Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Am Chem Soc ; 146(26): 17691-17699, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888290

RESUMO

Nonproteinogenic amino acids, including d-α-, ß-, and γ-amino acids, present in bioactive peptides play pivotal roles in their biochemical activities and proteolytic stabilities. d-α-Amino acids (dαAA) are widely used building blocks that can enhance the proteolytic stability. Cyclic ß2,3-amino acids (cßAA), for instance, can fold peptides into rigid secondary structures, improving the binding affinity and proteolytic stability. Cyclic γ2,4-amino acids (cγAA) are recently highlighted as rigid residues capable of preventing the proteolysis of flanking residues. Simultaneous incorporation of all dαAA, cßAA, and cγAA into a peptide is expected to yield l-α/d-α/ß/γ-hybrid peptides with improved stability and potency. Despite challenges in the ribosomal incorporation of multiple nonproteinogenic amino acids, our engineered tRNAPro1E2 successfully reaches such a difficulty. Here, we report the ribosomal synthesis of macrocyclic l-α/d-α/ß/γ-hybrid peptide libraries and their application to in vitro selection against interferon gamma receptor 1 (IFNGR1). One of the resulting l-α/d-α/ß/γ-hybrid peptides, IB1, exhibited remarkable inhibitory activity against the IFN-γ/IFNGR1 protein-protein interaction (PPI) (IC50 = 12 nM), primarily attributed to the presence of a cßAA in the sequence. Additionally, cγAAs and dαAAs in the resulting peptides contributed to their serum stability. Furthermore, our peptides effectively inhibit IFN-γ/IFNGR1 PPI at the cellular level (best IC50 = 0.75 µM). Altogether, our platform expands the chemical space available for exploring peptides with high activity and stability, thereby enhancing their potential for drug discovery.


Assuntos
Receptor de Interferon gama , Interferon gama , Receptores de Interferon , Interferon gama/metabolismo , Receptores de Interferon/metabolismo , Receptores de Interferon/química , Humanos , Ligação Proteica , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo
2.
Poult Sci ; 103(6): 103673, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564837

RESUMO

Type IV interferon (IFN) has been shown to be a cytokine with antiviral activity in fish and amphibian. But, it has not been cloned and characterized functionally in avian species. In this study, type IV IFN, IFN-υ, and its 2 possible receptors, IFN-υR1 and IL10RB, were identified from an avian species, the mallard (Anas platyrhynchos). Mallard IFN-υ has a 531 bp open reading frame (ORF), encoding 176 amino acids (aa), and has highly conserved features as reported in different species, with an N-terminal signal peptide and a predicted multi-helix structure. The IFN-υR1 and IL10RB contain 528 and 343 aa, respectively, with IFN-υR1 protein containing JAK1 and STAT binding sites, and IL10RB containing TYK2 binding site. These 2 receptor subunits also possess 3 domains, the N-terminal extracellular domain, the transmembrane domain, and the C-terminal intracellular domain. Expression analysis indicated that IFN-υ, IFN-υR1 and IL10RB were widely expressed in examined organs/tissues, with the highest level observed in pancreas, blood, and kidney, respectively. The expression of IFN-υ, IFN-υR1 and IL10RB in liver, spleen or kidney was significantly upregulated after stimulation with polyI:C. Furthermore, recombinant IFN-υ protein induced the expression of ISGs, and the receptor of IFN-υ was verified as IFN-υR1 and IL10RB using a chimeric receptor approach in HEK293 cells. Taken together, these results indicate that IFN-υ is involved in the host innate immune response in mallard.


Assuntos
Proteínas Aviárias , Patos , Subunidade beta de Receptor de Interleucina-10 , Animais , Patos/genética , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/química , Subunidade beta de Receptor de Interleucina-10/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Sequência de Aminoácidos , Filogenia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Receptores de Interferon/química , Alinhamento de Sequência/veterinária , Imunidade Inata , Interferons/genética , Interferons/metabolismo , Perfilação da Expressão Gênica/veterinária
3.
Methods Mol Biol ; 2225: 125-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33108661

RESUMO

The myxoma virus has become of interest in human medicine in the last two decades as it has the ability to infect many types of human cancer cells and is being used as a platform to develop viro-therapeutic agents that suppress aggressive and damaging immune responses and inflammation. Furthermore, the myxoma virus encodes proteins that have strong immunosuppressive effects, and several of the myxoma virus-encoded immunomodulators are being developed to treat systemic inflammatory syndromes such as cardiovascular disease and transplant rejection. Myxoma virus encodes the M-T7 protein, the most abundantly secreted protein expressed in myxoma virus-infected cells, originally identified as a rabbit species-specific interferon-gamma (IFN-γ) receptor homolog and as a chemokine-modulating protein binding a wide range of mammalian chemokines. M-T7 is a critical virulence factor for viral pathogenesis that increases virus lethality when expressed. Although M-T7 has been extensively studied using biochemical and biophysical techniques and its interactome map is well known, its three-dimensional (3D) structure remains elusive. Obtaining the 3D structure of M-T7 would be greatly beneficial and is a crucial step toward advancing M-T7 research through understanding the molecular function and activity of M-T7 as a novel therapeutic reagent and to rationally develop this protein as a drug. This chapter provides an overview of the structural determination techniques, especially X-ray crystallography, that can be applied toward the goal of achieving the first high-resolution structure of M-T7. In addition, details of up-and-coming methods are discussed, including X-ray diffraction at X-ray free electron lasers (XFELs), nuclear magnetic resonance (NMR), cryo-electron microscopy (cryo-EM), Micro-electron diffraction (Micro-ED), and small-angle X-ray scattering (SAXS), and their potential applications to M-T7 structural biology.


Assuntos
Cristalização/métodos , Cristalografia por Raios X/métodos , Myxoma virus/química , Receptores de Interferon/ultraestrutura , Proteínas Virais/ultraestrutura , Fatores de Virulência/genética , Difração de Raios X/métodos , Sequência de Aminoácidos , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X/instrumentação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Receptores de Interferon/química , Receptores de Interferon/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética , Fatores de Virulência/metabolismo , Difração de Raios X/instrumentação
4.
Front Immunol ; 11: 606489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281831

RESUMO

Interferons (IFNs) are a family of cytokines with the unique ability to induce cell intrinsic programs that enhance resistance to viral infection. Induction of an antiviral state at the cell, tissue, organ, and organismal level is performed by three distinct IFN families, designated as Type-I, Type-II, and Type-III IFNs. Overall, there are 21 human IFNs, (16 type-I, 12 IFNαs, IFNß, IFNϵ, IFNκ, and IFNω; 1 type-II, IFNγ; and 4 type-III, IFNλ1, IFNλ2, IFNλ3, and IFNλ4), that induce pleotropic cellular activities essential for innate and adaptive immune responses against virus and other pathogens. IFN signaling is initiated by binding to distinct heterodimeric receptor complexes. The three-dimensional structures of the type-I (IFNα/IFNAR1/IFNAR2), type-II (IFNγ/IFNGR1/IFNGR2), and type-III (IFNλ3/IFNλR1/IL10R2) signaling complexes have been determined. Here, we highlight similar and unique features of the IFNs, their cell surface complexes and discuss their role in inducing downstream IFN signaling responses.


Assuntos
Interferons/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais , Animais , Humanos , Interferons/química , Ligantes , Camundongos , Modelos Moleculares , Conformação Proteica , Receptores de Interferon/química , Especificidade da Espécie , Relação Estrutura-Atividade
5.
Fish Shellfish Immunol ; 107(Pt A): 194-201, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33011433

RESUMO

Type I interferons are a subset of cytokines playing central roles in host antiviral defense, and their effects depend on the interaction with the heterodimeric receptor complex. Surprisingly, two pairs of the receptor subunits, CRFB1 and CRFB5, and CRFB2 and CRFB5, have been identified in fish, but the studies about preferential receptor usage of different fish IFN subtypes are rather limited. In this study, the three receptor chains of type I IFNs named as On-CRFB1, On-CRFB2 and On-CRFB5 were identified in Nile tilapia, Oreochromis niloticus. These three genes were constitutively expressed in all tissues examined, with the highest expression level observed in muscle and liver, and were rapidly induced in liver following the stimulation of poly(I:C). Interestingly, it is possible that all three subtypes of tilapia IFNs are able to signal through two pairs of the receptor subunits, On-CRFB1 and On-CRFB5, and On-CRFB2 and On-CRFB5. More importantly, tilapia group I IFNs (On-IFNd and On-IFNh) preferentially signal through a receptor complex composed of On-CRFB1 and On-CRFB5, and group II IFNs (On-IFNc) preferentially signal through a receptor complex comprised of On-CRFB2 and On-CRFB5. The present study thus provides new insights into the receptor usage of group I and group II IFNs in fish.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Poli I-C/farmacologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Receptores de Interferon/química , Alinhamento de Sequência/veterinária
6.
Fish Shellfish Immunol ; 102: 326-335, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32387477

RESUMO

In fish, type I IFNs are classified into three groups, i.e. group one, group two and group three, and further separated into seven subgroups based on the number of conserved cysteines and phylogenetic relationships. In the present study, four type I IFNs, named as IFNϕ1, IFNϕ2, IFNϕ3, IFNϕ4, as reported in zebrafish, were identified in a cyprinid, the topmouth culter, Culter alburnus, a species introduced recently into China's aquaculture. These IFNs may be classified as IFNa, IFNc, IFNc and IFNd in a recent nomenclature, with IFNa and IFNd having two cysteines in group one, and IFNc four cysteines in group two. These IFNs, together with their possible receptors, IFNϕ1, IFNϕ2, IFNϕ3, IFNϕ4, and CRFB1, CRFB2 and CRFB5 have an open reading frame (ORF) of 540, 552, 567, 516 bp, and 1572, 1392, 1125 bp, respectively. These IFNs have high amino acid sequence identities, being 91.1-93.6% and 66.9-77.3%, with those in grass carp and zebrafish, respectively, and are expressed constitutively in organs/tissues examined in the fish. The expression of these IFNs can be further induced following poly (I:C) stimulation. However, the possible function of these IFNs and their signalling pathway are of interest for further research.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade/genética , Interferon Tipo I/genética , Receptores de Interferon/genética , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Interferon Tipo I/química , Interferon Tipo I/imunologia , Filogenia , Poli I-C/farmacologia , Receptores de Interferon/química , Receptores de Interferon/imunologia , Alinhamento de Sequência/veterinária
7.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427448

RESUMO

Entamoeba histolytica is an anaerobic parasitic protozoan and the causative agent of amoebiasis. E. histolytica expresses proteins that are structurally homologous to human proteins and uses them as virulence factors. We have previously shown that E. histolytica binds exogenous interferon gamma (IFN-γ) on its surface, and in this study, we explored whether exogenous IFN-γ could modulate parasite virulence. We identified an IFN-γ receptor-like protein on the surface of E. histolytica trophozoites by using anti-IFN-γ receptor 1 (IFN-γR1) antibody and performing immunofluorescence, Western blot, protein sequencing, and in silico analyses. Coupling of human IFN-γ to the IFN-γ receptor-like protein on live E. histolytica trophozoites significantly upregulated the expression of E. histolytica cysteine protease A1 (EhCP-A1), EhCP-A2, EhCP-A4, EhCP-A5, amebapore A (APA), cyclooxygenase 1 (Cox-1), Gal-lectin (Hgl), and peroxiredoxin (Prx) in a time-dependent fashion. IFN-γ signaling via the IFN-γ receptor-like protein enhanced E. histolytica's erythrophagocytosis of human red blood cells, which was abrogated by the STAT1 inhibitor fludarabine. Exogenous IFN-γ enhanced chemotaxis of E. histolytica, its killing of Caco-2 colonic and Hep G2 liver cells, and amebic liver abscess formation in hamsters. These results demonstrate that E. histolytica expresses a surface IFN-γ receptor-like protein that is functional and may play a role in disease pathogenesis and/or immune evasion.


Assuntos
Entamoeba histolytica/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Interferon/química , Amebíase/imunologia , Amebíase/parasitologia , Animais , Células CACO-2 , Sobrevivência Celular , Cricetinae , Células Hep G2 , Humanos , Interferon gama/farmacologia , Masculino , Fagocitose , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Receptor de Interferon gama
8.
Nature ; 567(7746): 56-60, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814731

RESUMO

The cytokine interferon-γ (IFNγ) is a central coordinator of innate and adaptive immunity, but its highly pleiotropic actions have diminished its prospects for use as an immunotherapeutic agent. Here, we took a structure-based approach to decoupling IFNγ pleiotropy. We engineered an affinity-enhanced variant of the ligand-binding chain of the IFNγ receptor IFNγR1, which enabled us to determine the crystal structure of the complete hexameric (2:2:2) IFNγ-IFNγR1-IFNγR2 signalling complex at 3.25 Å resolution. The structure reveals the mechanism underlying deficits in IFNγ responsiveness in mycobacterial disease syndrome resulting from a T168N mutation in IFNγR2, which impairs assembly of the full signalling complex. The topology of the hexameric complex offers a blueprint for engineering IFNγ variants to tune IFNγ receptor signalling output. Unexpectedly, we found that several partial IFNγ agonists exhibited biased gene-expression profiles. These biased agonists retained the ability to induce upregulation of major histocompatibility complex class I antigen expression, but exhibited impaired induction of programmed death-ligand 1 expression in a wide range of human cancer cell lines, offering a route to decoupling immunostimulatory and immunosuppressive functions of IFNγ for therapeutic applications.


Assuntos
Desenho de Fármacos , Interferon gama/agonistas , Interferon gama/imunologia , Receptores de Interferon/química , Receptores de Interferon/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Agonismo Parcial de Drogas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Interferon gama/química , Interferon gama/genética , Ligantes , Modelos Moleculares , Mutação , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Estabilidade Proteica , Receptores de Interferon/genética , Transdução de Sinais , Relação Estrutura-Atividade , Receptor de Interferon gama
9.
Artigo em Inglês | MEDLINE | ID: mdl-29661791

RESUMO

Originally identified in studies of cellular resistance to viral infection, interferon (IFN)-γ is now known to represent a distinct member of the IFN family and plays critical roles not only in orchestrating both innate and adaptive immune responses against viruses, bacteria, and tumors, but also in promoting pathologic inflammatory processes. IFN-γ production is largely restricted to T lymphocytes and natural killer (NK) cells and can ultimately lead to the generation of a polarized immune response composed of T helper (Th)1 CD4+ T cells and CD8+ cytolytic T cells. In contrast, the temporally distinct elaboration of IFN-γ in progressively growing tumors also promotes a state of adaptive resistance caused by the up-regulation of inhibitory molecules, such as programmed-death ligand 1 (PD-L1) on tumor cell targets, and additional host cells within the tumor microenvironment. This review focuses on the diverse positive and negative roles of IFN-γ in immune cell activation and differentiation leading to protective immune responses, as well as the paradoxical effects of IFN-γ within the tumor microenvironment that determine the ultimate fate of that tumor in a cancer-bearing individual.


Assuntos
Interferon gama/fisiologia , Neoplasias/imunologia , Receptores de Interferon/metabolismo , Animais , Células Apresentadoras de Antígenos/metabolismo , Humanos , Interferon gama/química , Ativação Linfocitária , Ativação de Macrófagos , Estrutura Molecular , Receptores de Interferon/química , Transdução de Sinais , Receptor de Interferon gama
11.
Biochem J ; 474(20): 3543-3557, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28883123

RESUMO

The IFN gamma receptor 1 (IFNGR1) binds IFN-γ and activates gene transcription pathways crucial for controlling bacterial and viral infections. Although decreases in IFNGR1 surface levels have been demonstrated to inhibit IFN-γ signaling, little is known regarding the molecular mechanisms controlling receptor stability. Here, we show in epithelial and monocytic cell lines that IFNGR1 displays K48 polyubiquitination, is proteasomally degraded, and harbors three ubiquitin acceptor sites at K277, K279, and K285. Inhibition of glycogen synthase kinase 3 beta (GSK3ß) destabilized IFNGR1 while overexpression of GSK3ß increased receptor stability. We identified critical serine and threonine residues juxtaposed to ubiquitin acceptor sites that impacted IFNGR1 stability. In CRISPR-Cas9 IFNGR1 generated knockout cell lines, cellular expression of IFNGR1 plasmids encoding ubiquitin acceptor site mutations demonstrated significantly impaired STAT1 phosphorylation and decreased STAT1-dependent gene induction. Thus, IFNGR1 undergoes rapid site-specific polyubiquitination, a process modulated by GSK3ß. Ubiquitination appears to be necessary for efficient IFNGR1-dependent gamma gene induction and represents a relatively uncharacterized regulatory mechanism for this receptor.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais/fisiologia , Sistemas CRISPR-Cas/genética , Células HEK293 , Humanos , Interferon gama/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Receptores de Interferon/química , Transdução de Sinais/efeitos dos fármacos , Receptor de Interferon gama
12.
J Biol Chem ; 292(34): 13925-13933, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28652404

RESUMO

Interferon γ (IFNγ) is a pleiotropic protein secreted by immune cells. IFNγ signals through the IFNγ receptor, a protein complex that mediates downstream signaling events. Studies into IFNγ signaling have provided insight into the general concepts of receptor signaling, receptor internalization, regulation of distinct signaling pathways, and transcriptional regulation. Although IFNγ is the central mediator of the adaptive immune response to pathogens, it has been shown to be involved in several non-infectious physiological processes. This review will provide an introduction into IFNγ signaling biology and the functional roles of IFNγ in the autoimmune response.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Autoimunidade , Interferon gama/metabolismo , Modelos Biológicos , Receptores de Interferon/agonistas , Transdução de Sinais , Animais , Células Apresentadoras de Antígenos/imunologia , Autofagossomos/imunologia , Autofagossomos/metabolismo , Cavéolas/imunologia , Cavéolas/metabolismo , Vesículas Revestidas por Clatrina/imunologia , Vesículas Revestidas por Clatrina/metabolismo , Dimerização , Endocitose , Humanos , Interferon gama/química , Macrófagos/imunologia , Macrófagos/metabolismo , Microdomínios da Membrana , Multimerização Proteica , Receptores de Interferon/química , Receptores de Interferon/metabolismo , Receptor de Interferon gama
13.
Acta Crystallogr D Struct Biol ; 72(Pt 9): 1017-25, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599734

RESUMO

Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Šresolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π-cation motif of stacked residues KWRWRH, a NAG-W-NAG sandwich (where NAG stands for N-acetyl-D-glucosamine) and finally a helix formed by residues 78-85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2.


Assuntos
Receptores de Interferon/química , Motivos de Aminoácidos , Cristalografia por Raios X , Dissulfetos/química , Glicosilação , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica
14.
Cell ; 166(4): 920-934, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27499022

RESUMO

Understanding how membrane nanoscale organization controls transmembrane receptors signaling activity remains a challenge. We studied interferon-γ receptor (IFN-γR) signaling in fibroblasts from homozygous patients with a T168N mutation in IFNGR2. By adding a neo-N-glycan on IFN-γR2 subunit, this mutation blocks IFN-γ activity by unknown mechanisms. We show that the lateral diffusion of IFN-γR2 is confined by sphingolipid/cholesterol nanodomains. In contrast, the IFN-γR2 T168N mutant diffusion is confined by distinct actin nanodomains where conformational changes required for Janus-activated tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) activation by IFN-γ could not occur. Removing IFN-γR2 T168N-bound galectins restored lateral diffusion in lipid nanodomains and JAK/STAT signaling in patient cells, whereas adding galectins impaired these processes in control cells. These experiments prove the critical role of dynamic receptor interactions with actin and lipid nanodomains and reveal a new function for receptor glycosylation and galectins. Our study establishes the physiological relevance of membrane nanodomains in the control of transmembrane receptor signaling in vivo. VIDEO ABSTRACT.


Assuntos
Fibroblastos/metabolismo , Mutação de Sentido Incorreto , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais , Actinas/química , Actinas/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Difusão , Endocitose , Ativação Enzimática , Glicosilação , Humanos , Interferon gama/metabolismo , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Receptores de Interferon/química
15.
Biomed Res Int ; 2015: 716945, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26060819

RESUMO

Combining computational and experimental tools, we present a new strategy for designing high affinity variants of a binding protein. The affinity is increased by mutating residues not at the interface, but at positions lining internal cavities of one of the interacting molecules. Filling the cavities lowers flexibility of the binding protein, possibly reducing entropic penalty of binding. The approach was tested using the interferon-γ receptor 1 (IFNγR1) complex with IFNγ as a model. Mutations were selected from 52 amino acid positions lining the IFNγR1 internal cavities by using a protocol based on FoldX prediction of free energy changes. The final four mutations filling the IFNγR1 cavities and potentially improving the affinity to IFNγ were expressed, purified, and refolded, and their affinity towards IFNγ was measured by SPR. While individual cavity mutations yielded receptor constructs exhibiting only slight increase of affinity compared to WT, combinations of these mutations with previously characterized variant N96W led to a significant sevenfold increase. The affinity increase in the high affinity receptor variant N96W+V35L is linked to the restriction of its molecular fluctuations in the unbound state. The results demonstrate that mutating cavity residues is a viable strategy for designing protein variants with increased affinity.


Assuntos
Substituição de Aminoácidos , Modelos Moleculares , Dobramento de Proteína , Receptores de Interferon/química , Humanos , Interferon gama/química , Interferon gama/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Receptor de Interferon gama
16.
Int J Mol Sci ; 15(11): 21045-68, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25405736

RESUMO

Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal's age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon's antiviral activities and may provide the basis for new antiviral strategies.


Assuntos
Aves/genética , Interferons/genética , Filogenia , Receptores de Interferon/genética , Animais , Aves/metabolismo , Interferons/química , Interferons/metabolismo , Receptores de Interferon/química , Receptores de Interferon/metabolismo
17.
J Interferon Cytokine Res ; 34(1): 41-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24283193

RESUMO

Interferon gamma (IFN-γ) is an important cytokine that induces antiviral, antiproliferative, and immunomodulatory effects on target cells, and is also crucial in the early defense against intracellular parasites, such as Listeria monocytogenes and Toxoplasma gondii. The biological activity of IFN-γ relies upon the formation of a complex with its 2 receptors, the interferon gamma alpha chain (IFNGR1) and beta chain (IFNGR2), which are type II cytokine receptors. Structural models of ligand-receptor interaction and complex structure of chicken IFNs with their receptors have remained elusive. Here we report the first structure of Gallus gallus (chicken) IFNGR1 (chIFNGR1) at 2.0 Šby molecule replacement according to the structure of selenomethionine substituted chIFNGR1. The structural comparison reveals its structural similarities with other class II cytokine receptors, despite divergent primary sequences. We further investigate the ligand-receptor interaction properties of chicken IFN-γ (chIFN-γ) and chIFNGR1 using size-exclusion chromatography and surface plasmon resonance techniques. These data aid in the understanding of the interaction of chicken (avian) IFN-γ with its receptors and its signal transduction.


Assuntos
Galinhas , Receptores de Interferon/química , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Receptor de Interferon gama
18.
Biomed Res Int ; 2013: 752514, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24199198

RESUMO

We describe a computer-based protocol to design protein mutations increasing binding affinity between ligand and its receptor. The method was applied to mutate interferon-γ receptor 1 (IFN-γ-Rx) to increase its affinity to natural ligand IFN-γ, protein important for innate immunity. We analyzed all four available crystal structures of the IFN-γ-Rx/IFN-γ complex to identify 40 receptor residues forming the interface with IFN-γ. For these 40 residues, we performed computational mutation analysis by substituting each of the interface receptor residues by the remaining standard amino acids. The corresponding changes of the free energy were calculated by a protocol consisting of FoldX and molecular dynamics calculations. Based on the computed changes of the free energy and on sequence conservation criteria obtained by the analysis of 32 receptor sequences from 19 different species, we selected 14 receptor variants predicted to increase the receptor affinity to IFN-γ. These variants were expressed as recombinant proteins in Escherichia coli, and their affinities to IFN-γ were determined experimentally by surface plasmon resonance (SPR). The SPR measurements showed that the simple computational protocol succeeded in finding two receptor variants with affinity to IFN-γ increased about fivefold compared to the wild-type receptor.


Assuntos
Interferon gama/química , Simulação de Dinâmica Molecular , Dobramento de Proteína , Receptores de Interferon/química , Substituição de Aminoácidos , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Ressonância de Plasmônio de Superfície , Receptor de Interferon gama
19.
J Leukoc Biol ; 92(2): 301-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22595141

RESUMO

This study tested the hypothesis that the IFN-γ R1 287-YVSLI-91 intracellular motif regulates its endocytosis. IFN-γ exerts its biological activities by interacting with a specific cell-surface RC composed of two IFN-γ R1 and two IFN-γ R2 chains. Following IFN-γ binding and along with the initiation of signal transduction, the ligand and IFN-γ R1 are internalized. Two major types of consensus-sorting signals are described in receptors, which are rapidly internalized from the plasma membrane to intracellular compartments: tyrosine-based and dileucine-based internalization motifs. Transfection of HEK 293 cells and IFN-γ R1-deficient fibroblasts with WT and site-directed, mutagenesis-generated mutant IFN-γ R1 expression vectors helped us to identify region IFN-γ R1 287-YVSLI-291 as the critical domain required for IFN-γ-induced IFN-γ R1 internalization and Y287 and LI290-291 as part of a common structure essential for receptor endocytosis and function. This new endocytosis motif, YxxLI, shares characteristics of tyrosine-based and dileucine-based internalization motifs and is highly conserved in IFN-γ Rs across species. The IFN-γ R1 270-LI-271 dileucine motif, previously thought to be involved in this receptor endocytosis, showed to be unnecessary for receptor endocytosis.


Assuntos
Endocitose/imunologia , Leucina/química , Leucina/metabolismo , Receptores de Interferon/química , Receptores de Interferon/metabolismo , Motivos de Aminoácidos/imunologia , Sequência de Aminoácidos , Sequência Conservada/imunologia , Células HEK293 , Humanos , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/fisiologia , Receptores de Interferon/genética , Tirosina/química , Tirosina/metabolismo , Receptor de Interferon gama
20.
Artigo em Inglês | MEDLINE | ID: mdl-22232168

RESUMO

The activity of interferon-γ (IFN-γ) relies on signal transduction, which is triggered by combination with the receptors interferon-γ receptor α chain (IFNGR1) and ß chain (IFNGR2). Native recombinant chicken IFNGR1 (chIFNGR1; residues 25-237) was overexpressed in Escherichia coli, purified by refolding and crystallized using the vapour-diffusion technique. The crystals belonged to space group P6(5)22, with unit-cell parameters a = b = 64.1, c = 216.3 Å, α = ß = 90, γ = 120°. The Matthews coefficient and solvent content were calculated as 2.67 Å(3) Da(-1) and 53.97%, respectively. X-ray diffraction data for chIFNGR1 were collected to 2.0 Å resolution at a synchrotron source.


Assuntos
Galinhas , Receptores de Interferon/química , Animais , Cristalização , Cristalografia por Raios X , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA