Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39254333

RESUMO

There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.


Assuntos
Receptores de Kisspeptina-1 , Receptores LHRH , Humanos , Feminino , Animais , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Receptores LHRH/metabolismo , Receptores LHRH/genética , Camundongos , Células HEK293 , Peixe-Zebra , Hormônio Liberador de Gonadotropina/metabolismo , Puberdade/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Kisspeptinas/metabolismo , Kisspeptinas/genética , Poluentes Ambientais/toxicidade , Poluentes Ambientais/farmacologia
2.
Sci Adv ; 10(33): eadn7771, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151001

RESUMO

Kisspeptin receptor (KISS1R), belonging to the class A peptide-GPCR family, plays a key role in the regulation of reproductive physiology after stimulation by kisspeptin and is regarded as an attractive drug target for reproductive diseases. Here, we demonstrated that KISS1R can couple to the Gi/o pathway besides the well-known Gq/11 pathway. We further resolved the cryo-electron microscopy (cryo-EM) structure of KISS1R-Gq and KISS1R-Gi complexes bound to the synthetic agonist TAK448 and structure of KISS1R-Gq complex bound to the endogenous agonist KP54. The high-resolution structures provided clear insights into mechanism of KISS1R recognition by its ligand and can facilitate the design of targeted drugs with high affinity to improve treatment effects. Moreover, the structural and functional analyses indicated that conformational differences in the extracellular loops (ECLs), intracellular loops (ICLs) of the receptor, and the "wavy hook" of the Gα subunit may account for the specificity of G protein coupling for KISS1R signaling.


Assuntos
Microscopia Crioeletrônica , Receptores de Kisspeptina-1 , Humanos , Ligantes , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/química , Ligação Proteica , Kisspeptinas/metabolismo , Kisspeptinas/química , Modelos Moleculares , Células HEK293 , Conformação Proteica , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/química , Relação Estrutura-Atividade
3.
Phytomedicine ; 133: 155931, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116604

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders. Accumulated evidence has suggested the indispensable role of kisspeptin-G protein-coupled receptor (GPR54) system and SHBG in development of PCOS. However, potential mechanisms and their relationship are unclear. Jiawei Buzhong Yiqi Decoction (JWBZYQ) has been reported to ameliorate obese PCOS. Whereas, potential mechanisms remain elusive. PURPOSE: To determine whether JWBZYQ attenuates PCOS by regulating the kisspeptin-GPR54 system and SHBG production. And to explore potential mechanisms. METHODS: An overweight PCOS rat model was developed with testosterone propionate (TP) and high-fat diet (HFD). The efficacy of JWBZYQ was assessed by tracking changes in weight, estrous cycle, ovarian morphology, and serum sex hormone levels. Additionally, kisspeptin-GPR54 system expression in multiple organs and PI3K-AKT pathway activity in liver of different rats were detected. Modifications in SHBG production were also measured. Kisspeptin54 was administered to establish a cellular model. The levels of AKT phosphorylation and SHBG protein within HepG2 cells were analyzed. Finally, confirmatory studies were performed using AKT phosphorylation activator and inhibitor. RESULTS: JWBZYQ effectively attenuated the overweight, disrupted estrous cycle, altered sex hormone levels, and aberrant ovarian morphology in PCOS rats. Meanwhile, PCOS rats exhibited elevated levels of kisspeptin and GPR54, along with reduced SHBG levels, which could be reversed by JWBZYQ. These alterations might be connected with the activation of AKT phosphorylation. In vitro experiment identified that JWBZYQ could rectify the hyperactivated AKT phosphorylation and deficient production of SHBG caused by kisspeptin54. CONCLUSIONS: Overexpressed kisspeptin-GPR54 system inhibited SHBG synthesis in PCOS. JWBZYQ curtailed the exorbitant expression of kisspeptin and GPR54, which moderated the rise in AKT phosphorylation and subsequently promoted the production of SHBG.


Assuntos
Medicamentos de Ervas Chinesas , Kisspeptinas , Síndrome do Ovário Policístico , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptores de Kisspeptina-1 , Globulina de Ligação a Hormônio Sexual , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Animais , Feminino , Kisspeptinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Kisspeptina-1/metabolismo , Globulina de Ligação a Hormônio Sexual/metabolismo , Ratos , Modelos Animais de Doenças , Dieta Hiperlipídica , Ovário/efeitos dos fármacos , Ovário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Propionato de Testosterona
4.
Biomolecules ; 14(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39199311

RESUMO

Kisspeptin, a key neuropeptide derived from the KISS1R gene, is renowned for its critical role in regulating the hypothalamic-pituitary-gonadal axis and reproductive hormone secretion. Beyond its primary function in reproductive biology, emerging research has illuminated its influence in various cancers, mediating significant effects through its interaction with the G protein-coupled receptor, kisspeptin receptor. This interaction has been implicated in modulating cellular processes such as proliferation and metastasis, making it a potential target for therapeutic intervention. Our study initially screened ten kisspeptin-10 analogs through cytotoxic effects of kisspeptin-10 (KP10) and its analogs in several cancer types, including cervical, prostate, breast, and gastric cancers, with a particular focus on cervical cancer, where the most profound effects were observed. Further exploration using kinase array assays revealed that these analogs specifically alter key kinases involved in cancer progression. Migration assays demonstrated a substantial decrease in cell motility, and Bioluminescence Resonance Energy Transfer assays confirmed these analogs' strong interactions with the kisspeptin receptor. Overall, our results indicate that these KP10 analogs not only hinder cervical cancer cell proliferation but also curtail migration through targeted modulation of kinase signaling, suggesting their potential as therapeutic agents in managing cervical cancer progression. This comprehensive approach underscores the therapeutic promise of exploiting kisspeptin signaling in cancer treatment strategies.


Assuntos
Kisspeptinas , Transdução de Sinais , Neoplasias do Colo do Útero , Kisspeptinas/metabolismo , Kisspeptinas/genética , Kisspeptinas/farmacologia , Humanos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Feminino , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética
5.
Medicine (Baltimore) ; 103(28): e38866, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996103

RESUMO

BACKGROUND: This study aimed to explore the potential influence of kisspeptin (KISS1) levels on the etiology of placenta previa for early pregnancy diagnosis. METHODS: The study included 20 pregnant women diagnosed with placenta previa and 20 pregnant woman with normal pregnancies between 2021 and 2022. Plasma KISS1 levels were determined through biochemical analysis, while genetic analysis assessed KISS1 and KISS1 receptor gene expression levels. Immunohistochemical methods were employed to determine placenta KISS1 levels. RESULTS: The evaluation of KISS1 concentration in serum revealed a significant decrease in the placenta previa group compared to the control group (P < .001). KISS1 gene expression level 0.043-fold decreased in the placenta previa group (P < .001). Furthermore, the KISS1 receptor gene expression level increased 170-fold in the placenta previa group. CONCLUSIONS: Results from biochemical, immunohistochemical, and genetic analyses consistently indicated significantly reduced KISS1 expression in patients with placenta previa. These findings suggest a potential link between diminished KISS1 levels and the occurrence of placenta previa. KISS1 may play a critical role in the etiology of placenta previa. Detailed studies on angiogenesis, cell migration and tissue modeling should be conducted to understand possible mechanisms.


Assuntos
Kisspeptinas , Placenta Prévia , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Feminino , Gravidez , Placenta Prévia/metabolismo , Adulto , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Placenta/metabolismo , Expressão Gênica
6.
Reprod Fertil Dev ; 362024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976640

RESUMO

Context There is mounting evidence implicating kisspeptin signalling in placental development and function. Aims This study aimed to elucidate kisspeptin's role in trophoblast invasion and migration using three experimental models. Methods First, we examined the mouse fetus and placenta in a kisspeptin receptor (Kiss1r) knockout (KO) model. Fetal/placental weights and gene expression (quantitative polymerase chain reaction) were assessed. Second, we determined kisspeptin effects on a human trophoblast (BeWo) cell line in vitro . Third, we examined KISS1 and KISS1R gene expression in human placenta from term and pre-term pregnancies. Key results No difference was found in fetal or placental weight between Kiss1r KO and wildtype mice. However, expression of the trophoblast invasion marker, Mmp2 mRNA, was greater in the placental labyrinth zone of Kiss1r KO mice. BeWo cell models of villus cytotrophoblast and syncytiotrophoblast cells exhibited kisspeptin protein expression, with greater expression in syncytiotrophoblast, consistent with KISS1 mRNA. Kisspeptin treatment inhibited the migratory potential of cytotrophoblast-like cells. Finally, while no difference was seen in KISS1 and KISS1R mRNA between term and pre-term placentas, we saw a difference in the relative expression of each gene pre-term. We also observed a positive correlation between KISS1 expression and maternal body mass index. Conclusions Our results indicate that kisspeptin may inhibit trophoblast invasion. Implications Further investigation is required to clarify specific regulatory mechanisms.


Assuntos
Movimento Celular , Kisspeptinas , Camundongos Knockout , Placenta , Receptores de Kisspeptina-1 , Trofoblastos , Kisspeptinas/metabolismo , Kisspeptinas/genética , Feminino , Trofoblastos/metabolismo , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Animais , Gravidez , Placenta/metabolismo , Movimento Celular/fisiologia , Humanos , Camundongos , Linhagem Celular , Placentação/fisiologia
7.
J Clin Invest ; 134(15)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861336

RESUMO

Reproduction is safeguarded by multiple, often cooperative, regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats, and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular coexpression of Kiss1r with the astrocyte markers GFAP and S100-ß occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells in the G-KiR-KO mouse altered gene expression of key factors in PGE2 synthesis in astrocytes and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiR-KO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity, and LH-secretory profiles. Our data unveil a nonneuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.


Assuntos
Astrócitos , Hormônio Liberador de Gonadotropina , Kisspeptinas , Camundongos Knockout , Receptores de Kisspeptina-1 , Transdução de Sinais , Kisspeptinas/metabolismo , Kisspeptinas/genética , Animais , Astrócitos/metabolismo , Camundongos , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Humanos , Ratos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Masculino , Hipotálamo/metabolismo , Neurônios/metabolismo , Dinoprostona/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Reprodução
8.
Physiol Behav ; 283: 114609, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851441

RESUMO

The neuropeptide kisspeptin (Kiss) is crucial in regulating the hypothalamic-pituitary-gonadal axis. It is produced by two main groups of neurons in the hypothalamus: the rostral periventricular region around the third ventricle and the arcuate nucleus. Kiss is the peptide product of the KiSS-1 gene and serves as the endogenous agonist for the GPR54 receptor. The Kiss/GPR54 system functions as a critical regulator of the reproductive system. Thus, we examined the effect of intracerebroventricular administration of 3 µg of Kiss to the right lateral ventricle of ovariectomized rats primed with a dose of 5 µg subcutaneous (sc) of estradiol benzoate (EB). Kiss treatment increased the lordosis quotient at all times tested. However, the lordosis reflex score was comparatively lower yet still significant compared to the control group. To investigate receptor specificity and downstream mechanisms on lordosis, we infused 10 µg of GPR54 receptor antagonist, Kiss-234, 5 µg of the progestin receptor antagonist, RU486, or 3 µg of antide, a gonadotropin-releasing hormone-1 (GnRH-1) receptor antagonist, to the right lateral ventricle 30 min before an infusion of 3 µg of Kiss. Results demonstrated a significant reduction in the facilitation of lordosis behavior by Kiss at 60 and 120 min when Kiss-234, RU486, or antide were administered. These findings suggest that Kiss stimulates lordosis expression by activating GPR54 receptors on GnRH neurons and that Kiss/GPR54 system is an essential intermediary by which progesterone activates GnRH.


Assuntos
Estradiol , Kisspeptinas , Receptores LHRH , Receptores de Progesterona , Comportamento Sexual Animal , Animais , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Feminino , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/metabolismo , Ratos , Estradiol/farmacologia , Estradiol/análogos & derivados , Receptores de Progesterona/metabolismo , Receptores de Progesterona/efeitos dos fármacos , Receptores de Progesterona/antagonistas & inibidores , Ovariectomia , Ratos Wistar , Progesterona/farmacologia , Antagonistas de Hormônios/farmacologia , Postura/fisiologia , Receptores de Kisspeptina-1/metabolismo , Mifepristona/farmacologia
9.
Cell Rep ; 43(7): 114389, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935498

RESUMO

Kisspeptin signaling through its G protein-coupled receptor, KISS1R, plays an indispensable role in regulating reproduction via the hypothalamic-pituitary-gonadal axis. Dysregulation of this pathway underlies severe disorders like infertility and precocious puberty. Here, we present cryo-EM structures of KISS1R bound to the endogenous agonist kisspeptin-10 and a synthetic analog TAK-448. These structures reveal pivotal interactions between peptide ligands and KISS1R extracellular loops for receptor activation. Both peptides exhibit a conserved binding mode, unveiling their common activation mechanism. Intriguingly, KISS1R displays a distinct 40° angular deviation in its intracellular TM6 region compared to other Gq-coupled receptors, enabling distinct interactions with Gq. This study reveals the molecular intricacies governing ligand binding and activation of KISS1R, while highlighting its exceptional ability to couple with Gq. Our findings pave the way for structure-guided design of therapeutics targeting this physiologically indispensable receptor.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Kisspeptinas , Receptores de Kisspeptina-1 , Humanos , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Ligação Proteica , Células HEK293 , Microscopia Crioeletrônica
10.
Endocr J ; 71(8): 733-743, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38866494

RESUMO

In the early 2000s, metastin, an endogenous ligand for G protein-coupled receptor 54 (GPR54), was discovered in human placental extracts. In 2003, GPR54 receptor mutations were found in a family with congenital hypogonadotropic hypogonadism. Metastin was subsequently renamed kisspeptin after its coding gene, Kiss1. Since then, studies in mice and other animals have revealed that kisspeptin is located at the apex of the hypothalamic-pituitary-gonadal axis and regulates reproductive functions by modulating gonadotropin-releasing hormone (GnRH). In rodents, kisspeptin (Kiss1) neurons localize to two regions, the hypothalamic arcuate nucleus (ARC) and the anteroventral periventricular nucleus (AVPV). ARC Kiss1 neurons co-express neurokinin B (NKB) and dynorphin and are thus termed KNDy neurons. Kiss1 neurons in humans are concentrated in the infundibular nucleus (equivalent to the ARC), with few Kiss1 neurons localized to the preoptic area (equivalent to the AVPV), and the mechanisms underlying GnRH surge secretion in humans are poorly understood. However, peripheral administration of kisspeptin to humans promotes gonadotropin secretion, and administration of kisspeptin to patients with hypothalamic amenorrhea or congenital hypogonadotropic hypogonadism restores the pulsatile secretion of GnRH/luteinizing hormone. Thus, kisspeptin undoubtedly plays an important role in reproductive function in humans. Studies are currently underway to develop kisspeptin receptor agonists or antagonists for clinical application. Modification of KNDy neurons by NKB agonists/antagonists is also being attempted to develop therapeutic agents for various menstrual abnormalities, including polycystic ovary syndrome and menopausal hot flashes. Here, we review the role of kisspeptin in humans and its clinical applications.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Liberador de Gonadotropina , Kisspeptinas , Neurônios , Humanos , Kisspeptinas/metabolismo , Kisspeptinas/genética , Kisspeptinas/fisiologia , Neurônios/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Saúde Reprodutiva , Neurocinina B/metabolismo , Neurocinina B/genética , Hipogonadismo/genética , Hipogonadismo/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dinorfinas/metabolismo , Dinorfinas/genética , Reprodução/fisiologia
11.
Placenta ; 154: 49-59, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-38878622

RESUMO

INTRODUCTION: Gestational diabetes mellitus (GDM) is a major pregnancy metabolic disorder and is strongly linked with obesity. Kisspeptin is a hormone that increases several thousand-fold in the maternal circulation during human pregnancy, with placenta as its main source. Studies have suggested that kisspeptin regulates trophoblast invasion and promotes pancreatic insulin secretion and peripheral insulin sensitivity. METHODS: In a well-characterized cohort of pregnant South African women and molecular and histological techniques, this study explored the impact and interaction of maternal obesity and GDM on kisspeptin (KISS1) signalling in relation to placental morphology and maternal and neonatal parameters. RESULTS: We found that GDM had no effect on placental KISS1 and KISS1R (KISS1 receptor) mRNA and/or protein expression. However, obesity reduced placental KISS1R mRNA expression even though overall KISS1 protein abundance or localization was not different from the non-obese group. Maternal and cord circulating KISS1 concentrations did not vary with obesity or GDM, but maternal circulating KISS1 was positively correlated with placenta weight in non-GDM obese women, and negatively correlated with placental intervillous space volume in non-GDM non-obese women. Cord serum KISS1 was positively correlated with infant weight in GDM obese women, but negatively correlated with maternal BMI in the non-obese GDM group. Placental syncytiotrophoblast extracellular vesicles exhibited detectable KISS1 and its abundance was ∼50 % lower in those from obese GDM compared to non-GDM women. DISCUSSION: This study shows maternal obesity and GDM can modulate placental kisspeptin signalling and placental morphological development with potential pathophysiological implications for clinically-relevant pregnancy and perinatal outcomes.


Assuntos
Diabetes Gestacional , Kisspeptinas , Obesidade , Placenta , Receptores de Kisspeptina-1 , Transdução de Sinais , Humanos , Feminino , Gravidez , Kisspeptinas/metabolismo , Placenta/metabolismo , Placenta/patologia , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Adulto , África do Sul/epidemiologia , Obesidade/metabolismo , Obesidade/patologia , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Obesidade Materna/metabolismo
12.
Domest Anim Endocrinol ; 88: 106850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640803

RESUMO

Kisspeptins are neuropeptides encoded by the Kiss1 gene that was discovered as a metastasis suppressor gene in melanoma and breast cancer. Kisspeptin has pivotal functions for gonadotropin-releasing hormone secretion and plays integrated roles in the hypothalamic-pituitary-gonadal axis. However, little is known about the peripheral expression of kisspeptin in ruminants, especially in the female reproductive tract. Here, the objectives of the current study were to investigate the spatial localization of kisspeptin and mRNA expression of Kiss1 and its receptor (Kiss1r) in the fallopian tubes (FT) and uterus of goats at varied reproductive activity (cyclic versus true anoestrous goats, n=6, each). Specimens of the uterus and FT were collected and fixed using paraformaldehyde to investigate the localizations of kisspeptin in the selected tissues by immunohistochemistry. Another set of samples was snape-frozen to identify the expressions of mRNAs encoding Kiss1 and Kiss1r using real-time PCR. Results revealed immunolocalizations of kisspeptin in the uterus and the FT. The staining of kisspeptin was found mainly in the mucosal epithelium of the uterus the FT, and the endometrial glands. Very intense staining of kisspeptin was found in the uterine and FT specimens in the true anoestrous goats compared to that in cyclic ones. The expression of mRNA encoding Kiss1 gene was significantly higher in the uterine specimen of cyclic goats (1.00±0.09) compared to that in the true anoestrous goats (0.62±0.08) (P ˂0.05), while the expression of mRNA encoding Kiss1r was significantly (P ˂0.001) higher in the uterine tissues of true anoestrous goats (1.78±0.17) compared to that in cyclic ones (1.00±0.11). In conclusion, immunohistochemical localization of kisspeptin and the expression of mRNA encoding Kiss1/Kiss1r revealed spatial changes in the uterus and FT of goats according to the reproductive potential of goats (cyclic versus true anoestrous goats). However, the definitive local role of kisspeptin in the uterus and FT need further investigation.


Assuntos
Tubas Uterinas , Cabras , Kisspeptinas , Útero , Animais , Feminino , Cabras/fisiologia , Cabras/genética , Cabras/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Útero/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/química , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Reprodução/fisiologia , Regulação da Expressão Gênica/fisiologia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Anestro/metabolismo
13.
Am J Respir Cell Mol Biol ; 70(6): 507-518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38512807

RESUMO

Airway remodeling is a cardinal feature of asthma, associated with increased airway smooth muscle (ASM) cell mass and upregulation of extracellular matrix deposition. Exaggerated ASM cell migration contributes to excessive ASM mass. Previously, we demonstrated the alleviating role of Kp (kisspeptin) receptor (KISS1R) activation by Kp-10 in mitogen (PDGF [platelet-derived growth factor])-induced human ASM cell proliferation in vitro and airway remodeling in vivo in a mouse model of asthma. Here, we examined the mechanisms by which KISS1R activation regulates mitogen-induced ASM cell migration. KISS1R activation using Kp-10 significantly inhibited PDGF-induced ASM cell migration, further confirmed using KISS1R shRNA. Furthermore, KISS1R activation modulated F/G actin dynamics and the expression of promigration proteins like CDC42 (cell division control protein 42) and cofilin. Mechanistically, we observed reduced ASM RhoA-GTPAse with KISS1R activation. The antimigratory effect of KISS1R was abolished by PKA (protein kinase A)-inhibitory peptide. Conversely, KISS1R activation significantly increased cAMP and phosphorylation of CREB (cAMP-response element binding protein) in PDGF-exposed ASM cells. Overall, these results highlight the alleviating properties of Kp-10 in the context of airway remodeling.


Assuntos
Movimento Celular , Kisspeptinas , Miócitos de Músculo Liso , Receptores de Kisspeptina-1 , Transdução de Sinais , Humanos , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Remodelação das Vias Aéreas , Proteína cdc42 de Ligação ao GTP/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Kisspeptinas/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proteína rhoA de Ligação ao GTP/metabolismo
14.
Sci Rep ; 13(1): 16819, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798396

RESUMO

We evaluated whether the administration of kisspeptin-10 (Kp10) is capable of restoring gonadal function in hypothyroid male rats. Hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals were treated with Kp10. Hypothyroidism reduced testicular and sex gland mass, decreased the proliferation of the seminiferous epithelium, and compromised sperm morphology, motility, and vigor. A decrease in plasma LH and testosterone levels and an increase in prolactin secretion were observed in the hypothyroid rats. Hypothyroidism reduced Kiss1 and Kiss1r protein and gene expression and Star and Cyp11a1 mRNA levels in the testis. Furthermore, it reduced Lhb, Prl, and Drd2 and increased Tshb and Gnrhr expression in the pituitary. In the hypothalamus, hypothyroidism increased Pdyn and Kiss1r while reducing Gnrh1. Kp10 treatment in hypothyroid rats restored testicular and seminal vesicle morphology, improved sperm morphology and motility, reversed high prolactin levels, and increased LH and testosterone levels. In addition, Kp10 increased testicular expression of Kiss1, Kiss1r, Fshr, and Nr5a1 and pituitary Kiss1 expression. Our findings describe the inhibitory effects of hypothyroidism on the male gonadal axis and sperm quality and demonstrate that Kp10 treatment reverses high prolactin levels and improves gonadal function and sperm quality in hypothyroid rats.


Assuntos
Hipotireoidismo , Kisspeptinas , Ratos , Animais , Masculino , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Prolactina/metabolismo , Hormônio Luteinizante , Receptores de Kisspeptina-1/metabolismo , Sêmen/metabolismo , Hipotireoidismo/metabolismo , Testículo/metabolismo , Testosterona
15.
Biol Reprod ; 109(5): 654-668, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37665248

RESUMO

Kisspeptin (KP, encoded by Kiss1, binding to the Gpr54 receptor) is a neuropeptide conveying information on the metabolic status to the hypothalamic-pituitary-gonadal axis. KP acts together with dynorphin A (encoded by Pdyn) and neurokinin B (encoded by Tac2) to regulate reproduction. KP is crucial for the onset of puberty and is under the control of sirtuin (encoded by Sirt1). We hypothesize that the maternal cafeteria (CAF) diet has adverse effects on the offspring's hormonal, metabolic, and reproductive functions due to sex-specific alterations in the expression of Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 in the hypothalamus, and Kiss1, Gpr54, and Sirt1 in the liver. Rats were fed a CAF diet before pregnancy, during pregnancy, and during lactation. The vaginal opening was monitored. Offspring were sacrificed in three age points: PND 30, PND 35, and PND 60 (females) and PND 40, PND 45, and PND 60 (males). Their metabolic and hormonal status was assessed. mRNA for Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 were measured by real-time PCR in the hypothalamus and/or livers. We found that CAF offspring had lower weight and altered body composition; increased cholesterol and triglyceride levels, sex-specific changes in glucose and insulin levels; sex-dependent changes in Sirt1/Kiss1 mRNA ratio in the hypothalamus; sex-specific alterations in Kiss1 and Sirt1 mRNA in the liver with more diversity in males; and a delayed puberty onset in females. We concluded that the mother's CAF diet leads to sex-specific alterations in metabolic and reproductive outcomes via Kiss1/Gpr54 and Sirt1 systems in offspring.


Assuntos
Kisspeptinas , Sirtuína 1 , Gravidez , Feminino , Masculino , Ratos , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Maturidade Sexual/fisiologia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dieta , Metaboloma , RNA Mensageiro/metabolismo
16.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 8-12, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300694

RESUMO

The basic objective of this study was to examine the possible effects of treadmill exercise on obesity-related sexual behavior disorder in obese male rats and the role of kisspeptin in this effect. The rats were separated from their mothers at the age of 3 weeks, and classified into four groups as Control (C): normal diet-sedentary group, Exercise (E): normal diet-exercise group, Obese (O): high-fat diet-sedentary group, Obese + Exercise (O+E): high-fat diet-exercise grouSexual behavioral testing was conducted in the rats. At the end of the study, brain samples were taken from the animals for gene expression analyses. The treadmill exercise caused a significant increase in the O+E Group compared to the O Group in kisspeptin and kiss1R gene expression and in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters (p<0.05), and a significant decrease in ML, IL, III, EL sexual behavior parameters (p<0.05). Treadmill exercise caused a significant decrease in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters and kisspeptin and kiss1R gene expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum in E Group compared to C Group (p<0.05), and a significant increase in ML, IL, III, EL sexual behavior parameters (p<0.05). Based on this effect, we believe that it is caused by an increase in kisspeptin and kiss1R expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum. In conclusion, treadmill exercise-induced kisspeptin secretion may increase GnRH secretion and cause hypothalamo-pituitary gonadal axis activation and ameliorative effect on deteriorated sexual function.


Assuntos
Hipotálamo , Kisspeptinas , Obesidade , Condicionamento Físico Animal , Disfunções Sexuais Fisiológicas , Animais , Masculino , Ratos , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Obesidade/terapia , Obesidade/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Comportamento Sexual Animal
17.
J Pathol ; 260(3): 339-352, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171283

RESUMO

Asthma is a multifactorial disease of origin characterized by airway hyperresponsiveness (AHR) and airway remodeling. Several pieces of evidence from other pathologies suggest that Kisspeptins (Kp) regulate cell proliferation, migration, and invasion, mechanisms that are highly relevant to asthma. Our recent in vitro studies show Kp-10 (active peptide of Kp), via its receptor, KISS1R, inhibits human airway smooth muscle cell proliferation. Here, we hypothesize a crucial role for Kp-10 in regulating AHR and airway remodeling in vivo. Utilizing C57BL/6J mice, we assessed the effect of chronic intranasal Kp-10 exposure on mixed allergen (MA)-induced mouse model of asthma. MA-challenged mice showed significant deterioration of lung function compared to those exposed to vehicle (DPBS); Kp-10 treatment significantly improved the MA-altered lung functions. Mice treated with Kp-10 alone did not show any notable changes in lung functions. MA-exposed mice showed a significant reduction in KISS1R expression as compared to vehicle alone. MA-challenged mice showed significant alterations in immune cell infiltration in the airways and remodeling changes. Proinflammatory cytokines were significantly increased upon MA exposure, an effect abrogated by Kp-10 treatment. Furthermore, biochemical and histological studies showed Kp-10 exposure significantly reduced MA-induced smooth muscle mass and soluble collagen in the lung. Overall, our findings highlight the effect of chronic Kp-10 exposure in regulating MA-induced AHR and remodeling. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Asma , Hipersensibilidade Respiratória , Animais , Camundongos , Remodelação das Vias Aéreas , Asma/metabolismo , Modelos Animais de Doenças , Kisspeptinas/efeitos adversos , Kisspeptinas/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Kisspeptina-1/metabolismo , Hipersensibilidade Respiratória/metabolismo
18.
J Ovarian Res ; 16(1): 15, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650561

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Electroacupuncture (EA) can effectively improve hyperandrogenism and increase ovulation frequency in patients with PCOS. Pieces of suggest that androgen activity in the brain is associated with impaired steroid negative feedback in such patients. Studies have shown that EA regulated androgen receptor (AR) expression and local factor levels (such as anti-Müllerian hormone and inhibin B) in the ovary of PCOS rats. However, few studies have explored the effect of EA on androgen activity in the brain. OBJECTIVE: This study investigated the effect of EA on the kisspeptin-gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) neural circuit and sex hormone receptor expression in the hypothalamus of PCOS rats. METHODS: PCOS signs were induced by letrozole administration, and the induced rats were treated with low-frequency EA at Guan Yuan acupoint (CV4). The effect of EA on PCOS-like signs was evaluated by observing changes in the body weight, ovarian quality, ovarian morphology, and serum sex hormone levels in rats. To explore the mechanism of the effect of EA on PCOS-like signs, the neuropeptide content of the kisspeptin-GnRH/LH neural circuit was assessed using enzyme-linked immunosorbent assay(ELISA); AR and estrogen receptor α (ERα) coexpression on kisspeptin/neurokinin B/dynorphin (KNDy) neurons was determined via triple-label immunofluorescence; and protein and mRNA expression of Kiss1, Ar, Esr1, and kisspeptin receptor (Kiss1r) was evaluated via western blotting and Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS: The results revealed that the estrous cycle of rats in the EA treatment group recovered, and their body and ovary weight reduced; ovarian morphology improved; serum testosterone and LH levels significantly decreased; and kisspeptin, GnRH, and dynorphin levels in hypothalamic arcuate nucleus significantly decreased. Compared with controls, the number of AR/Kiss1-positive cells increased, number of ERα/Kiss1-positive cells decreased, and protein and mRNA expression of Kiss1, Ar, and Kiss1r significantly increased in PCOS rats. However, EA treatment reversed these changes and reduced the expression of Kiss1, Ar, and Kiss1r significantly. CONCLUSION: Improvement in the reproductive hallmarks of PCOS rats via EA may be achieved by regulating the kisspeptin-GnRH/LH circuit via androgen activity attenuation. Thus, the results provide an experimental basis for acupuncture as an adjuvant medical therapy on PCOS.


Assuntos
Eletroacupuntura , Hiperandrogenismo , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Ratos , Androgênios/metabolismo , Dinorfinas/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hormônios Esteroides Gonadais , Hormônio Liberador de Gonadotropina , Kisspeptinas/metabolismo , Hormônio Luteinizante , Neurocinina B/metabolismo , Neurônios , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/terapia , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Receptores de Kisspeptina-1/metabolismo , RNA Mensageiro/metabolismo
19.
F S Sci ; 4(1): 56-64, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36243398

RESUMO

OBJECTIVE: To study choriodecidual immunoreactivity of kisspeptin (KISS1) and its receptor (KISS1R) in recurrent pregnancy loss (RPL) due to aneuploidy (AnE) and unexplained (UE) RPL in comparison to control elective abortions (EAbs). DESIGN: This is a case-control study. SETTING: Tertiary care facility and affiliated research institute. PATIENT(S): Patients with either UE RPL (n = 10) or RPL due to AnE (n = 10) vs. a control group of patients who underwent EAb (n = 10). INTERVENTION(S): Immunohistochemistry of archived choriodecidual tissue samples. MAIN OUTCOME MEASURE(S): Histoscores of KISS1 and KISS1R immunoreactivity in the syncytiotrophoblast (SyT), cytotrophoblast (CyT), decidual glands (DeGs), and decidual stroma (DeS) across the 3 study groups. RESULT(S): There was no difference in both maternal and gestational ages among the 3 groups. Kisspeptin immunoreactivity was similar in the SyT, CyT, DeGs, and DeS of all groups. Similarly, KISS1R expression was not different in the DeGs or DeS among all study groups. In addition, there was no difference in KISS1R immunoreactivity in the SyTs and CyTs between patients with RPL due to AnE and those with UE RPL. However, KISS1R was significantly lower in the SyT and CyT of patients with RPL due to AnE and UE RPL than in those who underwent EAb. CONCLUSION(S): The expression of KISS1R is lower in the chorionic tissues of euploid (unexplained) and aneuploid RPLs than in the control group. The current results broaden our understanding of the role played by KISS1 and KISS1R in early placentation. Further investigation is necessary to determine whether KISS1 activity is the cause or a sequel of defective placentation.


Assuntos
Aborto Habitual , Kisspeptinas , Gravidez , Feminino , Humanos , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Estudos de Casos e Controles , Aborto Habitual/genética , Aneuploidia
20.
Environ Pollut ; 317: 120766, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460192

RESUMO

The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 µM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Humanos , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Reprodução/fisiologia , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA