Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.394
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783169

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Região CA1 Hipocampal , Regulação para Baixo , Plasticidade Neuronal , Neurônios , Complicações Cognitivas Pós-Operatórias , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Neurônios/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Região CA1 Hipocampal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Potenciação de Longa Duração , Ácido Glutâmico/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia
2.
Sci Rep ; 14(1): 11713, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778177

RESUMO

The development of neurons is regulated by several spatiotemporally changing factors, which are crucial to give the ability of neurons to form functional networks. While external physical stimuli may impact the early developmental stages of neurons, the medium and long-term consequences of these influences have yet to be thoroughly examined. Using an animal model, this study focuses on the morphological and transcriptome changes of the hippocampus that may occur as a consequence of fetal ultrasound examination. We selectively labeled CA1 neurons of the hippocampus with in-utero electroporation to analyze their morphological features. Furthermore, certain samples also went through RNA sequencing after repetitive ultrasound exposure. US exposure significantly changed several morphological properties of the basal dendritic tree. A notable increase was also observed in the density of spines on the basal dendrites, accompanied by various alterations in individual spine morphology. Transcriptome analysis revealed several up or downregulated genes, which may explain the molecular background of these alterations. Our results suggest that US-derived changes in the dendritic trees of CA1 pyramidal cells might be connected to modification of the transcriptome of the hippocampus and may lead to an increased dendritic input.


Assuntos
Região CA1 Hipocampal , Dendritos , Transcriptoma , Animais , Região CA1 Hipocampal/metabolismo , Dendritos/metabolismo , Feminino , Gravidez , Células Piramidais/metabolismo , Camundongos , Hipocampo/metabolismo , Perfilação da Expressão Gênica , Espinhas Dendríticas/metabolismo , Ultrassonografia Pré-Natal
3.
Nat Commun ; 15(1): 4053, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744848

RESUMO

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Assuntos
Callithrix , Hipocampo , Navegação Espacial , Animais , Callithrix/fisiologia , Navegação Espacial/fisiologia , Hipocampo/fisiologia , Masculino , Locomoção/fisiologia , Visão Ocular/fisiologia , Células Piramidais/fisiologia , Movimentos da Cabeça/fisiologia , Interneurônios/fisiologia , Feminino , Comportamento Animal/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia
4.
Nat Commun ; 15(1): 4122, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750027

RESUMO

Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.


Assuntos
Córtex Entorrinal , Neurônios , Navegação Espacial , Córtex Visual , Animais , Córtex Entorrinal/fisiologia , Córtex Visual/fisiologia , Navegação Espacial/fisiologia , Camundongos , Neurônios/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
5.
Nat Commun ; 15(1): 4100, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773091

RESUMO

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Hipocampo , Aprendizagem , Potenciação de Longa Duração , Optogenética , Área Tegmentar Ventral , Animais , Potenciação de Longa Duração/fisiologia , Área Tegmentar Ventral/fisiologia , Masculino , Dopamina/metabolismo , Camundongos , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Hipocampo/fisiologia , Hipocampo/metabolismo , Aprendizagem/fisiologia , Camundongos Transgênicos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Sinapses/fisiologia , Sinapses/metabolismo , Camundongos Endogâmicos C57BL , Memória/fisiologia
6.
PLoS Comput Biol ; 20(5): e1012085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709845

RESUMO

Alzheimer's Disease (AD) is characterized by a range of behavioral alterations, including memory loss and psychiatric symptoms. While there is evidence that molecular pathologies, such as amyloid beta (Aß), contribute to AD, it remains unclear how this histopathology gives rise to such disparate behavioral deficits. One hypothesis is that Aß exerts differential effects on neuronal circuits across brain regions, depending on the neurophysiology and connectivity of different areas. To test this, we recorded from large neuronal populations in dorsal CA1 (dCA1) and ventral CA1 (vCA1), two hippocampal areas known to be structurally and functionally diverse, in the APP/PS1 mouse model of amyloidosis. Despite similar levels of Aß pathology, dCA1 and vCA1 showed distinct disruptions in neuronal population activity as animals navigated a virtual reality environment. In dCA1, pairwise correlations and entropy, a measure of the diversity of activity patterns, were decreased in APP/PS1 mice relative to age-matched C57BL/6 controls. However, in vCA1, APP/PS1 mice had increased pair-wise correlations and entropy as compared to age matched controls. Finally, using maximum entropy models, we connected the microscopic features of population activity (correlations) to the macroscopic features of the population code (entropy). We found that the models' performance increased in predicting dCA1 activity, but decreased in predicting vCA1 activity, in APP/PS1 mice relative to the controls. Taken together, we found that Aß exerts distinct effects across different hippocampal regions, suggesting that the various behavioral deficits of AD may reflect underlying heterogeneities in neuronal circuits and the different disruptions that Aß pathology causes in those circuits.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Região CA1 Hipocampal , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Região CA1 Hipocampal/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Masculino , Biologia Computacional , Neurônios/metabolismo , Neurônios/patologia
7.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695551

RESUMO

Recent studies show that, even in constant environments, the tuning of single neurons changes over time in a variety of brain regions. This representational drift has been suggested to be a consequence of continuous learning under noise, but its properties are still not fully understood. To investigate the underlying mechanism, we trained an artificial network on a simplified navigational task. The network quickly reached a state of high performance, and many units exhibited spatial tuning. We then continued training the network and noticed that the activity became sparser with time. Initial learning was orders of magnitude faster than ensuing sparsification. This sparsification is consistent with recent results in machine learning, in which networks slowly move within their solution space until they reach a flat area of the loss function. We analyzed four datasets from different labs, all demonstrating that CA1 neurons become sparser and more spatially informative with exposure to the same environment. We conclude that learning is divided into three overlapping phases: (i) Fast familiarity with the environment; (ii) slow implicit regularization; and (iii) a steady state of null drift. The variability in drift dynamics opens the possibility of inferring learning algorithms from observations of drift statistics.


Assuntos
Neurônios , Animais , Neurônios/fisiologia , Aprendizado de Máquina , Redes Neurais de Computação , Aprendizagem , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Ratos
8.
Nat Commun ; 15(1): 3702, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697969

RESUMO

Hippocampal place cells represent the position of a rodent within an environment. In addition, recent experiments show that the CA1 subfield of a passive observer also represents the position of a conspecific performing a spatial task. However, whether this representation is allocentric, egocentric or mixed is less clear. In this study we investigated the representation of others during free behavior and in a task where female mice learned to follow a conspecific for a reward. We found that most cells represent the position of others relative to self-position (social-vector cells) rather than to the environment, with a prevalence of purely egocentric coding modulated by context and mouse identity. Learning of a pursuit task improved the tuning of social-vector cells, but their number remained invariant. Collectively, our results suggest that the hippocampus flexibly codes the position of others in multiple coordinate systems, albeit favoring the self as a reference point.


Assuntos
Região CA1 Hipocampal , Animais , Feminino , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Células de Lugar/fisiologia , Recompensa , Comportamento Animal/fisiologia
9.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38565288

RESUMO

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Camundongos Endogâmicos C57BL , Transdução de Sinais , Canais de Cátion TRPM , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Camundongos , Canais de Cátion TRPM/metabolismo , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Receptores de GABA-A/metabolismo , Hipocampo/metabolismo , Inibição Neural/fisiologia , Neurônios GABAérgicos/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/metabolismo
10.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607918

RESUMO

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Assuntos
Região CA1 Hipocampal , Interneurônios , Reconhecimento Psicológico , Peptídeo Intestinal Vasoativo , Animais , Interneurônios/metabolismo , Interneurônios/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/citologia , Camundongos , Masculino , Reconhecimento Psicológico/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Camundongos Endogâmicos C57BL , Memória/fisiologia , Parvalbuminas/metabolismo , Comportamento Exploratório/fisiologia , Somatostatina/metabolismo
11.
Ann N Y Acad Sci ; 1535(1): 62-75, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602714

RESUMO

Hippocampal pyramidal neuronal activity has been previously studied using conventional patch clamp in isolated cells and brain slices. We here introduce the loose patch clamping study of voltage-activated currents from in situ pyramidal neurons in murine cornus ammonis 1 hippocampal coronal slices. Depolarizing pulses of 15-ms duration elicited early transient inward, followed by transient and prolonged outward currents in the readily identifiable junctional region between the stratum pyramidalis (SP) and oriens (SO) containing pyramidal cell somas and initial segments. These resembled pyramidal cell currents previously recorded using conventional patch clamp. Shortening the depolarizing pulses to >1-2 ms continued to evoke transient currents; hyperpolarizing pulses to varying voltages evoked decays whose time constants could be shortened to <1 ms, clarifying the speed of clamping in this experimental system. The inward and outward currents had distinct pharmacological characteristics and voltage-dependent inactivation and recovery from inactivation. Comparative recordings from the SP, known to contain pyramidal cell somas, demonstrated similar current properties. Recordings from the SO and stratum radiatum demonstrated smaller inward and outward current magnitudes and reduced transient outward currents, consistent with previous conventional patch clamp results from their different interneuron types. The loose patch clamp method is thus useful for in situ studies of neurons in hippocampal brain slices.


Assuntos
Técnicas de Patch-Clamp , Células Piramidais , Animais , Técnicas de Patch-Clamp/métodos , Camundongos , Células Piramidais/fisiologia , Potenciais da Membrana/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Camundongos Endogâmicos C57BL , Masculino
12.
Cell Rep ; 43(4): 114100, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607921

RESUMO

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.


Assuntos
Região CA1 Hipocampal , Dendritos , Células Piramidais , Humanos , Células Piramidais/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Animais , Masculino , Camundongos , Dendritos/fisiologia , Feminino , Pessoa de Meia-Idade , Idoso , Ritmo Teta/fisiologia , Adulto
13.
Neuroimage ; 292: 120607, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614372

RESUMO

INTRODUCTION: In Alzheimer's disease (AD), early diagnosis facilitates treatment options and leads to beneficial outcomes for patients, their carers and the healthcare system. The neuropsychological battery of the Uniform Data Set (UDSNB3.0) assesses cognition in ageing and dementia, by measuring scores across different cognitive domains such as attention, memory, processing speed, executive function and language. However, its neuroanatomical correlates have not been investigated using 7 Tesla MRI (7T MRI). METHODS: We used 7T MRI to investigate the correlations between hippocampal subfield volumes and the UDSNB3.0 in 24 individuals with Amyloidß-status AD and 18 age-matched controls, with respective age ranges of 60 (42-76) and 62 (52-79) years. AD participants with a Medial Temporal Atrophy scale of higher than 2 on 3T MRI were excluded from the study. RESULTS: A significant difference in the entire hippocampal volume was observed in the AD group compared to healthy controls (HC), primarily influenced by CA1, the largest hippocampal subfield. Notably, no significant difference in whole brain volume between the groups implied that hippocampal volume loss was not merely reflective of overall brain atrophy. UDSNB3.0 cognitive scores showed significant differences between AD and HC, particularly in Memory, Language, and Visuospatial domains. The volume of the Dentate Gyrus (DG) showed a significant association with the Memory and Executive domain scores in AD patients as assessed by the UDSNB3.0.. The data also suggested a non-significant trend for CA1 volume associated with UDSNB3.0 Memory, Executive, and Language domain scores in AD. In a reassessment focusing on hippocampal subfields and MoCA memory subdomains in AD, associations were observed between the DG and Cued, Uncued, and Recognition Memory subscores, whereas CA1 and Tail showed associations only with Cued memory. DISCUSSION: This study reveals differences in the hippocampal volumes measured using 7T MRI, between individuals with early symptomatic AD compared with healthy controls. This highlights the potential of 7T MRI as a valuable tool for early AD diagnosis and the real-time monitoring of AD progression and treatment efficacy. CLINICALTRIALS: GOV: ID NCT04992975 (Clinicaltrial.gov 2023).


Assuntos
Doença de Alzheimer , Região CA1 Hipocampal , Giro Denteado , Imageamento por Ressonância Magnética , Transtornos da Memória , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Idoso , Giro Denteado/diagnóstico por imagem , Giro Denteado/patologia , Pessoa de Meia-Idade , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/patologia , Adulto , Peptídeos beta-Amiloides/metabolismo
14.
Math Biosci ; 372: 109192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640998

RESUMO

Computational models of brain regions are crucial for understanding neuronal network dynamics and the emergence of cognitive functions. However, current supercomputing limitations hinder the implementation of large networks with millions of morphological and biophysical accurate neurons. Consequently, research has focused on simplified spiking neuron models, ranging from the computationally fast Leaky Integrate and Fire (LIF) linear models to more sophisticated non-linear implementations like Adaptive Exponential (AdEX) and Izhikevic models, through Generalized Leaky Integrate and Fire (GLIF) approaches. However, in almost all cases, these models are tuned (and can be validated) only under constant current injections and they may not, in general, also reproduce experimental findings under variable currents. This study introduces an Adaptive GLIF (A-GLIF) approach that addresses this limitation by incorporating a new set of update rules. The extended A-GLIF model successfully reproduces both constant and variable current inputs, and it was validated against the results obtained using a biophysical accurate model neuron. This enhancement provides researchers with a tool to optimize spiking neuron models using classic experimental traces under constant current injections, reliably predicting responses to synaptic inputs, which can be confidently used for large-scale network implementations.


Assuntos
Região CA1 Hipocampal , Interneurônios , Modelos Neurológicos , Células Piramidais , Células Piramidais/fisiologia , Interneurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Animais , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Simulação por Computador
15.
Neurobiol Aging ; 139: 20-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583392

RESUMO

Brazilian green propolis (propolis) is a chemically complex resinous substance that is a potentially viable therapeutic agent for Alzheimer's disease. Herein, propolis induced a transient increase in intracellular Ca2+ concentration ([Ca2+]i) in Neuro-2A cells; moreover, propolis-induced [Ca2+]i elevations were suppressed prior to 24-h pretreatment with amyloid-ß. To reveal the effect of [Ca2+]i elevation on impaired cognition, we performed memory-related behavioral tasks in APP-KI mice relative to WT mice at 4 and 12 months of age. Propolis, at 300-1000 mg/kg/d for 8 wk, significantly ameliorated cognitive deficits in APP-KI mice at 4 months, but not at 12 months of age. Consistent with behavioral observations, injured hippocampal long-term potentiation was markedly ameliorated in APP-KI mice at 4 months of age following repeated propolis administration. In addition, repeated administration of propolis significantly activated intracellular calcium signaling pathway in the CA1 region of APP-KI mice. These results suggest a preventive effect of propolis on cognitive decline through the activation of intracellular calcium signaling pathways in CA1 region of AD mice model.


Assuntos
Doença de Alzheimer , Cálcio , Disfunção Cognitiva , Modelos Animais de Doenças , Própole , Animais , Própole/uso terapêutico , Própole/administração & dosagem , Própole/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/psicologia , Doença de Alzheimer/etiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Cálcio/metabolismo , Camundongos Transgênicos , Sinalização do Cálcio/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Camundongos
16.
Pharmacol Res ; 203: 107176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583687

RESUMO

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Assuntos
Canabidiol , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Hipocampo , Receptores de Canabinoides , Reconhecimento Psicológico , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptores de Canabinoides/metabolismo , Masculino , Reconhecimento Psicológico/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Memória/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Acoplamento Molecular
17.
Life Sci ; 346: 122618, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614306

RESUMO

AIMS: This study was designed to investigate the role of growth arrest and DNA damage-inducible ß (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS: Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS: Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE: These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.


Assuntos
Região CA1 Hipocampal , Medo , Proteínas GADD45 , Camundongos Endogâmicos C57BL , Animais , Masculino , Medo/fisiologia , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Cognição/fisiologia , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Técnicas de Silenciamento de Genes
18.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605605

RESUMO

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Assuntos
Envelhecimento , Disfunção Cognitiva , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Disfunção Cognitiva/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Camundongos , Humanos , Envelhecimento/fisiologia , Masculino , Região CA1 Hipocampal/metabolismo , Células Piramidais/metabolismo , Receptor trkB/metabolismo , Leucócitos Mononucleares/metabolismo , Idoso , Feminino , Camundongos Endogâmicos C57BL
19.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656542

RESUMO

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Assuntos
Comportamento Exploratório , Hipocampo , Plasticidade Neuronal , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo , Animais , Masculino , Ratos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Comportamento Exploratório/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Wistar , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
20.
Mar Drugs ; 22(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667787

RESUMO

Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.


Assuntos
Região CA1 Hipocampal , Gerbillinae , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Sefarose/análogos & derivados , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Polissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA