anti-CD38 IgG1, high-affinity human monoclonal antibody having broad-spectrum killing activity. The antibody is recommended to treat multiple myeloma. Recently Antibody-dependent cellular phagocytosis (ADCP) have been identified as the potential mechanism of DAR in addition to complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). In the present study we evaluated the effect of Daratumumab on other effector cells of multiple myeloma. Luciferase+ MM.1R GFP cells were selected for the study. For immune-compromised multiple myeloma tumour xenograft mouse model we used severe combined immunodeficient beige (SCID-beige), NOD SCID gamma (NSG) and C57Bl/6j mice. Bioluminescence imaging was carried by injecting luciferin, and in vivo confocal microscopy was done for tracing bone marrow niches. Spleen and tumours were submitted to immunophenotypic analysis. MTT assay was done for cell proliferation studies. We established tumour xenograft mouse model. It was found that DAR showed significant anti-tumour effect in tumour xenograft multiple myeloma mice. We found that DAR showed anti-tumour activity via Fc-FcγR interaction with macrophages. DAR induced phenotypic activation of macrophages in mice and resulted in ADCP of cancerous cells via interacting Fc-FcγR in vitro. The study suggested that DAR exerted anti-tumour activity in multiple myeloma by interacting with Fc-FcγR.


Assuntos
Anticorpos Monoclonais , Macrófagos , Mieloma Múltiplo , Receptores de IgG , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Receptores de IgG/imunologia
19.
mBio ; 13(3): e0300521, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35435733

RESUMO

HIV-infected individuals have increased risk for cardiovascular disease (CVD) despite suppressive antiretroviral therapy (ART). This is likely a result of persistent immune activation and systemic inflammation. Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication and may drive inflammation contributing to CVD. EVs were characterized in plasma from 74 HIV-infected individuals on combination antiretroviral therapy (cART) and 64 HIV-uninfected controls with paired carotid intima-media thickness (cIMT) assessment. EVs were profiled with markers reflecting lymphoid, myeloid, and endothelial origin. Seventeen plasma inflammatory biomarkers were also assessed. Human umbilical vein endothelial cell (HUVEC) apoptosis was quantified after EV exposure. A significant correlation was observed in HIV-infected participants between cIMT and EVs expressing CD16, and the monocyte-related markers CD4, CD14, and CX3CR1 showed a similar but nonsignificant association with cIMT. No significant correlation between cIMT measurements from HIV-uninfected individuals and EVs was observed. Levels of serum amyloid A, C-reactive protein, and myeloperoxidase significantly correlated with CD14+, CD16+, and CX3CR1+ EVs. No correlation was noted between cIMT and soluble inflammatory markers. HUVECs showed increased necrosis after exposure to the EV-containing fraction of plasma derived from HIV-infected individuals compared to uninfected controls. Our study reveals that EVs expressing monocyte markers correlated with cIMT in HIV-infected individuals on cART. Moreover, EV fractions derived from HIV-infected individuals lead to greater endothelial cell death via necrotic pathways. Collectively, EVs have potential as biomarkers of and therapeutic targets in the pathogenesis of CVD in the setting of treated HIV disease. IMPORTANCE HIV-infected individuals have a 2-fold-increased risk of cardiovascular disease compared with the general population, yet the mechanisms underlying this comorbidity are unclear. Extracellular vesicles have emerged as important mediators in cell-cell communication and, given what we know of their biology, may drive inflammation contributing to cardiovascular disease in this vulnerable population.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Infecções por HIV , Adulto , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Espessura Intima-Media Carotídea , Vesículas Extracelulares/metabolismo , Proteínas Ligadas por GPI/imunologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Inflamação/patologia , Receptores de IgG/imunologia , Fatores de Risco
20.
Cell Rep ; 38(5): 110303, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108544

RESUMO

Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.


Assuntos
Anticorpos Antivirais/farmacologia , Antivirais/farmacologia , Anticorpos Anti-HIV/farmacologia , Receptores Fc/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Epitopos/efeitos dos fármacos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Imunoglobulina G/efeitos dos fármacos , Imunoglobulina G/imunologia , Camundongos Endogâmicos C57BL , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA