Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(44): e2412690121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39436659

RESUMO

Atherosclerosis results from lipid-driven inflammation of the arterial wall that fails to resolve. Imbalances in macrophage accumulation and function, including diminished migratory capacity and defective efferocytosis, fuel maladaptive inflammation and plaque progression. The neuroimmune guidance cue netrin-1 has dichotomous roles in inflammation partly due to its multiple receptors; in atherosclerosis, netrin-1 promotes macrophage survival and retention via its receptor Unc5b. To minimize the pleiotropic effects of targeting netrin-1, we tested the therapeutic potential of deleting Unc5b in mice with advanced atherosclerosis. We generated Unc5bfl/flCx3cr1creERT2/WT mice, which allowed conditional deletion of Un5b (∆Unc5bMØ) in monocytes and macrophages by tamoxifen injection. After inducing advanced atherosclerosis by hepatic PCSK9 overexpression and western diet feeding for 20 wk, Unc5b was deleted and hypercholesterolemia was normalized to simulate clinical lipid management. Deletion of myeloid Unc5b led to a 40% decrease in atherosclerotic plaque burden and reduced plaque complexity compared to Unc5bfl/flCx3cr1WT/WT littermate controls (CtrlMØ). Consistently, plaque macrophage content was reduced by 50% in ∆Unc5bMØ mice due to reduced plaque Ly6Chi monocyte recruitment and macrophage retention. Compared to CtrlMØ mice, plaques in ∆Unc5bMØ mice had reduced necrotic area and fewer apoptotic cells, which correlated with improved efferocytotic capacity by Unc5b-deficient macrophages in vivo and in vitro. Beneficial changes in macrophage dynamics in the plaque upon Unc5b deletion were accompanied by an increase in atheroprotective T cell populations, including T-regulatory and Th2 cells. Our data identify Unc5b in advanced atherosclerosis as a therapeutic target to induce pro-resolving restructuring of the plaque immune cells and to promote atherosclerosis regression.


Assuntos
Aterosclerose , Macrófagos , Receptores de Netrina , Placa Aterosclerótica , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Aterosclerose/imunologia , Aterosclerose/patologia , Aterosclerose/metabolismo , Receptores de Netrina/metabolismo , Camundongos , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Camundongos Knockout , Netrina-1/metabolismo , Netrina-1/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Monócitos/imunologia , Monócitos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Inflamação/imunologia , Masculino , Antígenos Ly
2.
Cancer Res Commun ; 4(9): 2374-2383, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39172021

RESUMO

Opposite expression and pro- or anti-cancer function of YAP and its paralog TAZ/WWTR1 stratify cancers into binary YAPon and YAPoff classes. These transcriptional coactivators are oncogenic in YAPon cancers. In contrast, YAP/TAZ are silenced epigenetically along with their integrin and extracellular matrix adhesion target genes in neural and neuroendocrine YAPoff cancers (e.g., small cell lung cancer, retinoblastoma). Forced YAP/TAZ expression induces these targets, causing cytostasis in part through Integrin-αV/ß5, independent of the integrin-binding RGD ligand. Other effectors of this anticancer YAP function are unknown. Here, using clustered regularly interspaced short palindromic repeats (CRISPR) screens, we link the Netrin receptor UNC5B to YAP-induced cytostasis in YAPoff cancers. Forced YAP expression induces UNC5B through TEAD DNA-binding partners, as either TEAD1/4-loss or a YAP mutation that disrupts TEAD-binding (S94A) blocks, whereas a TEAD-activator fusion (TEAD(DBD)-VP64) promotes UNC5B induction. Ectopic YAP expression also upregulates UNC5B relatives and their netrin ligands in YAPoff cancers. Netrins are considered protumorigenic, but knockout and peptide/decoy receptor blocking assays reveal that in YAPoff cancers, UNC5B and Netrin-1 can cooperate with integrin-αV/ß5 to mediate YAP-induced cytostasis. These data pinpoint an unsuspected Netrin-1/UNC5B/integrin-αV/ß5 axis as a critical effector of YAP tumor suppressor activity. SIGNIFICANCE: Netrins are widely perceived as procancer proteins; however, we uncover an anticancer function for Netrin-1 and its receptor UNC5B.


Assuntos
Receptores de Netrina , Netrina-1 , Fatores de Transcrição , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Netrina-1/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Integrinas/metabolismo , Animais , Camundongos
3.
Gene ; 930: 148871, 2024 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-39154972

RESUMO

BACKGROUND: The prognosis of patients with metastatic osteosarcoma is poor, and the variation of basement membrane genes (BMGs) is associated with cancer metastasis. However, the role of BMGs in osteosarcoma has been poorly studied. METHODS: BMGs were collected and differentially expressed BMGs (DE-BMGs) were found through difference analysis. DE-BMGs were further screened by univariate Cox regression and Lasso regression analyses, and six key BMGs were identified and defined as basement membrane genes signatures (BMGS). Then, BMGS was used to construct the osteosarcoma BMGS risk score system, and the osteosarcoma patients were divided into high- and low-risk groups based on the median risk score. Single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE scores were used to investigate the differences in immune infiltration between the two scoring groups. Additionally, we investigated whether UNC5B affects various features in tumors by bioinformatic analysis and whether UNC5B was involved in multiple biological functions of osteosarcoma cells by wound healing assay, transwell assay, and western blot. RESULTS: The osteosarcoma BMGS risk score reliably predicts the risk of metastasis, patient prognosis, and immunity. UNC5B expression was elevated in osteosarcoma, and correlated with various characteristics such as immune infiltration, prognosis, and drug sensitivity. In vitro assays showed that UNC5B knockdown reduced osteosarcoma cells' capacity for migration and invasion, and EMT process. CONCLUSION: A novel BMGS risk score system that can effectively predict the prognosis of osteosarcoma was developed and validated. The UNC5B gene in this system is one of the key aggressive biomarkers of osteosarcoma.


Assuntos
Membrana Basal , Biomarcadores Tumorais , Neoplasias Ósseas , Regulação Neoplásica da Expressão Gênica , Receptores de Netrina , Osteossarcoma , Osteossarcoma/genética , Osteossarcoma/patologia , Humanos , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Prognóstico , Membrana Basal/metabolismo , Membrana Basal/patologia , Linhagem Celular Tumoral , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Masculino , Feminino , Movimento Celular/genética
4.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023520

RESUMO

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Assuntos
Carcinoma Epitelial do Ovário , Sobrevivência Celular , Netrinas , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Camundongos , Netrina-1/metabolismo , Netrina-1/genética , Proliferação de Células , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
5.
Elife ; 122024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056276

RESUMO

Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.


Assuntos
Receptores de Netrina , Netrina-1 , Animais , Netrina-1/metabolismo , Netrina-1/genética , Camundongos , Masculino , Feminino , Receptores de Netrina/metabolismo , Receptores de Netrina/genética , Phodopus , Axônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Neurônios Dopaminérgicos/metabolismo
6.
Sci Rep ; 14(1): 13603, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866944

RESUMO

Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais , Receptores de Netrina , Receptores Notch , Retina , Transdução de Sinais , Animais , Receptores de Netrina/metabolismo , Receptores Notch/metabolismo , Camundongos , Células Endoteliais/metabolismo , Retina/metabolismo , Humanos , Vasos Retinianos/metabolismo , Neovascularização Fisiológica
7.
PLoS One ; 19(5): e0295701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771761

RESUMO

The Polarity/Protusion model of UNC-6/Netrin function in axon repulsion does not rely on a gradient of UNC-6/Netrin. Instead, the UNC-5 receptor polarizes the VD growth cone such that filopodial protrusions are biased to the dorsal leading edge. UNC-5 then inhibits growth cone protrusion ventrally based upon this polarity, resulting in dorsally-biased protrusion and dorsal migration away from UNC-6/Netrin. While previous studies have shown that UNC-5 inhibits growth cone protrusion by destabilizing actin, preventing microtubule + end entry, and preventing vesicle fusion, the signaling pathways involved are unclear. The SRC-1 tyrosine kinase has been previously shown to physically interact with and phosphorylate UNC-5, and to act with UNC-5 in axon guidance and cell migration. Here, the role of SRC-1 in VD growth cone polarity and protrusion is investigated. A precise deletion of src-1 was generated, and mutants displayed unpolarized growth cones with increased size, similar to unc-5 mutants. Transgenic expression of src-1(+) in VD/DD neurons resulted in smaller growth cones, and rescued growth cone polarity defects of src-1 mutants, indicating cell-autonomous function. Transgenic expression of a putative kinase-dead src-1(D831A) mutant caused a phenotype similar to src-1 loss-of-function, suggesting that this is a dominant negative mutation. The D381A mutation was introduced into the endogenous src-1 gene by genome editing, which also had a dominant-negative effect. Genetic interactions of src-1 and unc-5 suggest they act in the same pathway on growth cone polarity and protrusion, but might have overlapping, parallel functions in other aspects of axon guidance. src-1 function was not required for the effects of activated myr::unc-5, suggesting that SRC-1 might be involved in UNC-5 dimerization and activation by UNC-6, of which myr::unc-5 is independent. In sum, these results show that SRC-1 acts with UNC-5 in growth cone polarity and inhibition of protrusion.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridade Celular , Cones de Crescimento , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Movimento Celular , Cones de Crescimento/metabolismo , Receptores de Netrina/metabolismo , Receptores de Netrina/genética , Netrinas , Receptores de Superfície Celular
8.
BMC Med Genomics ; 17(1): 83, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594690

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary CNS tumor, characterized by high mortality and heterogeneity. However, the related lncRNA signatures and their target microRNA (miRNA) for GBM are still mostly unknown. Therefore, it is critical that we discover lncRNA markers in GBM and their biological activities. MATERIALS AND METHODS: GBM-related RNA-seq data were obtained from the Cancer Genome Atlas (TCGA) database. The "edger" R package was used for differently expressed lncRNAs (DELs) identification. Then, we forecasted prospective miRNAs that might bind to lncRNAs by Cytoscape software. Survival analysis of those miRNAs was examined by the starBase database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the miRNAs' target genes was conducted by the Gene Set Enrichment Analysis (GSEA) database and R software. Moreover, the proliferative ability of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) cells was evaluated by Cell Counting Kit-8 (CCK-8) analysis. Mechanistically, the regulatory interaction between UNC5B-AS1 and miRNA in GBM biological processes was studied using CCK-8 analysis. RESULTS: Our results indicated that overexpression of UNC5B-AS1 has been shown to suppress GBM cell growth. Mechanistically, miR-24-3p in GBM was able to alleviate the anti-oncogenic effects of UNC5B-AS1 on cell proliferation. CONCLUSION: The discovery of the novel UNC5B-AS1-miR-24-3p network suggests possible lncRNA and miRNA roles in the development of GBM, which may have significant ramifications for the analysis of clinical prognosis and the development of GBM medications.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Humanos , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estudos Prospectivos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Netrina/genética , Receptores de Netrina/metabolismo
9.
Genes (Basel) ; 15(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540364

RESUMO

The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.


Assuntos
Orientação de Axônios , Transtornos Mentais , Humanos , Orientação de Axônios/genética , Netrina-1/genética , Netrina-1/metabolismo , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Axônios/metabolismo , Transtornos Mentais/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-37561046

RESUMO

Senescent cells that accumulate are regarded as promising therapeutic targets. However, senolytic therapy failed to achieve satisfactory results. We previously discovered that young human plasma improved vascular endothelial cell senescence, and UNC5B might be a novel intervention target. Netrin-1, as a natural ligand of UNC5B, plays roles in multiple age-related vascular disorders, but its involvement in aging is still unclear. Here, we observed a significant decrease in plasma Netrin-1 levels in old healthy subjects compared to the young. In vivo, adeno-associated-virus-mediated delivery of Netrin-1 into aged mice significantly improved functional recovery in a model of hindlimb ischemia, promoted angiogenesis in ischemic tissues, and activated the endothelial nitric oxide synthase. Furthermore, we revealed that low-dose Netrin-1 recombinant protein significantly reduced senescence-associated-ß-galactosidase-positive cells, inhibited the P53 pathway, promoted cell migration, increased tubule formation, and elevated nitric oxide production in senescent endothelial cells. However, UNC5B inhibition blocked the pro-angiogenesis effect of low-dose Netrin-1 on senescent cells or aortic rings. In summary, this study depicts that modulating Netrin-1 signaling can result in improved vascular health and Netrin-1 may have therapeutic potential for age-related ischemic diseases.


Assuntos
Envelhecimento , Células Endoteliais , Netrina-1 , Animais , Humanos , Camundongos , Angiogênese , Senescência Celular , Células Endoteliais/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Transdução de Sinais
11.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526651

RESUMO

The Netrin receptor Dcc and its Drosophila homolog Frazzled play crucial roles in diverse developmental process, including axon guidance. In Drosophila, Fra regulates midline axon guidance through a Netrin-dependent and a Netrin-independent pathway. However, what molecules regulate these distinct signaling pathways remain unclear. To identify Fra-interacting proteins, we performed affinity purification mass spectrometry to establish a neuronal-specific Fra interactome. In addition to known interactors of Fra and Dcc, including Netrin and Robo1, our screen identified 85 candidate proteins, the majority of which are conserved in humans. Many of these proteins are expressed in the ventral nerve cord, and gene ontology, pathway analysis and biochemical validation identified several previously unreported pathways, including the receptor tyrosine phosphatase Lar, subunits of the COP9 signalosome and Rho-5, a regulator of the metalloprotease Tace. Finally, genetic analysis demonstrates that these genes regulate axon guidance and may define as yet unknown signaling mechanisms for Fra and its vertebrate homolog Dcc. Thus, the Fra interactome represents a resource to guide future functional studies.


Assuntos
Proteínas de Drosophila , Receptores de Superfície Celular , Animais , Humanos , Receptores de Superfície Celular/metabolismo , Proteínas de Drosophila/metabolismo , Receptores de Netrina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Axônios/metabolismo , Orientação de Axônios , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Drosophila/metabolismo , Netrinas/metabolismo , Netrina-1/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo
12.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014062

RESUMO

In the polarity/protrusion model of growth cone repulsion from UNC-6/netrin, UNC-6 first polarizes the growth cone of the VD motor neuron axon via the UNC-5 receptor, and then regulates protrusion asymmetrically across the growth cone based on this polarity. UNC-6 stimulates protrusion dorsally through the UNC-40/DCC receptor, and inhibits protrusion ventrally through UNC-5, resulting in net dorsal growth. Previous studies showed that UNC-5 inhibits growth cone protrusion via the flavin monooxygenases and potential destabilization of F-actin, and via UNC-33/CRMP and restriction of microtubule plus-end entry into the growth cone. We show that UNC-5 inhibits protrusion through a third mechanism involving TOM-1/tomosyn. A short isoform of TOM-1 inhibited protrusion downstream of UNC-5, and a long isoform had a pro-protrusive role. TOM-1/tomosyn inhibits formation of the SNARE complex. We show that UNC-64/syntaxin is required for growth cone protrusion, consistent with a role of TOM-1 in inhibiting vesicle fusion. Our results are consistent with a model whereby UNC-5 utilizes TOM-1 to inhibit vesicle fusion, resulting in inhibited growth cone protrusion, possibly by preventing the growth cone plasma membrane addition required for protrusion.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Cones de Crescimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Axônios/metabolismo , Netrinas/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Netrina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Moléculas de Adesão Celular/metabolismo
13.
Front Immunol ; 14: 1162004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090697

RESUMO

Upon migrating into the tissues, hematopoietic stem cell (HSC)-derived monocytes differentiate into macrophages, playing a crucial role in determining innate immune responses towards external pathogens and internal stimuli. However, the regulatory mechanisms underlying monocyte-to-macrophage differentiation remain largely unexplored. Here we divulge a previously uncharacterized but essential role for an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), in monocyte-to-macrophage maturation. FLRT2 is almost undetectable in human monocytic cell lines, human peripheral blood mononuclear cells (PBMCs), and mouse primary monocytes but significantly increases in fully differentiated macrophages. Myeloid-specific deletion of FLRT2 (Flrt2ΔMyel ) contributes to decreased peritoneal monocyte-to-macrophage generation in mice in vivo, accompanied by impaired macrophage functions. Gain- and loss-of-function studies support the promoting effect of FLRT2 on THP-1 cell and human PBMC differentiation into macrophages. Mechanistically, FLRT2 directly interacts with Unc-5 netrin receptor B (UNC5B) via its extracellular domain (ECD) and activates Akt/mTOR signaling. In vivo administration of mTOR agonist MYH1485 reverses the impaired phenotypes observed in Flrt2ΔMyel mice. Together, these results identify FLRT2 as a novel pivotal endogenous regulator of monocyte differentiation into macrophages. Targeting the FLRT2/UNC5B-Akt/mTOR axis may provide potential therapeutic strategies directly relevant to human diseases associated with aberrant monocyte/macrophage differentiation.


Assuntos
Leucócitos Mononucleares , Monócitos , Humanos , Animais , Camundongos , Monócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Fibronectinas/metabolismo , Leucina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Diferenciação Celular , Serina-Treonina Quinases TOR/metabolismo , Receptores de Netrina/metabolismo , Glicoproteínas de Membrana/metabolismo
14.
J Orthop Surg Res ; 18(1): 261, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998043

RESUMO

BACKGROUND: Deregulation of lncRNAs has been observed in human osteosarcoma. This study explored the diagnostic and prognostic significance of EPB41L4A-AS1 and UNC5B-AS1 in osteosarcoma. METHODS: Relative levels of EPB41L4A-AS1 and UNC5B-AS1 were detected in osteosarcoma tissue samples and cells. The ability to distinguish osteosarcoma from health was assessed by receiver operating characteristic (ROC) curve construction. Kaplan-Meier (K-M) and Cox proportional-hazards analyses were performed for prognosis factors. The bioinformatics approach was used to identify targeting miRNA for EPB41L4A-AS1 and UNC5B-AS1. Kaplan-Meier survival curves and Whitney Mann U tests were conducted for validating the statistical significance. In cell culture experiments, the influence of EPB41L4A-AS1 and UNC5B-AS1 on proliferation, migration, and invasion of the osteosarcoma cell line was examined by CCK-8 and Transwell assays. RESULTS: Levels of EPB41L4A-AS1 and UNC5B-AS1 were upregulated in osteosarcoma patients and cells compared with the healthy participants and normal cell lines. EPB41L4A-AS1 and UNC5B-AS1 have a potent ability to distinguish the patients with osteosarcoma from the health. EPB41L4A-AS1 and UNC5B-AS1 levels correlated with SSS stage. Patients with high levels of EPB41L4A-AS1 and UNC5B-AS1 had significantly shorter survival times. EPB41L4A-AS1 and UNC5B-AS1 were independent prognostic indexes for overall survival. miR-1306-5p was a common target for EPB41L4A-AS1 and UNC5B-AS1. A propulsive impact on cell proliferation, migration, and invasion by EPB41L4A-AS1 and UNC5B-AS1 was observed, but can be rescued by miR-1306-5p. CONCLUSIONS: It was concluded that upregulations of EPB41L4A-AS1 and UNC5B-AS1 expression were diagnostic and prognostic biomarkers for human osteosarcoma. EPB41L4A-AS1 and UNC5B-AS1 contribute to the biological behavior of osteosarcoma via miR-1306-5p.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , Prognóstico , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Osteossarcoma/diagnóstico , Osteossarcoma/genética , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Netrina/metabolismo
15.
Cell Rep ; 42(3): 112144, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821439

RESUMO

How axon guidance pathways are utilized in coordination with temporal and spatial patterning of neural progenitors to regulate neuropil assembly is not well understood. We study this question in the Drosophila medulla using the transmedullary (Tm) projection neurons that target lobula through the inner optic chiasm (IOC). We demonstrate that the Netrin pathway plays multiple roles in guidance of Tm axons and that temporal patterning of medulla neuroblasts determines pioneer versus follower Tm neurons during this process. Loss of Frazzled (Fra) in early-born pioneer Tm neurons leads to IOC defects, while loss of Fra from follower neurons does not affect the IOC. In the follower projection neurons, Fra is required in other targeting steps including lobula branch extension and layer-specific targeting. Furthermore, different from other identified scenarios of Netrin/Fra involved axon guidance in Drosophila, we demonstrate that diffusible Netrin is required for the correct axon targeting and optic lobe organization.


Assuntos
Proteínas de Drosophila , Drosophila , Netrina-1 , Animais , Axônios/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , Netrinas/genética , Netrinas/metabolismo , Neurônios/metabolismo , Receptores de Superfície Celular/metabolismo
16.
Cell Rep ; 42(3): 112143, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821442

RESUMO

Notch-dependent binary fate choice between sister neurons is one of the mechanisms to generate neural diversity. How these upstream neural fate specification programs regulate downstream effector genes to control axon targeting and neuropil assembly remains less well understood. Here, we report that Notch-dependent binary fate choice in Drosophila medulla neurons is required to regulate the Netrin axon guidance pathway, which controls targeting of transmedullary (Tm) neurons to lobula. In medulla neurons of Notch-on hemilineage composed of mostly lobula-targeting neurons, Notch signaling is required to activate the expression of Netrin-B and repress the expression of its repulsive receptor Unc-5. Turning off Unc-5 is necessary for Tm neurons to target lobula. Furthermore, Netrin-B provided by Notch-on medulla neurons is required for correct targeting of Tm axons from later-generated medulla columns. Thus, the coordinate regulation of Netrin pathway components by Notch signaling ensures correct targeting of Tm axons and contributes to the neuropil assembly.


Assuntos
Orientação de Axônios , Drosophila , Animais , Axônios/metabolismo , Neurônios/metabolismo , Netrinas/metabolismo , Netrina-1/metabolismo , Receptores de Netrina/metabolismo
17.
Neuroscience ; 508: 19-29, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940453

RESUMO

Olfactory sensory neurons that express related odorant receptors specifically target large identifiable neuropils called protoglomeruli when they first reach the olfactory bulb in the zebrafish. This crude odorant receptor-related mapping is further refined as odorant receptor-specific glomeruli segregate from protoglomeruli later in development. Netrins are a prominent class of axon guidance molecules whose contribution to olfactory circuit formation is poorly studied. Morpholino knock down experiments have suggested that Netrin/Dcc signaling is involved in normal protoglomerular targeting. Here we extend these findings with more detailed characterization and modeling of netrin expression, and by examining protoglomerular targeting in mutant lines fornetrin1a (ntn1a), netrin1b (ntn1b), and their receptorsunc5b,dcc, andneo1a. We confirm thatntn1a,ntn1b, anddccare required for normal protoglomerular guidance of a subset of olfactory sensory neurons that are labeled with the Tg(or111-7:IRES:Gal4) transgene. We also observe errors in the targeting of these axons inunc5bmutants, but not inneo1a mutants. Our findings are consistent with ntn1a andntn1bacting primarily as attractants for olfactory sensory neurons targeting the central zone protoglomerulus.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Bulbo Olfatório/metabolismo , Peixe-Zebra/metabolismo , Receptores Odorantes/metabolismo , Receptores de Netrina/metabolismo , Netrinas/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Axônios/metabolismo , Netrina-1/metabolismo
18.
Dev Dyn ; 252(1): 172-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112412

RESUMO

BACKGROUND: Development of the nervous system and the correct connection of nerve cells require coordinated axonal pathfinding through an extracellular matrix. Outgrowing axons exhibit directional growth toward or away from external guidance cues such as Netrin. Guidance cues can be detected by growth cones that are located at the end of growing axons through membrane-bound receptors such as Uncoordianted-5 and Frazzled. Binding of Netrin causes reformation of the cytoskeleton and growth of the axon toward (or away from) the source of Netrin production. RESULTS: Here, we investigate the embryonic mRNA expression patterns of netrin genes and their potential receptors, uncoordinated-5 and frazzled in arthropod species that cover all main branches of Arthropoda, that is, Pancrustacea, Myriapoda, and Chelicerata. We also studied the expression patterns in a closely related outgroup species, the onychophoran Euperipatoides kanangrensis, and provide data on expression profiles of these genes in larval tissues of the fly Drosophila melanogaster including the brain and the imaginal disks. CONCLUSION: Our data reveal conserved and diverged aspects of neuronal guidance in Drosophila with respect to the other investigated species and suggest a conserved function in nervous system patterning of the developing appendages.


Assuntos
Artrópodes , Proteínas de Drosophila , Animais , Netrinas/genética , Netrinas/metabolismo , Drosophila melanogaster/genética , Artrópodes/genética , Artrópodes/metabolismo , Orientação de Axônios , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Axônios/metabolismo , Receptores de Netrina/metabolismo
19.
Biomolecules ; 12(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551254

RESUMO

Unc-5 netrin receptor A (UNC5A), a netrin family receptor, plays a key role in neuronal development and subsequent differentiation. Recently, studies have found that UNC5A plays an important role in multiple cancers, such as bladder cancer, non-small cell lung carcinoma, and colon cancer but its pan-cancer function is largely unknown. Herein, the R software and multiple databases or online websites (The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), The Tumor Immune Estimation Resource (TIMER), The Gene Set Cancer Analysis (GSCA), Gene Expression Profiling Interactive Analysis (GEPIA), and cBioPortal etc.) were utilized to examine the role of UNC5A in pan-cancer. UNC5A was found to be highly expressed across multiple human cancer tissues and cells, was linked to clinical outcomes of patients, and was a potential pan-cancer biomarker. The mutational landscape of UNC5A exhibited that patients with UNC5A mutations had poorer progress free survival (PFS) in head and neck squamous cell carcinoma (HNSC) and prostate adenocarcinoma (PRAD). Furthermore, UNC5A expression was associated with tumor mutation burden (TMB), neoantigen, tumor microenvironment (TME), tumor microsatellite instability (MSI), immunomodulators, immune infiltration, DNA methylation, immune checkpoint (ICP) genes, and drug responses. Our results suggest the potential of UNC5A as a pan-cancer biomarker and an efficient immunotherapy target, which may also guide drug selection for some specific cancer types in clinical practice.


Assuntos
Biomarcadores Tumorais , Neoplasias , Receptores de Netrina , Humanos , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Microambiente Tumoral , Neoplasias/genética , Neoplasias/metabolismo
20.
Cell ; 185(21): 3931-3949.e26, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36240740

RESUMO

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.


Assuntos
Movimento Celular , Glipicanas/química , Receptores de Netrina/química , Animais , Glipicanas/metabolismo , Humanos , Camundongos , Proteínas Mutantes , Receptores de Netrina/metabolismo , Receptores de Superfície Celular/metabolismo , Anticorpos de Domínio Único , Trombospondinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA