Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.452
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125971

RESUMO

We have previously demonstrated that the vasopressin type 2 receptor (AVPR2) antagonist tolvaptan reduces cell proliferation and invasion and triggers apoptosis in different human cancer cell lines. To study this effect in vivo, a xenograft model of small cell lung cancer was developed in Fox1nu/nu nude mice through the subcutaneous inoculation of H69 cells, which express AVPR2. One group of mice (n = 5) was treated with tolvaptan for 60 days, whereas one group (n = 5) served as the control. A reduced growth was observed in the tolvaptan group in which the mean tumor volume was significantly smaller on day 60 compared to the control group. In the latter group, a significantly lower survival was observed. The analysis of excised tumors revealed that tolvaptan effectively inhibited the cAMP/PKA and PI3K/AKT signaling pathways. The expression of the proliferative marker proliferating cell nuclear antigen (PCNA) was significantly lower in tumors excised from tolvaptan-treated mice, whereas the expression levels of the apoptotic marker caspase-3 were higher than those in control animals. Furthermore, tumor vascularization was significantly lower in the tolvaptan group. Overall, these findings suggest that tolvaptan counteracts tumor progression in vivo and, if confirmed, might indicate a possible role of this molecule as an adjuvant in anticancer strategies.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Proliferação de Células , Neoplasias Pulmonares , Camundongos Nus , Receptores de Vasopressinas , Carcinoma de Pequenas Células do Pulmão , Tolvaptan , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Tolvaptan/farmacologia , Tolvaptan/uso terapêutico , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Receptores de Vasopressinas/metabolismo , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Eur J Pharmacol ; 981: 176904, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153649

RESUMO

Urolithiasis, characterized by the formation of solid crystalline structures within the urinary tract, presents a significant global health burden with high recurrence rates and limited treatment efficacy. Recent research has identified various protein receptors and enzymes implicated in the pathogenesis of urolithiasis, offering potential targets for therapeutic intervention. Protein receptors such as the calcium-sensing receptor and vasopressin V2 receptor play crucial roles in regulating urinary calcium excretion and water reabsorption, respectively, influencing stone formation. Additionally, modulation of receptors like the angiotensin II receptor and aldosterone receptor can impact renal function and electrolyte balance, contributing to stone prevention. Furthermore, enzymes such as urease inhibitors and xanthine oxidase inhibitors offer targeted approaches to prevent the formation of specific stone types. This review discusses the potential of targeting these receptors and enzymes for the treatment of urolithiasis, exploring associated drugs and their mechanisms of action. Despite promising avenues for personalized and precision medicine approaches, challenges such as the need for robust clinical evidence and ensuring cost-effectiveness must be addressed for the translation of these interventions into clinical practice. By overcoming these challenges, receptor-targeted therapies and enzyme inhibitors hold promise for revolutionizing the management of urolithiasis and reducing its global burden.


Assuntos
Terapia de Alvo Molecular , Medicina de Precisão , Urolitíase , Humanos , Urolitíase/tratamento farmacológico , Urolitíase/metabolismo , Medicina de Precisão/métodos , Animais , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Urease/antagonistas & inibidores , Urease/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo , Receptores de Vasopressinas/metabolismo
3.
Neuropharmacology ; 258: 110068, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996832

RESUMO

Birth stress is a risk factor for psychiatric disorders and associated with exaggerated release of the stress hormone arginine vasopressin (AVP) into circulation and in the brain. In perinatal hippocampus, AVP activates GABAergic interneurons which leads to suppression of spontaneous network events and suggests a protective function of AVP on cortical networks during birth. However, the role of AVP in developing subcortical networks is not known. Here we tested the effect of AVP on the dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT, serotonin) system in male and female neonatal rats, since early 5-HT homeostasis is critical for the development of cortical brain regions and emotional behaviors. We show that AVP is strongly excitatory in neonatal DRN: it increases excitatory synaptic inputs of 5-HT neurons via V1A receptors in vitro and promotes their action potential firing through a combination of its effect on glutamatergic synaptic transmission and a direct effect on the excitability of these neurons. Furthermore, we identified two major firing patterns of neonatal 5-HT neurons in vivo, tonic regular firing and low frequency oscillations of regular spike trains and confirmed that these neurons are also activated by AVP in vivo. Finally, we show that the sparse vasopressinergic innervation in neonatal DRN originates exclusively from cell groups in medial amygdala and bed nucleus of stria terminalis. Hyperactivation of the neonatal 5-HT system by AVP during birth stress may impact its own functional development and affect the maturation of cortical target regions, which may increase the risk for psychiatric conditions later on.


Assuntos
Animais Recém-Nascidos , Arginina Vasopressina , Núcleo Dorsal da Rafe , Neurônios Serotoninérgicos , Animais , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Feminino , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Masculino , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/fisiologia , Ratos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Ratos Sprague-Dawley , Serotonina/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de Vasopressinas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
4.
Am J Physiol Renal Physiol ; 327(4): F591-F598, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024358

RESUMO

Vasopressin controls water permeability in the renal collecting duct by regulating the water channel protein, aquaporin-2 (AQP2). Phosphoproteomic studies have identified multiple proteins that undergo phosphorylation changes in response to vasopressin. The kinases responsible for the phosphorylation of most of these sites have not been identified. Here, we use large-scale Bayesian data integration to predict the responsible kinases for 51 phosphoproteomically identified vasopressin-regulated phosphorylation sites in the renal collecting duct. To do this, we applied Bayes' rule to rank the 515 known mammalian protein kinases for each site. Bayes' rule was applied recursively to integrate each of the seven independent datasets, each time using the posterior probability vector of a given step as the prior probability vector of the next step. In total, 30 of the 33 phosphorylation sites that increase with vasopressin were predicted to be phosphorylated by protein kinase A (PKA) catalytic subunit-α, consistent with prior studies implicating PKA in vasopressin signaling. Eighteen of the vasopressin-regulated phosphorylation sites were decreased in response to vasopressin and all but three of these sites were predicted to be targets of extracellular signal-regulated kinases, ERK1 and ERK2. This result implies that ERK1 and ERK2 are inhibited in response to vasopressin V2 receptor occupation, secondary to PKA activation. The six phosphorylation sites not predicted to be phosphorylated by PKA or ERK1/2 are potential targets of other protein kinases previously implicated in aquaporin-2 regulation, including cyclin-dependent kinase 18 (CDK18), calmodulin-dependent kinase 2δ (CAMK2D), AMP-activated kinase catalytic subunit-α-1 (PRKAA1) and CDC42 binding protein kinase ß (CDC42BPB).NEW & NOTEWORTHY Vasopressin regulates water transport in the renal collecting duct in part through phosphorylation or dephosphorylation of proteins that regulate aquaporin-2. Prior studies have identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. This study uses Bayesian data integration techniques to combine information from multiple prior proteomics and transcriptomics studies to predict the protein kinases that phosphorylate the 51 sites. Most of the regulated sites were predicted to be phosphorylated by protein kinase A or ERK1/ERK2.


Assuntos
Aquaporina 2 , Teorema de Bayes , Túbulos Renais Coletores , Vasopressinas , Fosforilação , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Animais , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Aquaporina 2/metabolismo , Aquaporina 2/genética , Transdução de Sinais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Proteômica/métodos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética
5.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972875

RESUMO

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Assuntos
Endossomos , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Transporte Proteico , Receptores de Vasopressinas , beta-Arrestinas , Humanos , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Transdução de Sinais
6.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000398

RESUMO

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Assuntos
Imuno-Histoquímica , Órgão Vomeronasal , Animais , Órgão Vomeronasal/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Raposas/genética , Raposas/metabolismo , Camundongos , Lobos/genética , Lobos/metabolismo , Cães , Canidae/genética
7.
Hypertens Res ; 47(9): 2393-2404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39039283

RESUMO

Chronic hypertensive pregnancy (CHP) is a growing health issue with unknown etiology. Vasopressin (VP), a nonapeptide synthesized in paraventricular (PVN) and supraoptic nucleus (SON), is a well-known neuroendocrine and autonomic modulator of the cardiovascular system, related to hypertension development. We quantified gene expression of VP and its receptors, V1aR and V1bR, within the PVN and SON in CHP and normal pregnancy, and assessed levels of secreted plasma VP. Also, we evaluated autonomic cardiovascular adaptations to CHP using spectral indices of blood pressure (BPV) and heart rate (HRV) short-term variability, and spontaneous baroreflex sensitivity (BRS). Experiments were performed in female spontaneously hypertensive rats (SHRs) and in normotensive Wistar rats (WRs). Animals were equipped with a radiotelemetry probe for continuous hemodynamic recordings before and during pregnancy. BPV, HRV and BRS were assessed using spectral analysis and the sequence method, respectively. Plasma VP was determined by ELISA whilst VP, V1aR, and V1bR gene expression was analyzed by real-time-quantitative PCR (RT-qPCR). The results show that non-pregnant SHRs exhibit greater VP, V1aR, and V1bR gene expression in both PVN and SON respectively, compared to Wistar dams. Pregnancy decreased VP gene expression in the SON of SHRs but increased it in the PVN and SON of WRs. Pregnant SHRs exhibited a marked drop in plasma VP concentration associated with BP normalization. This triggered marked tachycardia, heart rate variability increase, and BRS increase in pregnant SHRs. It follows that regardless of BP normalization in late pregnancy, SHRs exhibit cardiovascular vulnerability and compensate by recruiting vagal mechanisms. Pregnant SHR dams have reduced expression of VP in SON associated with increased V1bR expression, lower plasma VP, normal BP during late pregnancy and marked signs of enhanced sympathetic cardiac stimulation (increased HR and LFHR variability) and recruitment of vagal mechanisms (enhancement of BRS and HFHR variability).


Assuntos
Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Vasopressinas , Animais , Feminino , Gravidez , Ratos , Sistema Nervoso Autônomo/fisiopatologia , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de Vasopressinas/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/sangue , Vasopressinas/metabolismo
8.
Structure ; 32(9): 1358-1366.e3, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38889722

RESUMO

Arrestins interact with phosphorylated G protein-coupled receptors (GPCRs) and regulate the homologous desensitization and internalization of GPCRs. The gate loop in arrestins is a critical region for both stabilization of the basal state and interaction with phosphorylated receptors. We investigated the roles of specific residues in the gate loop (K292, K294, and H295) using ß-arrestin-1 and phosphorylated C-tail peptide of vasopressin receptor type 2 (V2Rpp) as a model system. We measured the binding affinity of V2Rpp and analyzed conformational dynamics of ß-arrestin-1. Our results suggest that K294 plays a critical role in the interaction with V2Rpp without influencing the overall conformation of the V2Rpp-bound state. The residues K292 and H295 contribute to the stability of the polar core in the basal state and form a specific conformation of the finger loop in the V2Rpp-bound state.


Assuntos
Ligação Proteica , Receptores de Vasopressinas , beta-Arrestina 1 , Humanos , beta-Arrestina 1/metabolismo , beta-Arrestina 1/química , Sítios de Ligação , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/química
9.
Mol Cell Neurosci ; 130: 103951, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942186

RESUMO

The axons containing arginine vasopressin (AVP) from the hypothalamus innervate a variety of structures including the cerebral cortex, thalamus, hippocampus and amygdala. A plethora amount of evidence indicates that activation of the V1a subtype of the vasopressin receptors facilitates anxiety-like and fear responses. As an essential structure involved in fear and anxiety responses, the amygdala, especially the lateral nucleus of amygdala (LA), receives glutamatergic innervations from the auditory cortex and auditory thalamus where high density of V1a receptors have been detected. However, the roles and mechanisms of AVP in these two important areas have not been determined, which prevents the understanding of the mechanisms whereby V1a activation augments anxiety and fear responses. Here, we used coronal brain slices and studied the effects of AVP on neuronal activities of the auditory cortical and thalamic neurons. Our results indicate that activation of V1a receptors excited both auditory cortical and thalamic neurons. In the auditory cortical neurons, AVP increased neuronal excitability by depressing multiple subtypes of inwardly rectifying K+ (Kir) channels including the Kir2 subfamily, the ATP-sensitive K+ channels and the G protein-gated inwardly rectifying K+ (GIRK) channels, whereas activation of V1a receptors excited the auditory thalamic neurons by depressing the Kir2 subfamily of the Kir channels as well as activating the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a persistent Na+ channel. Our results may help explain the roles of V1a receptors in facilitating fear and anxiety responses. Categories: Cell Physiology.


Assuntos
Arginina Vasopressina , Córtex Auditivo , Neurônios , Receptores de Vasopressinas , Tálamo , Animais , Feminino , Masculino , Ratos , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiologia , Córtex Auditivo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Sprague-Dawley , Receptores de Vasopressinas/metabolismo , Tálamo/metabolismo , Tálamo/fisiologia
10.
Sci Signal ; 17(842): eadi0934, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917219

RESUMO

The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of ß-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the ß-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine ß-arrestin recruitment. The ligand-dependent variance in ß-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the ß-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-ß-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-ß-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained ß-arrestin binding: the V2 vasopressin receptor and a mutant ß2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in ß-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.


Assuntos
Endocitose , Receptor Tipo 1 de Angiotensina , Transdução de Sinais , beta-Arrestinas , Endocitose/fisiologia , Humanos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética , beta-Arrestinas/metabolismo , beta-Arrestinas/genética , Células HEK293 , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Endossomos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Ligantes , Ligação Proteica , Transporte Proteico
11.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928267

RESUMO

The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.


Assuntos
Receptores de Vasopressinas , Espermatogênese , Testículo , Vasotocina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Masculino , Vasotocina/metabolismo , Vasotocina/farmacologia , Testículo/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Espermatozoides/metabolismo , Proliferação de Células , Espermatogônias/metabolismo , Espermatogônias/citologia
12.
PLoS One ; 19(6): e0304703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900750

RESUMO

Arginine vasopressin (AVP) and oxytocin (OT) are well-known as neuropeptides that regulate various social behaviors in mammals. However, little is known about their role in mouse female sexual behavior. Thus, we investigated the role of AVP (v1a and v1b) and OT receptors on female sexual behavior. First, we devised a new apparatus, the bilevel chamber, to accurately observe female mouse sexual behavior. This apparatus allowed for a more precisely measurement of lordosis as receptivity and rejection-like behavior (newly defined in this study), a reversed expression of proceptivity. To address our research question, we evaluated female sexual behavior in mice lacking v1a (aKO), v1b (bKO), both v1a and v1b (dKO), and OT (OTRKO) receptors. aKO females showed decreased rejection-like behavior but a normal level of lordosis, whereas bKO females showed almost no lordosis and no change in rejection-like behavior. In addition, dKO females showed normal lordosis levels, suggesting that the v1b receptor promotes lordosis, but not necessarily, while the v1a receptor latently suppresses it. In contrast, although OTRKO did not influence lordosis, it significantly increased rejection-like behavior. In summary, the present results demonstrated that the v1a receptor inhibits proceptivity and receptivity, whereas the v1b and OT receptors facilitate receptivity and proceptivity, respectively.


Assuntos
Camundongos Knockout , Receptores de Ocitocina , Receptores de Vasopressinas , Comportamento Sexual Animal , Animais , Feminino , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Comportamento Sexual Animal/fisiologia , Camundongos , Masculino , Ocitocina/metabolismo , Camundongos Endogâmicos C57BL , Arginina Vasopressina/metabolismo
13.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695074

RESUMO

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Assuntos
Desamino Arginina Vasopressina , Túbulos Renais Coletores , Camundongos Knockout , Animais , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Desamino Arginina Vasopressina/farmacologia , Capacidade de Concentração Renal/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Masculino , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Camundongos , Aquaporina 2/metabolismo , Aquaporina 2/genética , Antidiuréticos/farmacologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Camundongos Endogâmicos C57BL , Privação de Água , Concentração Osmolar , Sódio/urina , Sódio/metabolismo , Vasopressinas/metabolismo , Benzazepinas
14.
Front Endocrinol (Lausanne) ; 15: 1390203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803478

RESUMO

Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.


Assuntos
Encéfalo , Receptores de Ocitocina , Receptores de Vasopressinas , Animais , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Masculino , Encéfalo/metabolismo , Roedores/metabolismo , Ratos , Especificidade da Espécie , Autorradiografia , Arvicolinae/metabolismo , Ocitocina/metabolismo , Cricetinae , Comportamento Social , Feminino
15.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782603

RESUMO

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Assuntos
Quimiotaxia , Monócitos , Receptores de Quimiocinas , Receptores de Vasopressinas , Humanos , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Células THP-1 , Multimerização Proteica , Células HEK293 , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Sistemas CRISPR-Cas , Transdução de Sinais , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/genética , Ligantes
16.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709918

RESUMO

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Assuntos
Ansiedade , Arginina Vasopressina , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Ansiedade/metabolismo , Arginina Vasopressina/metabolismo , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia
17.
Horm Behav ; 163: 105563, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772158

RESUMO

Vasopressin (AVP) regulates various social behaviors, often in sex-specific ways, including social play behavior, a rewarding behavior displayed primarily by juveniles. Here, we examined whether and how AVP acting in the brain's reward system regulates social play behavior in juvenile rats. Specifically, we focused on AVP signaling in the ventral pallidum (VP), a brain region that is a part of the reward system. First, we examined the organization of the VP-AVP system in juvenile rats and found sex differences, with higher density of both AVP-immunoreactive fibers and AVP V1a receptor (V1aR) binding in males compared to females while females show a greater number of V1aR-expressing cells compared to males. We further found that, in both sexes, V1aR-expressing cells co-express a GABA marker to a much greater extent (approx. 10 times) than a marker for glutamate. Next, we examined the functional involvement of V1aR-expressing VP cells in social play behavior. We found that exposure to social play enhanced the proportion of activated V1aR-expressing VP cells in males only. Finally, we showed that infusion of a specific V1aR antagonist into the VP increased social play behaviors in juvenile male rats while decreasing these behaviors in juvenile female rats. Overall, these findings reveal structural and functional sex differences in the AVP-V1aR system in the VP that are associated with the sex-specific regulation of social play behavior.


Assuntos
Prosencéfalo Basal , Receptores de Vasopressinas , Caracteres Sexuais , Comportamento Social , Vasopressinas , Animais , Masculino , Feminino , Ratos , Receptores de Vasopressinas/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Vasopressinas/metabolismo , Jogos e Brinquedos , Arginina Vasopressina/metabolismo , Comportamento Animal/fisiologia , Ratos Long-Evans , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia
18.
Peptides ; 178: 171239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723948

RESUMO

Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.


Assuntos
Receptores de Vasopressinas , Transdução de Sinais , Vasotocina , Animais , Vasotocina/farmacologia , Vasotocina/metabolismo , Receptores de Vasopressinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Takifugu/metabolismo , Injeções Intraperitoneais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ansiedade/metabolismo , Ansiedade/induzido quimicamente , Telencéfalo/metabolismo , Telencéfalo/efeitos dos fármacos
19.
PLoS One ; 19(5): e0303507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748623

RESUMO

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Assuntos
Diabetes Insípido Nefrogênico , Receptores de Vasopressinas , Animais , Humanos , beta-Arrestinas/metabolismo , AMP Cíclico/metabolismo , Desamino Arginina Vasopressina/farmacologia , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Células HEK293 , Mutação , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Peptides ; 179: 171253, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38821120

RESUMO

The highly conserved oxytocin/vasopressin family of nonapeptides plays many roles across the animal kingdom, from osmoregulation to reproductive physiology. We investigated the expression patterns and pharmacological effects of the gastropod ortholog of this peptide, conopressin, along with another peptide involved in gastropod reproduction, APGWamide, in the nudibranch Berghia stephanieae. A brain transcriptome was used to identify and annotate the gene sequences for the peptides and one conopressin receptor. In-situ hybridization chain reaction showed that many neurons in the brain expressed these peptides. However, the peptide genes were co-expressed by only three neurons, which were in the right cerebral ganglion, the same side on which the reproductive organs are located. A conopressin receptor (BSCPR1) was expressed in a prominent population of APGWamide expressing neurons. Placing animals in a solution containing the APGWamide peptide caused minimal behavioral changes. However, exposure to conopressin reduced locomotion, increased gut contractions, and caused voiding at high concentration. The genes for these peptides and BSCPR1 were expressed in cells in the digestive system. BSCPR1 was also expressed by a line of neurons on the anterior portion of the radula and would be contacted during feeding. APGWamide-expressing neurons were found in the genital ganglion. All three genes expressed in cells on sensory appendages. These results are consistent with the conopressin playing a variety of roles in the brain and the body and being involved in both reproduction and digestion. This study sheds light on the function of this ancient nonapeptide in a new-to-neuroscience invertebrate species.


Assuntos
Gastrópodes , Vasopressinas , Animais , Gastrópodes/genética , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Ocitocina/farmacologia , Ocitocina/análogos & derivados , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA