Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
BMC Cancer ; 22(1): 49, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998382

RESUMO

BACKGROUND: Colorectal cancer (CRC) represents a common malignancy in gastrointestinal tract. Iodine-125 (125I) seed implantation is an emerging treatment technology for unresectable tumors. This study investigated the mechanism of 125I seed in the function of CRC cells. METHODS: The CRC cells were irradiated with different doses of 125I seed (0.4, 0.6 and 0.8 mCi). miR-615 expression in CRC tissues and adjacent tissues was detected by RT-qPCR. miR-615 expression was intervened with miR-615 mimic or miR-615 inhibitor, and then the CRC cells were treated with 5-AZA (methylation inhibitor). The CRC cell growth, invasion and apoptosis were measured. The methylation level of miR-615 promoter region was detected. The xenograft tumor model irradiated by 125I seed was established in nude mice. The methylation of miR-615, Ki67 expression and CRC cell apoptosis were detected. RESULTS: 125I seed irradiation repressed the growth and facilitated apoptosis of CRC cells in a dose-dependent manner. Compared with adjacent tissues, miR-615 expression in CRC tissues was downregulated and miR-615 was poorly expressed in CRC cells. Overexpression of miR-615 suppressed the growth of CRC cells. 125I seed-irradiated CRC cells showed increased miR-615 expression, reduced growth rate and enhanced apoptosis. The methylation level of miR-615 promoter region in CRC cells was decreased after 125I seed treatment. In vivo experiments confirmed that 125I seed-irradiated xenograft tumors showed reduced methylation of the miR-615 promoter and increased miR-615 expression, as well as decreased Ki67 expression and enhanced apoptosis. The target genes of miR-615 and its regulatory downstream pathway were further predicted by bioinformatics analysis. CONCLUSIONS: 125I seed repressed the growth and facilitated the apoptosis of CRC cells by suppressing the methylation of the miR-615 promoter and thus activating miR-615 expression. The possible mechanism was that miR-615-5p targeted MAPK13, thus affecting the MAPK pathway and the progression of CRC.


Assuntos
Apoptose , Neoplasias Colorretais , Metilação de DNA , Radioisótopos do Iodo/farmacologia , MicroRNAs/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Braquiterapia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos da radiação
2.
Genesis ; 59(12): e23457, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687271

RESUMO

The Cre-loxP system has been widely used for specific DNA recombination which induces gene inactivation or expression. Recently, photoactivatable-Cre (PA-Cre) proteins have been developed as a tool for spatiotemporal control of the enzymatic activity of Cre recombinase. Here, we generated transgenic mice bearing a PA-Cre gene and systematically investigated the conditions of photoactivation for the PA-Cre in embryonic stem cells (ESCs) derived from the transgenic mice and in a simple mathematical model. Cre-mediated DNA recombination was induced in 16% of the PA-Cre ESCs by 6 hr continuous illumination. We show that repetitive pulsed illumination efficiently induced DNA recombination with low light energy as efficient as continuous illumination in the ESCs (96 ± 15% of continuous illumination when pulse cycle was 2 s), which was also supported by a minimal mathematical model. DNA recombination by the PA-Cre was also successfully induced in the transgenic mouse pre-implantation embryos under the developed conditions. These results suggest that strategies based on repetitive pulsed illumination are efficient for the activation of photoactivatable Cre and, possibly other photo-switchable proteins.


Assuntos
Células-Tronco Embrionárias/efeitos da radiação , Engenharia Genética , Integrases/genética , Recombinação Genética/efeitos da radiação , Animais , Blastocisto/efeitos da radiação , Células-Tronco Embrionárias/metabolismo , Integrases/efeitos da radiação , Luz , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/efeitos da radiação
3.
J Photochem Photobiol B ; 217: 112129, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33713893

RESUMO

Ultraviolet (UV) disinfection efficiency by low-pressure (LP) mercury lamp depends on the UV fluence (dose): the product of incident irradiance (fluence rate) and exposure time, with correction factors. Time-dose reciprocity may not always apply, as higher UV-LP inactivation of E. coli was obtained at a higher irradiance over shorter exposure time, for the same UV fluence. Disinfection by UV LEDs is limited by low radiant flux compared to mercury LP lamps. Our goal was to determine the UV-LED time-dose reciprocity of E. coli for four different central LED wavelengths (265, 275, 285 and 295 nm) under different fluence rates. Inactivation kinetics determined at UV-LED265 was not affected by the fluence rate or exposure time for a given UV fluence. In contrast, UV-LED275, UV-LED285, and UV-LED295 led to higher inactivation at low fluence rate coupled to high exposure time, for the same UV fluence. The intracellular damage mechanisms for each LED central wavelength were determined by using the bioreporters RecA as an indicator of bacterial DNA damage and SoxS as an indicator of oxidative stress. For 265 nm, higher DNA damage was observed, whereas for 285 and 295 nm, higher oxidative stress (possibly due to reactive oxygen species [ROS] damage) was observed. ROS inactivation of E. coli was predicted to be more effective when keeping the ROS concentration low but allowing longer exposure, for a given UV fluence.


Assuntos
Desinfecção/métodos , Escherichia coli/efeitos da radiação , Raios Ultravioleta , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Estresse Oxidativo/efeitos da radiação , Regiões Promotoras Genéticas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Recombinases Rec A/genética , Transativadores/genética
4.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-33709962

RESUMO

The highly radiation-resistant bacterium Deinococcus radiodurans responds to gamma radiation or desiccation through the coordinated expression of genes belonging to Radiation and Desiccation Resistance/Response (RDR) regulon. RDR regulon is operated through cis-acting sequence RDRM (Radiation Desiccation Response Motif), trans-acting repressor DdrO and protease IrrE (also called PprI). The present study evaluated whether RDR regulon controls the response of D. radiodurans to various other DNA damaging stressors, to which it is resistant, such as UV rays, mitomycin C (MMC), methyl methanesulfonate (MMS), ethidium bromide (EtBr), etc. Activation of 3 RDR regulon genes (ddrB, gyrB and DR1143) was studied by tagging their promoter sequences with a highly sensitive GFP reporter. Here we demonstrated that all the DNA damaging stressors elicited activation of RDR regulon of D. radiodurans in a dose-dependent and RDRM-/IrrE-dependent manner. However, ROS-mediated indirect effects [induced by hydrogen peroxide (H2O2), methyl viologen (MV), heavy metal/metalloid (zinc or tellurite), etc.] did not activate RDR regulon. We also showed that level of activation was inversely proportional to cellular abundance of repressor DdrO. Our data strongly suggests that direct DNA damage activates RDR regulon in D. radiodurans.


Assuntos
Proteínas de Bactérias/genética , Dano ao DNA/efeitos da radiação , Deinococcus/genética , Tolerância a Radiação/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Deinococcus/efeitos da radiação , Raios gama/efeitos adversos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Metanossulfonato de Metila/farmacologia , Motivos de Nucleotídeos/efeitos da radiação , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos da radiação , Tolerância a Radiação/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
5.
ACS Synth Biol ; 9(7): 1790-1801, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32551554

RESUMO

Cyanobacteria are emerging as hosts for various biotechnological applications. The ability to engineer these photosynthetic prokaryotes greatly depends on the availability of well-characterized promoters. Inducer-free promoters of a range of activities may be desirable for the eventual large-scale, outdoor cultivations. Further, several native promoters of cyanobacteria are repressed by high carbon dioxide or light, and it would be of interest to alter this property. We started with PrbcL and PcpcB, the well-characterized native promoters of the model cyanobacterium Synechococcus elongatus PCC 7942, found upstream of the two abundantly expressed genes, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase, and phycocyanin ß-1 subunit, respectively. The library of 48 promoters created via error-prone PCR of these 300-bp-long native promoters showed 2 orders of magnitude dynamic range with activities that were both lower and higher than those of the wild-type promoters. A few mutants of the PrbcL showed greater strength than PcpcB, which is widely considered a superstrong promoter. A number of mutant promoters did not show repression by high CO2 or light, typically found for PrbcL and PcpcB, respectively. Further, the wild-type and mutant promoters showed comparable activities in the fast-growing and stress-tolerant strains S. elongatus PCC 11801 and PCC 11802, suggesting that the library can be used in different cyanobacteria. Interestingly, the majority of the promoters showed strong expression in E. coli, thus adding to the repertoire of inducer-free promoters for this heterotrophic workhorse. Our results have implications in the metabolic engineering of cyanobacteria and E. coli.


Assuntos
Dióxido de Carbono/efeitos adversos , Luz/efeitos adversos , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos da radiação , Synechococcus/genética , Synechococcus/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Biblioteca Gênica , Genes Bacterianos , Fotossíntese , Ribulose-Bifosfato Carboxilase/genética , Biologia Sintética/métodos
6.
Genetics ; 215(3): 569-578, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32357961

RESUMO

In chromatin, nucleosomes are composed of ∼146 bp of DNA wrapped around a histone octamer, and are highly dynamic structures subject to remodeling and exchange. Histone turnover has previously been implicated in various processes including the regulation of chromatin accessibility, segregation of chromatin domains, and dilution of histone marks. Histones in different chromatin environments may turnover at different rates, possibly with functional consequences. Neurospora crassa sports a chromatin environment that is more similar to that of higher eukaryotes than yeasts, which have been utilized in the past to explore histone exchange. We constructed a simple light-inducible system to profile histone exchange in N. crassa on a 3xFLAG-tagged histone H3 under the control of the rapidly inducible vvd promoter. After induction with blue light, incorporation of tagged H3 into chromatin occurred within 20 min. Previous studies of histone turnover involved considerably longer incubation periods and relied on a potentially disruptive change of medium for induction. We used this reporter to explore replication-independent histone turnover at genes and examine changes in histone turnover at heterochromatin domains in different heterochromatin mutant strains. In euchromatin, H3-3xFLAG patterns were almost indistinguishable from that observed in wild-type in all mutant backgrounds tested, suggesting that loss of heterochromatin machinery has little effect on histone turnover in euchromatin. However, turnover at heterochromatin domains increased with loss of trimethylation of lysine 9 of histone H3 or HP1, but did not depend on DNA methylation. Our reporter strain provides a simple yet powerful tool to assess histone exchange across multiple chromatin contexts.


Assuntos
Engenharia Genética/métodos , Código das Histonas , Luz , Neurospora crassa/genética , Optogenética/métodos , Cromatina/química , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Reporter , Histonas/química , Histonas/genética , Histonas/metabolismo , Neurospora crassa/efeitos da radiação , Regiões Promotoras Genéticas/efeitos da radiação
7.
Nat Commun ; 11(1): 2141, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358538

RESUMO

Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.


Assuntos
Integrases/metabolismo , Recombinação Genética/genética , Animais , Códon/genética , Engenharia Genética/métodos , Integrases/genética , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos da radiação , Recombinação Genética/efeitos da radiação
8.
DNA Cell Biol ; 39(5): 790-800, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32176536

RESUMO

Interleukin-1 beta (IL1B) is a key inducer of inflammation and an important factor in the regulation of hematopoietic stem cells and mesenchymal stromal progenitors. Irradiation of mice with ionizing radiation has been shown to induce a lasting increase in IL1B concentration in peripheral blood. One of the possible mechanisms may be demethylation of CpG cytosines in the Il1b promoter, which has not been characterized in detail for the mouse. In this study, the methylation level of CpGs located in a region between -3562 and -208 bp upstream of the start of transcription is studied in muscles, bones, liver, thymus, spleen, bone marrow, lymph nodes, lungs, and brain. The methylation level is compared to Il1b expression. Tissue-specific features of CpG methylation are established. It is demonstrated that the region between -2420 and -2406 bp is likely a part of the mouse Il1b promoter/enhancer and may determine the base level of Il1b expression in various tissues. Irradiation at a dose of 6 Gy does not change the methylation profile of most studied CpGs, and therefore, the cause of the stably increased IL1B level after irradiation is unlikely to be a change in the methylation of the studied CpGs in investigated tissues.


Assuntos
Raios gama , Interleucina-1beta/genética , Regiões Promotoras Genéticas/genética , Animais , Osso e Ossos/metabolismo , Osso e Ossos/efeitos da radiação , Ilhas de CpG/genética , Metilação de DNA/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Regiões Promotoras Genéticas/efeitos da radiação , Fatores de Transcrição/metabolismo
9.
Cancer Sci ; 111(4): 1407-1416, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012407

RESUMO

Irradiation, or chemoradiotherapy, is a curative treatment for oropharyngeal squamous cell carcinoma (OPSCC). Its invasiveness, however, can often negate its efficacy. Therefore, developing methods to predict which patients would benefit from irradiation is urgent. Promoter DNA hypermethylation was recently reported to correlate with favorable OPSCC prognosis. It is still unclear, however, whether there is an association between promoter DNA methylation and response to irradiation. In this study, we analyzed DNA methylation in the specimens from 40 OPSCC patients who had undergone irradiation, using the Infinium assay. Our results showed significant correlation between high levels of promoter DNA methylation and better response to treatment (P < 0.01). We used the 10 most differentially-methylated genes between responders and non-responders to develop a panel of predictive markers for efficacy. Our panel had high sensitivity, specificity and accuracy (92%, 93% and 93%, respectively). We conducted pyrosequencing to quantitatively validate the methylation levels of 8 of the 10 marker genes (ROBO1, ULK4P3, MYOD1, LBX1, CACNA1A, IRX4, DPYSL3 and ELAVL2) obtained by Infinium. The validation by pyrosequencing showed that these 8 genes had a high prediction performance for the training set of 40 specimens and for a validation set of 35 OPSCC specimens, showing 96% sensitivity, 89% specificity and 94% accuracy. Methylation of these markers correlated significantly with better progression-free and overall survival rates, regardless of human papillomavirus status. These results indicate that increased DNA methylation is associated with better responses to irradiation therapy and that DNA methylation can help establish efficacy prediction markers in OPSCC.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA/efeitos da radiação , Neoplasias Orofaríngeas/radioterapia , Infecções por Papillomavirus/radioterapia , Idoso , Metilação de DNA/genética , Epigenômica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Papillomaviridae/patogenicidade , Papillomaviridae/efeitos da radiação , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Regiões Promotoras Genéticas/efeitos da radiação
10.
Mol Syst Biol ; 15(12): e9068, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31885199

RESUMO

Discontinuous transcription has been described for different mammalian cell lines and numerous promoters. However, our knowledge of how the activity of individual promoters is adjusted by dynamic signaling inputs from transcription factors is limited. To address this question, we characterized the activity of selected target genes that are regulated by pulsatile accumulation of the tumor suppressor p53 in response to ionizing radiation. We performed time-resolved measurements of gene expression at the single-cell level by smFISH and used the resulting data to inform a mathematical model of promoter activity. We found that p53 target promoters are regulated by frequency modulation of stochastic bursting and can be grouped along three archetypes of gene expression. The occurrence of these archetypes cannot solely be explained by nuclear p53 abundance or promoter binding of total p53. Instead, we provide evidence that the time-varying acetylation state of p53's C-terminal lysine residues is critical for gene-specific regulation of stochastic bursting.


Assuntos
Dano ao DNA , Redes Reguladoras de Genes/efeitos da radiação , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Acetilação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Hibridização in Situ Fluorescente , Lisina/química , Modelos Genéticos , Regiões Promotoras Genéticas/efeitos da radiação , Radiação Ionizante , Imagem Individual de Molécula , Análise de Célula Única , Processos Estocásticos , Transcrição Gênica
11.
Stem Cells Dev ; 28(23): 1552-1561, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588849

RESUMO

Human mesenchymal stem cells (hMSCs) are considered to be able to adapt to environmental changes induced by gravity during cell expansion. In this study, we investigated neurogenic differentiation potential of passaged hMSCs under conventional gravity and simulated microgravity conditions. Immunostaining, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), and western blot analysis of neurogenic differentiation markers, neurofilament heavy (NF-H), and microtubule-associated protein 2 (MAP2) revealed that differentiated cells from the cells cultured under simulated microgravity conditions expressed higher neurogenic levels than those from conventional gravity conditions. The levels of NF-H and MAP2 in the cells from simulated microgravity conditions were consistent during passage culture, whereas cells from conventional gravity conditions exhibited a reduction of the neurogenic levels against an increase of their passage number. In growth culture, cells under simulated microgravity conditions showed less apical stress fibers over their nucleus with fewer cells having a polarization of lamin A/C than those under conventional gravity conditions. The ratio of lamin A/C to lamin B expression in the cells under simulated microgravity conditions was constant; however, cells cultured under conventional gravity conditions showed an increase in the lamin ratio during passages. Furthermore, analysis of activating H3K4me3 and repressive H3K27me3 modifications at promoters of neuronal lineage genes indicated that cells passaged under simulated microgravity conditions sustained the methylation during serial cultivation. Nevertheless, the enrichment of H3K27me3 significantly increased in the passaged cells cultured under conventional gravity conditions. These results demonstrated that simulated microgravity-coordinated cytoskeleton-lamin reorganization leads to suppression of histone modification associated with neurogenic differentiation capacity of passaged hMSCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Neurogênese/genética , Simulação de Ausência de Peso , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Linhagem da Célula/genética , Proliferação de Células/efeitos da radiação , Citoesqueleto/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Código das Histonas/genética , Humanos , Lamina Tipo A/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neurofilamentos/genética , Osteogênese/efeitos da radiação , Regiões Promotoras Genéticas/efeitos da radiação
12.
Nat Commun ; 10(1): 3099, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308373

RESUMO

The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Engenharia Metabólica/métodos , Optogenética/métodos , Fitocromo/genética , Proteínas Quinases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Luz , Fotorreceptores Microbianos , Ficobilinas/biossíntese , Ficocianina/biossíntese , Fitocromo/metabolismo , Regiões Promotoras Genéticas/efeitos da radiação , Proteínas Quinases/metabolismo
13.
Bioorg Med Chem ; 27(2): 278-284, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552005

RESUMO

Electron transfer through π-stacked arrays of double-stranded DNA contributes to the redox chemistry of bases, including guanine oxidation and thymine-thymine dimer repair by photolyase. 5-Bromouracil is an attractive photoreactive thymine analogue that can be used to investigate electron transfer in DNA, and is a useful probe for protein-DNA interaction analysis. In the present study using BrU we found that UV irradiation facilitated electron injection from mitochondrial transcription factor A into DNA. We also observed that this electron injection could lead to repair of a thymine-thymine dimer.


Assuntos
Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/química , DNA/química , Elétrons , Proteínas Mitocondriais/química , Dímeros de Pirimidina/química , Fatores de Transcrição/química , Sequência de Bases , Bromouracila/química , Bromouracila/efeitos da radiação , DNA/genética , DNA/metabolismo , DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/efeitos da radiação , Humanos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/efeitos da radiação , Regiões Promotoras Genéticas/efeitos da radiação , Ligação Proteica , Dímeros de Pirimidina/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/efeitos da radiação , Raios Ultravioleta
14.
Photochem Photobiol ; 95(1): 252-266, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084501

RESUMO

While is it well known that human telomeric DNA sequences can adopt G-quadruplex structures, some promoters sequences have also been found to form G-quadruplexes, and over 40% of promoters contain putative G-quadruplex-forming sequences. Because UV light has been shown to crosslink human telomeric G-quadruplexes by cyclobutane pyrimidine dimer (CPD) formation between T's on adjacent loops, UV light might also be able to photocrosslink G-quadruplexes in promoters. To investigate this possibility, 15 potentially UV-crosslinkable G-quadruplex-forming sequences found in a search of human DNA promoters were UVB irradiated in vitro, and three were confirmed to have formed nonadjacent CPDs by mass spectrometry. In addition to nonadjacent T=T CPDs found in human telomeric DNA, a nonadjacent T=U CPD was discovered that presumably arose from deamination of a nonadjacent T=C CPD. Analysis of the three sequences by circular dichroism, melting temperature analysis and chemical footprinting confirmed the presence of G-quadruplexes that could explain the formation of the nonadjacent CPDs. The formation of nonadjacent CPDs from the sequences in vitro suggests that they might be useful probes for the presence of non-B DNA structures, such as G-quadruplexes, in vivo, and if they were to form in vivo, might also have significant biological consequences.


Assuntos
Quadruplex G/efeitos da radiação , Processos Fotoquímicos , Regiões Promotoras Genéticas/efeitos da radiação , Humanos , Espectrometria de Massas , Dímeros de Pirimidina/química , Raios Ultravioleta
15.
Indian J Med Res ; 147(2): 151-157, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29806603

RESUMO

BACKGROUND & OBJECTIVES: Invasive cervical cancer patients are primarily treated with chemoradiation therapy. The overall and disease-free survival in these patients is variable and depends on the tumoral response apart from the tumour stage. This study was undertaken to assess whether in vivo changes in gene promoter methylation and transcript expression in invasive cervical cancer were induced by chemoradiation. Hence, paired pre- and post-treatment biopsy samples were evaluated for in vivo changes in promoter methylation and transcript expression of 10 genes (ESR1, BRCA1, RASSF1A, MYOD1, MLH1, hTERT, MGMT, DAPK1, BAX and BCL2L1) in response to chemoradiation therapy. METHODS: In patients with locally advanced invasive cervical cancer, paired pre- and post-treatment biopsies after 10 Gy chemoradiation were obtained. DNA/RNA was extracted and gene promoter methylation status was evaluated by custom-synthesized methylation PCR arrays, and the corresponding gene transcript expression was determined by absolute quantification method using quantitative reverse transcription PCR. RESULTS: Changes in the gene promoter methylation as well as gene expression following chemoradiation therapy were observed. BAX promoter methylation showed a significant increase (P< 0.01) following treatment. There was a significant increase in the gene transcript expression of BRCA1 (P< 0.01), DAPK1 and ESR1 (P< 0.05), whereas MYOD1 and MLH1 gene transcript expression was significantly decreased (P< 0.05) following treatment. INTERPRETATION & CONCLUSIONS: The findings of our study show that chemoradiation therapy can induce epigenetic alterations as well as affect gene expression in tissues of invasive cervical cancer which may have implications in determining radiation response.


Assuntos
Metilação de DNA/genética , Proteínas de Neoplasias/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapia , Adulto , Idoso , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos da radiação , Proteínas Supressoras de Tumor/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
16.
Environ Pollut ; 234: 935-942, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253833

RESUMO

Hypermethylation of СpG islands in the promoter regions of several genes with basic protective function in blood leukocytes of individuals exposed to ionizing radiation long time ago (2-46 years), and differential effects of age and radiation exposure on hypermethylation was reported in our previous work. To validate these results, epigenetic modifications were assessed in an independent series of 49 nuclear industry workers from the "Mayak" facility (67-84 years old at sampling) with documented individual accumulated doses from the prolonged external γ-radiation exposure (95.9-409.5 cGy, end of work with radiation:0.3-39 years ago), and in 50 non-exposed persons matched by age. In addition to the genes analyzed before (RASSF1A, p16/INK4A, p14/ARF, GSTP1), four additional loci were analyzed: TP53, ATM, SOD3, ESR1. The frequency of individuals displaying promoter methylation of at least one of the 8 genes (71.4%) was significantly higher in exposed group as compared to the control group (40%), p = .002, OR = 3.75. A significantly elevated frequency of individuals with hypermethylated СpG islands in GSTP1, TP53, SOD3 promoters was revealed among exposed subjects as compared to the control group (p = .012, OR = 8.41; p = .041, OR = 4.02 and p = .009, OR = 3.42, respectively). A similar trend (p = .12, OR = 3.06) was observed for the p16/INK4A gene. As a whole, p16/INK4A and GSTP1 promoter hypermethylation in irradiated subjects from both previously and currently analyzed groups was pronounced. Thus, the direction of the effects was fully confirmed, suggesting the result reproducibility. No statistically significant correlation between promoter methylation and individual radiation dose was found. Further studies are required to create an array of blood epigenetic markers of radiation exposure associating with premature aging and age-related diseases and to accurately evaluate radiation-added effect across the range of doses. SYNTHESIS: The results of studies of epigenetic changes in two independent samples of irradiated subjects indicated the significance of radiation factor in the induction of hypermethylation of CpG islands in gene promoters that is revealed in blood cells years and decades after exposure.


Assuntos
Metilação de DNA/efeitos da radiação , Leucócitos/efeitos da radiação , Exposição à Radiação/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Ilhas de CpG/efeitos da radiação , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epigênese Genética/efeitos da radiação , Feminino , Expressão Gênica/efeitos da radiação , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/efeitos da radiação , Fatores de Tempo , Adulto Jovem
17.
Biomed Res Int ; 2017: 9461402, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29159183

RESUMO

PURPOSE: To compare the therapeutic results of two radiotherapy (RT) dose schedules in combined temozolomide- (TMZ-) RT treatment in newly diagnosed glioblastoma (GB), according to the O(6)-methylguanine-DNA methyltransferase (MGMT) methylation status. MATERIAL AND METHOD: Patients received either standard (60 Gy) or moderately escalated dose (70 Gy) radiotherapy (RT) with concomitant and adjuvant TMZ between June 2006 and October 2013. We retrospectively evaluated the therapeutic effectiveness of RT schedules in terms of Overall Survival (OS) and Progression-Disease Free Survival (PDFS) analyzing the MGMT methylation status. RESULTS: One hundred and seventeen patients were selected for the present analysis. Seventy-two out of the selected cases received the standard RT-TMZ course (SDRT-TMZ) whereas the remaining 45 underwent the escalated schedule (HDRT-TMZ). The analysis according to the MGMT promoter methylation status showed that, in unmethylated-MGMT GB patients, HDRT-TMZ and SDRT-TMZ groups had different median OS (p = 0,01) and PDFS (p = 0,007), that is, 8 months and 5 months for the SDRT-TMZ group and 14 months and 9 months for the HDRT-TMZ group, respectively. No difference in survival outcomes was found in methylated MGMT patients according to the two RT schedules (p = 0,12). CONCLUSIONS: In our experience, unmethylated-MGMT GB patients benefited from a moderately escalated dose of RT plus TMZ.


Assuntos
Metilação de DNA/efeitos da radiação , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , O(6)-Metilguanina-DNA Metiltransferase/genética , Adulto , Idoso , Quimiorradioterapia/métodos , Terapia Combinada , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Intervalo Livre de Doença , Relação Dose-Resposta à Radiação , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/efeitos da radiação , Temozolomida
18.
Methods Mol Biol ; 1651: 173-186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28801907

RESUMO

Recent advances in the development of light-inducible transgene expression systems have overcome many inherent drawbacks of conventional chemically regulated systems. The latest generation of those light-regulated systems that are specifically responsive to different wavelengths allows spatiotemporal control of gene expression in a so far unprecedented manner.In this chapter, we first describe the available light-inducible gene expression systems compatible with mammalian cells and explain their underlying mechanisms. Afterward, we give a detailed protocol for the implementation of a UVB light-inducible expression system in mammalian cells.


Assuntos
Fosfatase Alcalina/genética , Optogenética/métodos , Regiões Promotoras Genéticas/efeitos da radiação , Transfecção/métodos , Animais , Expressão Gênica/efeitos da radiação , Genes Reporter , Células HEK293 , Humanos , Raios Ultravioleta
19.
Methods Mol Biol ; 1651: 187-203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28801908

RESUMO

It has been pointed out that ultrasound could be used as a controller for bioprocesses including gene expression since its energy can noninvasively reach deep in the body. Gene expression may be timely and spatially controlled by ultrasound, thus providing necessary bioactive proteins for the targeted tissue in a timely fashion. Although there are many processes involved in gene expression control, one of the most important processes is transcription, and the promoter plays an essential role in it. There are several promoters known to be activated in response to ultrasound irradiation . However, in our opinion, an artificial promoter is more suitable for clinical use. We herein describe simple methods to construct promoters that are responsive to ultrasound irradiation by randomly combining cis-elements (transcription factor binding motifs) and thereby improve its reactivity to ultrasound irradiation .


Assuntos
Oligonucleotídeos/genética , Regiões Promotoras Genéticas/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Ultrassom/métodos , Animais , Eletroforese/métodos , Elementos Facilitadores Genéticos/efeitos da radiação , Genes Reporter , Vetores Genéticos/genética , Células HeLa , Heme Oxigenase-1/genética , Humanos , Mutagênese , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , TATA Box/efeitos da radiação , Ondas Ultrassônicas
20.
Microbiology (Reading) ; 163(5): 778-788, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28463103

RESUMO

Upon DNA damage, Sulfolobales exhibit a global gene regulatory response resulting in the expression of DNA transfer and repair proteins and the repression of the cell division machinery. Because the archaeal DNA damage response is still poorly understood, we investigated the promoters of the highly induced ups operon. Ups pili are involved in cellular aggregation and DNA exchange between cells. With LacS reporter gene assays we identified a conserved, non-palindromic hexanucleotide motif upstream of the ups core promoter elements to be essential for promoter activity. Substitution of this cis regulatory motif in the ups promoters resulted in abolishment of cellular aggregation and reduced DNA transfer. By screening the Sulfolobus acidocaldarius genome we identified a total of 214 genes harbouring the hexanucleotide motif in their respective promoter regions. Many of these genes were previously found to be regulated upon UV light treatment. Given the fact that the identified motif is conserved among S. acidocaldarius and Sulfolobus tokodaii promoters, we speculate that a common regulatory mechanism is present in these two species in response to DNA-damaging conditions.


Assuntos
DNA Arqueal/efeitos da radiação , Regulação da Expressão Gênica em Archaea/efeitos da radiação , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/efeitos da radiação , Sulfolobus acidocaldarius/genética , Raios Ultravioleta , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , DNA Arqueal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA