Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(9): e70008, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39290152

RESUMO

Antiviral responses induced by double-stranded RNA (dsRNA) include RNA interference (RNAi) and pattern-triggered immunity (PTI), but their relative contributions to antiviral defence are not well understood. We aimed at testing the impact of exogenous applied dsRNA on both layers of defence against potato virus X expressing GFP (PVX-GFP) in Nicotiana benthamiana. Co-inoculation of PVX-GFP with either sequence-specific (RNAi) or nonspecific dsRNA (PTI) showed that nonspecific dsRNA reduced virus accumulation in both inoculated and systemic leaves. However, nonspecific dsRNA was a poor inducer of antiviral immunity compared to a sequence-specific dsRNA capable of triggering the RNAi response, and plants became susceptible to systemic infection. Studies with a PVX mutant unable to move from cell to cell indicated that the interference with PVX-GFP triggered by nonspecific dsRNA operated at the single-cell level. Next, we performed RNA-seq analysis to examine similarities and differences in the transcriptome triggered by dsRNA alone or in combination with viruses harbouring sequences targeted or not by dsRNA. Enrichment analysis showed an over-representation of plant-pathogen signalling pathways, such as calcium, ethylene and MAPK signalling, which are typical of antimicrobial PTI. Moreover, the transcriptomic response to the virus targeted by dsRNA had a greater impact on defence than the non-targeted virus, highlighting qualitative differences between sequence-specific RNAi and nonspecific PTI responses. Together, these results further our understanding of plant antiviral defence, particularly the contribution of nonspecific dsRNA-mediated PTI. We envisage that both sequence-specific RNAi and nonspecific PTI pathways may be triggered via topical application of dsRNA, contributing cumulatively to plant protection against viruses.


Assuntos
Nicotiana , Doenças das Plantas , Imunidade Vegetal , Potexvirus , Interferência de RNA , RNA de Cadeia Dupla , Nicotiana/virologia , Nicotiana/imunologia , Nicotiana/genética , Imunidade Vegetal/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Reconhecimento da Imunidade Inata
2.
Proc Natl Acad Sci U S A ; 121(33): e2411100121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116132

RESUMO

Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.


Assuntos
Adenosina , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reconhecimento da Imunidade Inata
3.
Nat Commun ; 15(1): 7048, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147739

RESUMO

Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reconhecimento da Imunidade Inata , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Reconhecimento da Imunidade Inata/genética , Metabolômica , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/imunologia , Prolina/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais , Virulência
4.
Curr Opin Plant Biol ; 81: 102619, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39178641

RESUMO

Plant-specific receptor-like protein kinases (RLKs) are essential for pathogen recognition during pattern-triggered immunity. Together with coreceptors and associated proteins, they act as bona fide immune receptors, perceiving a variety of microbe-associated molecular patterns or damage-associated molecular patterns. The cysteine-rich receptor-like kinases (CRKs) form one of the biggest subgroups of RLKs, but so far, their ligands have not been identified. It has been shown that CRKs play important roles in plant immunity and defense responses as well as in response to abiotic stimuli and in control of plant development. However, molecular information on how CRKs integrate with the known framework of signaling components controlling early defense responses remains enigmatic.


Assuntos
Imunidade Vegetal , Proteínas Quinases , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Cisteína/metabolismo , Reconhecimento da Imunidade Inata
5.
PLoS One ; 19(6): e0297124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833485

RESUMO

In this research, a high-throughput RNA sequencing-based transcriptome analysis technique (RNA-Seq) was used to evaluate differentially expressed genes (DEGs) in the wild type Arabidopsis seedlings in response to AtPep1, a well-known peptide representing an endogenous damage-associated molecular pattern (DAMP), and flg22, a well-known microbe-associated molecular pattern (MAMP). We compared and dissected the global transcriptional landscape of Arabidopsis thaliana in response to AtPep1 and flg22 and could identify shared and unique DEGs in response to these elicitors. We found that while a remarkable number of flg22 up-regulated genes were also induced by AtPep1, 256 genes were exclusively up-regulated in response to flg22, and 328 were exclusively up-regulated in response to AtPep1. Furthermore, among down-regulated DEGs upon flg22 treatment, 107 genes were exclusively down-regulated by flg22 treatment, while 411 genes were exclusively down-regulated by AtPep1. We found a number of hitherto overlooked genes to be induced upon treatment with either flg22 or with AtPep1, indicating their possible involvement general pathways in innate immunity. Here, we characterized two of them, namely PP2-B13 and ACLP1. pp2-b13 and aclp1 mutants showed increased susceptibility to infection by the virulent pathogen Pseudomonas syringae DC3000 and its mutant Pst DC3000 hrcC (lacking the type III secretion system), as evidenced by increased proliferation of the two pathogens in planta. Further, we present evidence that the aclp1 mutant is deficient in ethylene production upon flg22 treatment, while the pp2-b13 mutant is deficient in the production of reactive oxygen species (ROS). The results from this research provide new information for a better understanding of the immune system in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , RNA-Seq/métodos , Pseudomonas syringae/patogenicidade , Perfilação da Expressão Gênica , Reconhecimento da Imunidade Inata
7.
Mol Plant Pathol ; 25(3): e13445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528659

RESUMO

The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.


Assuntos
Reconhecimento da Imunidade Inata , Imunidade Vegetal , Imunidade Vegetal/fisiologia , Plantas , Resistência à Doença , Doenças das Plantas , Receptores de Reconhecimento de Padrão
8.
Science ; 383(6686): eabm9903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422126

RESUMO

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Assuntos
Bactérias , Infecções Bacterianas , Membrana Celular , Proteínas de Ligação ao GTP , Reconhecimento da Imunidade Inata , Humanos , Citocinas/química , Tomografia com Microscopia Eletrônica , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Hidrólise , Imunidade Celular , Microscopia Crioeletrônica , Gasderminas/química , Proteínas de Ligação a Fosfato/química , Conformação Proteica , Membrana Celular/química , Membrana Celular/imunologia , Caspases Iniciadoras/química , Infecções Bacterianas/imunologia , Bactérias/imunologia
9.
New Phytol ; 242(2): 576-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362937

RESUMO

Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest class of membrane-localized receptor-like kinases in plants. Leucine-rich repeat receptor-like kinases are key immune sectors contributing to pattern-triggered immunity (PTI), but whether LRR-RLK mediates effector-triggered immunity (ETI) in plants remains unclear. In this study, we evaluated the function of LRR-RLKs in regulating ETI by using a virus-induced gene silencing (VIGS)-based reverse genetic screening assay, and identified a LRR-RLK named ETI-dependent receptor-like kinase 1 (EDK1) required for ETI triggered by the avirulence effector AVRblb2 secreted by Phytophthora infestans and its cognate receptor Rpi-blb2. Silencing or knockout of EDK1 compromised immunity mediated by Rpi-blb2 and the cell death triggered by recognition of AVRblb2. NLR-required for cell death 4 (NRC4), a signaling component acts downstream of Rpi-blb2, was identified that interacts with EDK1 using the LC-MS analysis and the interaction was further evaluated by co-immunoprecipitation. EDK1 promotes protein accumulation of NRC4 in a kinase-dependent manner and positively regulates resistance to P. infestans in Nicotiana benthamiana. Our study revealed that EDK1 positively regulates plant ETI through modulating accumulation of the NLR signaling component NRC4, representing a new regulatory role of the membrane-localized LRR-RLKs in plant immunity.


Assuntos
Reconhecimento da Imunidade Inata , Nicotiana , Nicotiana/genética , Leucina , Plantas , Imunidade Vegetal , Morte Celular , Doenças das Plantas/genética
10.
Nature ; 627(8005): 873-879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418882

RESUMO

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Assuntos
Proteínas Nucleares , Nucleossomos , Nucleotidiltransferases , Proteólise , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , Microscopia Crioeletrônica , Degrons , Infecções por Vírus de DNA/imunologia , Vírus de DNA/imunologia , Vírus de DNA/metabolismo , DNA Viral/imunologia , DNA Viral/metabolismo , Imunidade Inata , Reconhecimento da Imunidade Inata , Interferon Tipo I/imunologia , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação
11.
Biochem Biophys Res Commun ; 700: 149568, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38306931

RESUMO

Rice is a staple crop continually threatened by bacterial and fungal pathogens. OsWRKY transcription factors are involved in various disease responses. However, the functions of many OsWRKYs are still elusive. In this study, we demonstrated that OsWRKY7 enhances rice immunity against Xanthomonas oryzae pv. oryzae (Xoo). OsWRKY7 localized in the nucleus, and gene expression of OsWRKY7 was induced by Xoo inoculation. The OsWRKY7-overexpressing lines showed enhanced resistant phenotype against Xoo, and gene expressions of OsPR1a, OsPR1b, and OsPR10a were significantly increased in the transgenic lines after Xoo inoculation. Moreover, OsWRKY7 activated the OsPR promoters, and the promoter activities were synergistically upregulated by flg22. Genetic- and cell-based analysis showed OsWRKY7 is involved in pattern-triggered immunity against Xoo. These results suggest that OsWRKY7 plays a role as a positive regulator of disease resistance to Xoo through pattern-triggered immunity.


Assuntos
Oryza , Xanthomonas , Reconhecimento da Imunidade Inata , Xanthomonas/fisiologia , Regiões Promotoras Genéticas , Resistência à Doença/genética , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
12.
Plant Mol Biol ; 114(1): 7, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265485

RESUMO

KEY MESSAGE: Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.


Assuntos
Arabidopsis , Reconhecimento da Imunidade Inata , Imunidade Inata , Proteínas de Plantas , Penicilina V , Ligases
13.
Plant Cell ; 36(2): 471-488, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37820743

RESUMO

Plants produce a burst of reactive oxygen species (ROS) after pathogen infection to successfully activate immune responses. During pattern-triggered immunity (PTI), ROS are primarily generated by the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). RBOHD is degraded in the resting state to avoid inappropriate ROS production; however, the enzyme mediating RBOHD degradation and how to prevent RBOHD degradation after pathogen infection is unclear. In this study, we identified an Arabidopsis (Arabidopsis thaliana) vacuole-localized papain-like cysteine protease, XYLEM CYSTEINE PEPTIDASE 1 (XCP1), and its inhibitor CYSTATIN 6 (CYS6). Pathogen-associated molecular pattern-induced ROS burst and resistance were enhanced in the xcp1 mutant but were compromised in the cys6 mutant, indicating that XCP1 and CYS6 oppositely regulate PTI responses. Genetic and biochemical analyses revealed that CYS6 interacts with XCP1 and depends on XCP1 to enhance PTI. Further experiments showed that XCP1 interacts with RBOHD and accelerates RBOHD degradation in a vacuole-mediated manner. CYS6 inhibited the protease activity of XCP1 toward RBOHD, which is critical for RBOHD accumulation upon pathogen infection. As CYS6, XCP1, and RBOHD are conserved in all plant species tested, our findings suggest the existence of a conserved strategy to precisely regulate ROS production under different conditions by modulating the stability of RBOHD.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cistatina M/metabolismo , Reconhecimento da Imunidade Inata , Arabidopsis/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Cisteína Proteases/metabolismo , Imunidade Vegetal/genética
14.
New Phytol ; 241(3): 1277-1291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013595

RESUMO

Transient and rapid increase in cytosolic Ca2+ plays a crucial role in plant-pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Cyclic nucleotide-gated channels (CNGCs) have been implicated in mediating this Ca2+ influx; however, their regulatory mechanisms remain poorly understood. Here, we have found that AVRblb2 requires the calmodulin (CaM) and calmodulin-like (CML) proteins as co-factors to interact with the NbCNGCs, resulting in the formation of AVRblb2-CaM/CML-NbCNGCs complex. Furthermore, CaM and CML are dissociated from NbCNGC18 during PTI response to increase Ca2+ influx; however, Avrblb2 inhibits calcium channel activation by disrupting the release of CaM and CML from NbCNGC18. Following recognition of PAMP, NbCNGC18 forms active heteromeric channels with other NbCNGCs, which may give selectivity of CNGC complex against diverse signals for fine-tuning of cytosolic Ca2+ level to mediate appropriate responses. Silencing of multiple NbCNGCs compromised the function of AVRblb2 on the pathogenicity of Phytophthora infestans, confirming that AVRblb2 contributes to pathogen virulence by targeting CNGCs. Our findings provide new insights into the regulation of CNGCs in PTI and the role of pathogen effectors in manipulating host cell physiology to promote infection.


Assuntos
Calmodulina , Phytophthora infestans , Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Cálcio/metabolismo , Reconhecimento da Imunidade Inata , Phytophthora infestans/metabolismo , Nucleotídeos Cíclicos/metabolismo , Imunidade Vegetal
15.
Mol Plant Pathol ; 25(1): e13403, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988240

RESUMO

Bacterial biofilm-like aggregates have been observed in plants, but their role in pathogenicity is underinvestigated. In the present study, we observed that extracellular DNA and polysaccharides colocalized with green fluorescent protein (GFP)-expressing Pseudomonas syringae pv. tomato (Pst) aggregates in Arabidopsis leaves, suggesting that Pst aggregates are biofilms. GFP-expressing Pst, Pst ΔalgU ΔmucAB (Pst algU mutant), and Pst ΔalgD ΔalgU ΔmucAB (Pst algU algD mutant) were examined to explore the roles of (1) alginate, a potential biofilm component; (2) Pst AlgU, thought to regulate alginate biosynthesis and some type III secretion system effector genes; and (3) intercellular salicylic acid (SA) accumulation during pathogen-associated molecular pattern-triggered immunity (PTI). Pst formed extensive aggregates in susceptible plants, whereas aggregate numbers and size were reduced in Pst algU and Pst algD algU mutants, and both multiplied poorly in planta, suggesting that aggregate formation contributes to Pst success in planta. However, in SA-deficient sid2-2 plants, Pst algD algU mutant multiplication and aggregate formation were partially restored, suggesting plant-produced SA contributes to suppression of Pst aggregate formation. Pst algD algU mutants formed fewer and smaller aggregates than Pst algU mutants, suggesting both AlgU and AlgD contribute to Pst aggregate formation. Col-0 plants accumulated low levels of SA in response to Pst and both mutants (Pst algU and Pst algD algU), suggesting the regulatory functions of AlgU are not involved in suppressing SA-mediated plant defence. Plant PTI was associated with highly reduced Pst aggregate formation and accumulation of intercellular SA in flg22-induced PTI-responding wild-type Col-0, but not in PTI-incompetent fls2, suggesting intercellular SA accumulation by Arabidopsis contributes to suppression of Pst biofilm-like aggregate formation during PTI.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pseudomonas syringae/fisiologia , Solanum lycopersicum/genética , Reconhecimento da Imunidade Inata , Ácido Salicílico/metabolismo , Alginatos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
16.
J Mol Biol ; 436(4): 168424, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159716

RESUMO

Genomic stability relies on a multifaceted and evolutionarily conserved DNA damage response (DDR). In multicellular organisms, an integral facet of the DDR involves the activation of the immune system to eliminate cells with persistent DNA damage. Recent research has shed light on a complex array of nucleic acid sensors crucial for innate immune activation in response to oncogenic stress-associated DNA damage, a process vital for suppressing tumor formation. Yet, these immune sensing pathways may also be co-opted to foster tolerance of chromosomal instability, thereby driving cancer progression. This review aims to provide an updated overview of how the innate immune system detects and responds to DNA damage. An improved understanding of the regulatory intricacies governing this immune response may uncover new avenues for cancer prevention and therapeutic intervention.


Assuntos
Dano ao DNA , Reconhecimento da Imunidade Inata , Neoplasias , Humanos , Dano ao DNA/imunologia , Reparo do DNA , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia
17.
Cell Rep ; 42(10): 113261, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37847589

RESUMO

Cyclic di-guanosine monophosphate (c-di-GMP) is a unique bacterial second messenger but is hijacked by host cells during bacterial infection as a pathogen-associated molecular pattern (PAMP) to trigger STING-dependent immune responses. Here, we show that upon infection, VopY, an effector of Vibrio parahaemolyticus, is injected into host cells by type III secretion system 2 (T3SS2), a secretion system unique to its pathogenic strains and indispensable for enterotoxicity. VopY is an EAL-domain-containing phosphodiesterase and is capable of hydrolyzing c-di-GMP. VopY expression in host cells prevents the activation of STING and STING-dependent downstream signaling triggered by c-di-GMP and, consequently, suppresses type I interferon immune responses. The presence of VopY in V. parahaemolyticus enables it to cause both T3SS2-dependent enterotoxicity and cytotoxicity. These findings uncover the destruction of self-derived PAMPs by injecting specific effectors to suppress PAMP-triggered immune responses as a unique strategy for bacterial pathogens to subvert immunity and cause disease.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/metabolismo , Virulência , Reconhecimento da Imunidade Inata , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo
18.
Nature ; 621(7978): 423-430, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674078

RESUMO

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Assuntos
Códon de Iniciação , Conformação de Ácido Nucleico , RNA de Cadeia Dupla , RNA Mensageiro , Humanos , Arabidopsis/genética , Arabidopsis/imunologia , Códon de Iniciação/genética , Reconhecimento da Imunidade Inata , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Ribossomos/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , Transcriptoma , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Aprendizado Profundo
19.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37642998

RESUMO

In this issue of JEM, companion articles from Pinilla et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20230104) and Robinson et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20230105) demonstrate that ribotoxic stress induced by Pseudomonas aeruginosa and Corynebacterium diphtheriae EEF2-targeting exotoxins leads to NLRP1 inflammasome activation, representing a new mechanism of effector-triggered immunity.


Assuntos
Exotoxinas , Inflamassomos , Humanos , Reconhecimento da Imunidade Inata , Transtornos da Memória , Proteínas NLR
20.
Plant Physiol ; 194(1): 137-152, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647538

RESUMO

The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a ß-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Reconhecimento da Imunidade Inata , Glucanos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Celulose/metabolismo , Imunidade Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA