Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Diabetes ; 71(3): 367-375, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196393

RESUMO

Secretion of insulin from pancreatic ß-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of ß-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.


Assuntos
Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Canais KATP/fisiologia , Animais , Glicemia , Cálcio/farmacologia , Humanos , Resistência à Insulina , Secreção de Insulina/genética , Secreção de Insulina/fisiologia , Canais KATP/genética , Camundongos , Camundongos Knockout , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/fisiologia
2.
J Neurotrauma ; 38(17): 2473-2485, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940936

RESUMO

Females have been understudied in pre-clinical and clinical traumatic brain injury (TBI), despite distinct biology and worse clinical outcomes versus males. Sulfonylurea receptor 1 (SUR1) inhibition has shown promising results in predominantly male TBI. A phase II trial is ongoing. We investigated whether SUR1 inhibition effects on contusional TBI differ by sex given that this may inform clinical trial design and/or interpretation. We studied the moderating effects of sex on post-injury brain tissue loss in 142 male and female ATP-binding cassette transporter subfamily C member 8 (Abcc8) wild-type, heterozygote, and knockout mice (12-15 weeks). Monkey fibroblast-like cells and mouse brain endothelium-derived cells were used for in vitro studies. Mice were injured with controlled cortical impact and euthanized 21 days post-injury to assess contusion, brain, and hemisphere volumes (vs. genotype- and sex-matched naïves). Abcc8 knockout mice had smaller contusion volumes (p = 0.012) and larger normalized contralateral (right) hemisphere volumes (nRHV; p = 0.03) after injury versus wild type. This was moderated by sex: Contusions were smaller (p = 0.020), nRHV was higher (p = 0.001), and there was less global atrophy (p = 0.003) in male, but not female, knockout versus wild-type mice after TBI. Less atrophy occurred in males for each copy of Abcc8 lost (p = 0.023-0.002, all outcomes). In vitro, sex-determining region Y (SRY) stimulated Abcc8 promoter activity and increased Abcc8 expression. Loss of Abcc8 strongly protected against post-traumatic cerebral atrophy in male, but not female, mice. This may partly be mediated by SRY on the Y-chromosome. Sex differences may have important implications for ongoing and future trials of SUR1 blockade.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Receptores de Sulfonilureias/fisiologia , Animais , Atrofia , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Proteína da Região Y Determinante do Sexo/fisiologia
3.
J Neuroinflammation ; 13(1): 130, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246103

RESUMO

BACKGROUND: Harmful effects of activated microglia are due, in part, to the formation of peroxynitrite radicals, which is attributable to the upregulation of inducible nitric oxide (NO) synthase (NOS2). Because NOS2 expression is determined by Ca(2+)-sensitive calcineurin (CN) dephosphorylating nuclear factor of activated T cells (NFAT), and because Sur1-Trpm4 channels are crucial for regulating Ca(2+) influx, we hypothesized that, in activated microglia, Sur1-Trpm4 channels play a central role in regulating CN/NFAT and downstream target genes such as Nos2. METHODS: We studied microglia in vivo and in primary culture from adult rats, and from wild type, Abcc8-/- and Trpm4-/- mice, and immortalized N9 microglia, following activation of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS), using in situ hybridization, immunohistochemistry, co-immunoprecipitation, immunoblot, qPCR, patch clamp electrophysiology, calcium imaging, the Griess assay, and chromatin immunoprecipitation. RESULTS: In microglia in vivo and in vitro, LPS activation of TLR4 led to de novo upregulation of Sur1-Trpm4 channels and CN/NFAT-dependent upregulation of Nos2 mRNA, NOS2 protein, and NO. Pharmacological inhibition of Sur1 (glibenclamide), Trpm4 (9-phenanthrol), or gene silencing of Abcc8 or Trpm4 reduced Nos2 upregulation. Inhibiting Sur1-Trpm4 increased the intracellular calcium concentration ([Ca(2+)]i), as expected, but also decreased NFAT nuclear translocation. The increase in [Ca(2+)]i induced by inhibiting or silencing Sur1-Trpm4 resulted in phosphorylation of Ca(2+)/calmodulin protein kinase II and of CN, consistent with reduced nuclear translocation of NFAT. The regulation of NFAT by Sur1-Trpm4 was confirmed using chromatin immunoprecipitation. CONCLUSIONS: Sur1-Trpm4 constitutes a novel mechanism by which TLR4-activated microglia regulate pro-inflammatory, Ca(2+)-sensitive gene expression, including Nos2.


Assuntos
Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Receptores de Sulfonilureias/fisiologia , Canais de Cátion TRPM/fisiologia , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Diazóxido/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Ratos , Ratos Wistar , Receptor 4 Toll-Like/genética , Transcrição Gênica/efeitos dos fármacos
4.
Diabetes Obes Metab ; 18(7): 698-701, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26584950

RESUMO

Amplification of insulin secretion by cyclic AMP involves activation of protein kinase A (PKA) and Epac2 in pancreatic ß cells. Recent hypotheses suggest that sulphonylurea receptor-1 (SUR1), the regulatory subunit of ATP-sensitive potassium channels, is implicated in Epac2 effects and that direct activation of Epac2 by hypoglycaemic sulphonylureas contributes to the stimulation of insulin secretion by these drugs. In the present experiments, using islets from Sur1KO mice, we show that dibutyryl-cAMP and membrane-permeant selective activators of Epac or PKA normally amplify insulin secretion in ß cells lacking SUR1. In contrast to Epac activator, sulphonylureas (glibenclamide and tolbutamide) did not increase insulin secretion in Sur1KO islets, as would be expected if they were activating Epac2 directly. Furthermore, glibenclamide and tolbutamide did not augment the amplification of insulin secretion produced by Epac activator or dibutyryl-cAMP. Collectively, the results show that SUR1 is dispensable for amplification of insulin secretion by Epac2 activation and that direct activation of Epac2 is unimportant for the action of therapeutic concentrations of sulphonylureas in ß cells.


Assuntos
Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Sulfonilureias/fisiologia , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Animais , Bucladesina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Eritromicina/análogos & derivados , Eritromicina/metabolismo , Glibureto/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Camundongos Endogâmicos C57BL , Compostos de Sulfonilureia/metabolismo , Receptores de Sulfonilureias/deficiência , Tolbutamida/farmacologia
5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 32(3): 238-241, 2016 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29931884

RESUMO

OBJECTIVE: To study the dilatation characteristics of ATP-sensitive potassium channel (KATP) SUR2B/Kir6.1 subtype opener iptakalim (Ipt) in pulmonary arterioles, and to explore its possible mechanism. METHODS: Vessels pressure-diameter monitoring perfusion technique was used to observe the dilatation effects of Ipt in rats fourth pulmonary arterioles (n=6~8). After the pulmonary arterioles were pre-treated with removing endothelium or pre-incubated with KATP channel blocker glibenclamide (Gli), cyclo-oxygenase (COX) inhibitor indomethacin (Indo) and nitric oxide synthase (NOS) inhibitor L-Nω-Nitro-arginine methyl ester(L-NAME), the dilatation effects of Ipt were observed. RESULTS: Pulmonary arterioles could be relaxed by Ipt, the maximal relaxation rate was (60.53±2.08)%. Compaired with control group, the effects of Ipt in endothelium denuded arterioles were significantly decreased, the maximal relaxation rate was (9.47±1.56)% (P<0.01). The maximal relaxation rate were decreased to(17.49±1.47)%,(37.00±3.88)% and(24.91±2.30)% respectively after Gli,Indo,L-NAME were pre-incubated (P<0.01). CONCLUSIONS: Pulmonary arterioles can be relaxed by Ipt. The selective activation of KATP SUR2B/Kir6.1 subtype by Ipt was involved in its mechanisms. The endothelium-dependently dilatation of Ipt was related to nitric oxide (NO) and prostacyclin (PGI2) released by endothelial cells.


Assuntos
Arteríolas/fisiologia , Canais KATP/fisiologia , Receptores de Sulfonilureias/fisiologia , Animais , Arteríolas/efeitos dos fármacos , Dilatação , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Epoprostenol , Glibureto/farmacologia , Indometacina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico , Ratos
6.
J Surg Res ; 195(2): 481-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770739

RESUMO

BACKGROUND: Alterations in adenosine triphosphate-sensitive potassium (KATP) activity and expression under changing physiological conditions are important adaptive and protective mechanisms. KATP subunit expression is also altered in neuropathic pain; whether these changes are adaptive or deleterious is unclear. We therefore established a skin/muscle incision and retraction (SMIR) rat model of postoperative pain and examined the relationship between pain sensitization and changes in KATP subunit expression. METHODS: Rats were randomly divided into untreated, sham-operation, SMIR, and SMIR + Pinacidil (sulfonylurea receptor [SUR]2-activator) groups. In the SMIR group, skin and muscle were retracted for 1 h after incision. In the SMIR + Pinacidil group, Pinacidil was injected intraperitoneally 0.5 h before SMIR or into the spinal myelin sheath 7 d after SMIR. Mechanical withdrawal threshold was used as an index of pain sensitivity. Expression levels and localization of the KATP subunits Kir6.2, Kir6.1, SUR1, and SUR2 were measured by Western blotting and immunofluorescence. RESULTS: A rat postoperative pain model was successfully established, in which SMIR induced mechanical hypersensitivity (allodynia). Notably, significantly increased Kir6.1, Kir6.2, SUR1, and SUR2 protein expression levels were observed in tissues around the incision (P < 0.05). In addition, significantly decreased Kir6.1, SUR2, and SUR1 protein levels were obtained in spinal cord L3-L5. SMIR also starkly increased nerve growth factor expression in the muscle around the incision. Importantly, intrathecal Pinacidil injection inhibited the overexpression of allodynia markers and nerve growth factor. CONCLUSIONS: Hyperexcitability due to spinal Kir6.1 and SUR2 downregulation may be responsible for postoperative pain. SUR2 activation is a potential strategy to inhibit postoperative allodynia.


Assuntos
Canais KATP/fisiologia , Dor Pós-Operatória/fisiopatologia , Animais , Hiperalgesia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Sulfonilureias/fisiologia
7.
Neurosurg Focus ; 36(1): E11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24380477

RESUMO

Cerebral edema and hemorrhagic conversion are common, potentially devastating complications of ischemic stroke and are associated with high rates of mortality and poor functional outcomes. Recent work exploring the molecular pathophysiology of the neurogliovascular unit in ischemic stroke suggests that deranged cellular ion homeostasis due to altered function and regulation of ion pumps, channels, and secondary active transporters plays an integral role in the development of cytotoxic and vasogenic edema and hemorrhagic conversion. Among these proteins involved in ion homeostasis, the ischemia-induced, nonselective cation conductance formed by the SUR1-TRPM4 protein complex appears to play a prominent role and is potently inhibited by glibenclamide, an FDA-approved drug commonly used in patients with Type 2 diabetes. Several robust preclinical studies have demonstrated the efficacy of glibenclamide blockade of SUR1-TRPM4 activity in reducing edema and hemorrhagic conversion in rodent models of ischemic stroke, prompting the study of the potential protective effects of glibenclamide in humans in an ongoing prospective phase II clinical trial. Preliminary data suggest glibenclamide significantly reduces cerebral edema and lowers the rate of hemorrhagic conversion following ischemic stroke, suggesting the potential use of glibenclamide to improve outcomes in humans.


Assuntos
Encefalopatias/prevenção & controle , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Glibureto/uso terapêutico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Encefalopatias/etiologia , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Ensaios Clínicos Fase II como Assunto , Humanos , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/prevenção & controle , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA