Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci Rep ; 11(1): 23256, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853321

RESUMO

There is evidence that the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is highly expressed at the apical pole of ciliated cells in human bronchial epithelium (HBE), however recent studies have detected little CFTR mRNA in those cells. To understand this discrepancy we immunostained well differentiated primary HBE cells using CFTR antibodies. We confirmed apical immunofluorescence in ciliated cells and quantified the covariance of the fluorescence signals and that of an antibody against the ciliary marker centrin-2 using image cross-correlation spectroscopy (ICCS). Super-resolution stimulated emission depletion (STED) imaging localized the immunofluorescence in distinct clusters at the bases of the cilia. However, similar apical fluorescence was observed when the monoclonal CFTR antibodies 596, 528 and 769 were used to immunostain ciliated cells expressing F508del-CFTR, or cells lacking CFTR due to a Class I mutation. A BLAST search using the CFTR epitope identified a similar amino acid sequence in the ciliary protein rootletin X1. Its expression level correlated with the intensity of immunostaining by CFTR antibodies and it was detected by 596 antibody after transfection into CFBE cells. These results may explain the high apparent expression of CFTR in ciliated cells and reports of anomalous apical immunofluorescence in well differentiated cells that express F508del-CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Fibrose Cística/patologia , Proteínas do Citoesqueleto/isolamento & purificação , Brônquios/citologia , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Proteínas do Citoesqueleto/imunologia , Células Epiteliais , Imunofluorescência , Humanos
2.
Nat Chem Biol ; 17(9): 989-997, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341587

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is essential to maintain fluid homeostasis in key organs. Functional impairment of CFTR due to mutations in the cftr gene leads to cystic fibrosis. Here, we show that the first nucleotide-binding domain (NBD1) of CFTR can spontaneously adopt an alternate conformation that departs from the canonical NBD fold previously observed. Crystallography reveals that this conformation involves a topological reorganization of NBD1. Single-molecule fluorescence resonance energy transfer microscopy shows that the equilibrium between the conformations is regulated by adenosine triphosphate binding. However, under destabilizing conditions, such as the disease-causing mutation F508del, this conformational flexibility enables unfolding of the ß-subdomain. Our data indicate that, in wild-type CFTR, this conformational transition of NBD1 regulates channel function, but, in the presence of the F508del mutation, it allows domain misfolding and subsequent protein degradation. Our work provides a framework to design conformation-specific therapeutics to prevent noxious transitions.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Desdobramento de Proteína
3.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33320186

RESUMO

The peptidoglycan (PG) layer is an intricate and dynamic component of the bacterial cell wall, which requires a constant balance between its synthesis and hydrolysis. FtsEX complex present on the inner membrane is shown to transduce signals to induce PG hydrolysis. FtsE has sequence similarity with the nucleotide-binding domains (NBDs) of ABC transporters. The NBDs in most of the ABC transporters couple ATP hydrolysis to transport molecules inside or outside the cell. Also, this reaction cycle is driven by the dimerization of NBDs. Though extensive studies have been carried out on the Escherchia coli FtsEX complex, it remains elusive regarding how FtsEX complex helps in signal transduction or transportation of molecules. Also, very little is known about the biochemical properties and ATPase activities of FtsE. Because of its strong interaction with the membrane-bound protein FtsX, FtsE stays insoluble upon overexpression in E. coli, and thus, most studies on E. coli FtsE (FtsEEc) in the past have used refolded FtsE. Here in the present paper, for the first time, we report the soluble expression, purification, and biochemical characterization of FtsE from E. coli. The purified soluble FtsE exhibits high thermal stability, exhibits ATPase activity and has more than one ATP-binding site. We have also demonstrated a direct interaction between FtsE and the cytoplasmic loop of FtsX. Together, our findings suggest that during bacterial division, the ATPase cycle of FtsE and its interaction with the FtsX cytoplasmic loop may help to regulate the PG hydrolysis at the mid cell.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Escherichia coli/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Sequência de Aminoácidos , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Domínios Proteicos , Homologia de Sequência de Aminoácidos
4.
Biotechniques ; 68(6): 318-324, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283940

RESUMO

Protein samples electroblotted onto nitrocellulose membranes and quenched with a mixture of blocking agents produced a strong signal for cystic fibrosis transmembrane-conductance regulator (CFTR), a high-molecular-weight protein, in western blotting. Optimized conditions for CFTR were then extended to medium- and low-molecular-weight proteins (LAMP1 and Rab11a, respectively) to determine the effects of methanol concentration (0-20%) in Towbin's transfer buffer (TTB). Methanol in TTB appears to have little to no effect on CFTR signal. However, for medium-sized (LAMP1) and small (Rab11a) proteins, a lower concentration of methanol (10%) was sufficient to produce a maximal signal. Therefore, methanol, a toxic solvent, can be removed from or reduced in TTB without compromising signal strength. Here, we show modifications that may be useful in detecting and/or improving the signal of low-abundance proteins.


Assuntos
Western Blotting/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Linhagem Celular , Colódio/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Peso Molecular , Transdução de Sinais/genética , Transfecção
5.
Cell Mol Gastroenterol Hepatol ; 9(1): 79-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31561038

RESUMO

BACKGRAOUD & AIMS: Aberrant epithelial bicarbonate (HCO3-) secretion caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with several diseases including cystic fibrosis and pancreatitis. Dynamically regulated ion channel activity and anion selectivity of CFTR by kinases sensitive to intracellular chloride concentration ([Cl-]i) play an important role in epithelial HCO3- secretion. However, the molecular mechanisms of how [Cl-]i-dependent mechanisms regulate CFTR are unknown. METHODS: We examined the mechanisms of the CFTR HCO3- channel regulation by [Cl-]i-sensitive kinases using an integrated electrophysiological, molecular, and computational approach including whole-cell, outside-out, and inside-out patch clamp recordings and molecular dissection of WNK1 and CFTR proteins. In addition, we analyzed the effects of pancreatitis-causing CFTR mutations on the WNK1-mediated regulation of CFTR. RESULTS: Among the WNK1, SPAK, and OSR1 kinases that constitute a [Cl-]i-sensitive kinase cascade, the expression of WNK1 alone was sufficient to increase the CFTR bicarbonate permeability (PHCO3/PCl) and conductance (GHCO3) in patch clamp recordings. Molecular dissection of the WNK1 domains revealed that the WNK1 kinase domain is responsible for CFTR PHCO3/PCl regulation by direct association with CFTR, while the surrounding N-terminal regions mediate the [Cl-]i-sensitivity of WNK1. Furthermore, the pancreatitis-causing R74Q and R75Q mutations in the elbow helix 1 of CFTR hampered WNK1-CFTR physical associations and reduced WNK1-mediated CFTR PHCO3/PCl regulation. CONCLUSION: The CFTR HCO3- channel activity is regulated by [Cl-]i and a WNK1-dependent mechanism. Our results provide new insights into the regulation of the ion selectivity of CFTR and the pathogenesis of CFTR-related disorders.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/patologia , Pancreatite/patologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Cristalografia por Raios X , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/ultraestrutura , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutação , Pancreatite/genética , Técnicas de Patch-Clamp , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/isolamento & purificação
6.
Cells ; 8(8)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370288

RESUMO

The recent cryo-electron microscopy structures of zebrafish and the human cystic fibrosis transmembrane conductance regulator (CFTR) provided unprecedented insights into putative mechanisms underlying gating of its anion channel activity. Interestingly, despite predictions based on channel activity measurements in biological membranes, the structure of the detergent purified, phosphorylated, and ATP-bound human CFTR protein did not reveal a stably open conduction pathway. This study tested the hypothesis that the functional properties of the detergent solubilized CFTR protein used for structural determinations are different from those exhibited by CFTR purified under conditions that retain associated lipids native to the membrane. It was found that CFTR purified together with phospholipids and cholesterol using amphipol: A8-35, exhibited higher rates of catalytic activity, phosphorylation dependent channel activation and potentiation by the therapeutic compound, ivacaftor, than did CFTR purified in detergent. The catalytic activity of phosphorylated CFTR detergent micelles was rescued by the addition of phospholipids plus cholesterol, but not by phospholipids alone, arguing for a specific role for cholesterol in modulating this function. In summary, these studies highlight the importance of lipid interactions in the intrinsic activities and pharmacological potentiation of CFTR.


Assuntos
Colesterol/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Fosfolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HEK293 , Humanos , Micelas , Fosforilação , Polímeros/farmacologia , Propilaminas/farmacologia
7.
Nat Commun ; 10(1): 2636, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201318

RESUMO

The leading cause of cystic fibrosis (CF) is the deletion of phenylalanine 508 (F508del) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR). The mutation affects the thermodynamic stability of the domain and the integrity of the interface between NBD1 and the transmembrane domain leading to its clearance by the quality control system. Here, we develop nanobodies targeting NBD1 of human CFTR and demonstrate their ability to stabilize both isolated NBD1 and full-length protein. Crystal structures of NBD1-nanobody complexes provide an atomic description of the epitopes and reveal the molecular basis for stabilization. Furthermore, our data uncover a conformation of CFTR, involving detachment of NBD1 from the transmembrane domain, which contrast with the compact assembly observed in cryo-EM structures. This unexpected interface rearrangement is likely to have major relevance for CF pathogenesis but also for the normal function of CFTR and other ABC proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Modelos Moleculares , Cristalografia por Raios X , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade Proteica , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Anticorpos de Domínio Único/metabolismo
8.
Biochim Biophys Acta Biomembr ; 1860(5): 1193-1204, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29425673

RESUMO

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an ABC transporter containing two transmembrane domains forming a chloride ion channel, and two nucleotide binding domains (NBD1 and NBD2). CFTR has presented a formidable challenge to obtain monodisperse, biophysically stable protein. Here we report a comprehensive study comparing effects of single and multiple NBD1 mutations on stability of both the NBD1 domain alone and on purified full length human CFTR. Single mutations S492P, A534P, I539T acted additively, and when combined with M470V, S495P, and R555K cumulatively yielded an NBD1 with highly improved structural stability. Strategic combinations of these mutations strongly stabilized the domain to attain a calorimetric Tm > 70 °C. Replica exchange molecular dynamics simulations on the most stable 6SS-NBD1 variant implicated fluctuations, electrostatic interactions and side chain packing as potential contributors to improved stability. Progressive stabilization of NBD1 directly correlated with enhanced structural stability of full-length CFTR protein. Thermal unfolding of the stabilized CFTR mutants, monitored by changes in intrinsic fluorescence, demonstrated that Tm could be shifted as high as 67.4 °C in 6SS-CFTR, more than 20 °C higher than wild-type. H1402S, an NBD2 mutation, conferred CFTR with additional thermal stability, possibly by stabilizing an NBD-dimerized conformation. CFTR variants with NBD1-stabilizing mutations were expressed at the cell surface in mammalian cells, exhibited ATPase and channel activity, and retained these functions to higher temperatures. The capability to produce enzymatically active CFTR with improved structural stability amenable to biophysical and structural studies will advance mechanistic investigations and future cystic fibrosis drug development.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Mutação , Nucleotídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação/genética , Células CHO , Cricetinae , Cricetulus , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Estabilidade Enzimática/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade Proteica , Temperatura
9.
Clin Genet ; 91(3): 476-481, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27174726

RESUMO

Even with advent of next generation sequencing complete sequencing of large disease-associated genes and intronic regions is economically not feasible. This is the case of cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible for cystic fibrosis (CF). Yet, to confirm a CF diagnosis, proof of CFTR dysfunction needs to be obtained, namely by the identification of two disease-causing mutations. Moreover, with the advent of mutation-based therapies, genotyping is an essential tool for CF disease management. There is, however, still an unmet need to genotype CF patients by fast, comprehensive and cost-effective approaches, especially in populations with high genetic heterogeneity (and low p.F508del incidence), where CF is now emerging with new diagnosis dilemmas (Brazil, Asia, etc). Herein, we report an innovative mRNA-based approach to identify CFTR mutations in the complete coding and intronic regions. We applied this protocol to genotype individuals with a suspicion of CF and only one or no CFTR mutations identified by routine methods. It successfully detected multiple intronic mutations unlikely to be detected by CFTR exon sequencing. We conclude that this is a rapid, robust and inexpensive method to detect any CFTR coding/intronic mutation (including rare ones) that can be easily used either as primary approach or after routine DNA analysis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Heterogeneidade Genética , Brasil , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Éxons/genética , Feminino , Genética Populacional , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons/genética , Masculino , Mutação , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação
10.
Cell Mol Life Sci ; 74(1): 23-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27734094

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically 'rescued' F508del CFTR displays instability at the cell's surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Humanos , Conformação Proteica , Estabilidade Proteica , Deleção de Sequência
11.
Biochem Soc Trans ; 43(5): 894-900, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517900

RESUMO

As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Animais , Sequência Consenso , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Detergentes/química , Glicosilação , Humanos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Fosforilação , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solubilidade
12.
J Vis Exp ; (97)2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25867140

RESUMO

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Animais , Transporte Biológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Humanos , Proteolipídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9
13.
Mol Biotechnol ; 57(5): 391-405, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25577540

RESUMO

Recent human clinical trials results demonstrated successful treatment for certain genetic forms of cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms of CF disease, structural and biophysical characterization of CF transmembrane conductance regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, including a His10 purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG epitope, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity with only modest alterations in channel conductance and gating kinetics. Surface CFTR expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-CFTR(FLAG)-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside for membrane protein extraction reproducibly recovered 178 ± 56 µg SUMO*-CFTR(FLAG)-EGFP per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system capable of producing human CFTR of sufficient quality and quantity to augment future CF drug discovery efforts, including biophysical and structural studies.


Assuntos
Biotecnologia/métodos , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Expressão Gênica , Células Cultivadas , Cromatografia em Gel , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Glicosilação , Células HEK293 , Humanos , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
14.
J Vis Exp ; (87)2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24893839

RESUMO

Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis (CF), an autosomal recessive disease that currently limits the average life expectancy of sufferers to <40 years of age. The development of novel drug molecules to restore the activity of CFTR is an important goal in the treatment CF, and the isolation of functionally active CFTR is a useful step towards achieving this goal. We describe two methods for the purification of CFTR from a eukaryotic heterologous expression system, S. cerevisiae. Like prokaryotic systems, S. cerevisiae can be rapidly grown in the lab at low cost, but can also traffic and posttranslationally modify large membrane proteins. The selection of detergents for solubilization and purification is a critical step in the purification of any membrane protein. Having screened for the solubility of CFTR in several detergents, we have chosen two contrasting detergents for use in the purification that allow the final CFTR preparation to be tailored to the subsequently planned experiments. In this method, we provide comparison of the purification of CFTR in dodecyl-ß-D-maltoside (DDM) and 1-tetradecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (LPG-14). Protein purified in DDM by this method shows ATPase activity in functional assays. Protein purified in LPG-14 shows high purity and yield, can be employed to study post-translational modifications, and can be used for structural methods such as small-angle X-ray scattering and electron microscopy. However it displays significantly lower ATPase activity.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Saccharomyces cerevisiae/química , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Glucosídeos/química , Fosfolipídeos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Biochem J ; 461(2): 269-78, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24758594

RESUMO

ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/isolamento & purificação , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Maleatos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/isolamento & purificação , Proteínas de Neoplasias/isolamento & purificação , Poliestirenos/química , Proteínas Recombinantes/isolamento & purificação , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Animais , Clonagem Molecular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Cinética , Ligantes , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas de Neoplasias/química , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química
16.
Cold Spring Harb Perspect Med ; 3(2): a009472, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23378595

RESUMO

The positional cloning of the gene responsible for cystic fibrosis (CF) was the important first step in understanding the basic defect and pathophysiology of the disease. This study aims to provide a historical account of key developments as well as factors that contributed to the cystic fibrosis transmembrane conductance regulator (CFTR) gene identification work. A redefined gene structure based on the full sequence of the gene derived from the Human Genome Project is presented, along with brief reviews of the transcription regulatory sequences for the CFTR gene, the role of mRNA splicing in gene regulation and CF disease, and, various related sequences in the human genome and other species. Because CF mutations and genotype-phenotype correlations are covered by our colleagues (Ferec C, Cutting GR. 2012. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a009480), we only attempt to provide an introduction of the CF mutation database here for reference purposes.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Mutação/genética , Processamento Alternativo/genética , Animais , Clonagem Molecular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Bases de Dados Genéticas , Modelos Animais de Doenças , Éxons/genética , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Terminologia como Assunto , Trans-Splicing/genética , Transcrição Gênica/genética
17.
J Biol Chem ; 287(44): 36639-49, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22942289

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe.


Assuntos
Trifosfato de Adenosina/química , Aminofenóis/química , Regulador de Condutância Transmembrana em Fibrose Cística/química , Ativação do Canal Iônico/efeitos dos fármacos , Proteínas Mutantes/química , Quinolonas/química , Animais , Caprilatos/química , Linhagem Celular , Cromatografia de Afinidade , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Detergentes/química , Fluorocarbonos/química , Humanos , Lipossomos , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Deleção de Sequência , Transdução de Sinais/efeitos dos fármacos , Spodoptera
18.
J Vis Exp ; (61)2012 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-22433465

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel, that when mutated, can give rise to cystic fibrosis in humans.There is therefore considerable interest in this protein, but efforts to study its structure and activity have been hampered by the difficulty of expressing and purifying sufficient amounts of the protein(1-3). Like many 'difficult' eukaryotic membrane proteins, expression in a fast-growing organism is desirable, but challenging, and in the yeast S. cerevisiae, so far low amounts were obtained and rapid degradation of the recombinant protein was observed (4-9). Proteins involved in the processing of recombinant CFTR in yeast have been described(6-9) .In this report we describe a methodology for expression of CFTR in yeast and its purification in significant amounts. The protocol describes how the earlier proteolysis problems can be overcome and how expression levels of CFTR can be greatly improved by modifying the cell growth conditions and by controlling the induction conditions, in particular the time period prior to cell harvesting. The reagants associated with this protocol (murine CFTR-expressing yeast cells or yeast plasmids) will be distributed via the US Cystic Fibrosis Foundation, which has sponsored the research. An article describing the design and synthesis of the CFTR construct employed in this report will be published separately (Urbatsch, I.; Thibodeau, P. et al., unpublished). In this article we will explain our method beginning with the transformation of the yeast cells with the CFTR construct - containing yeast plasmid (Fig. 1). The construct has a green fluorescent protein (GFP) sequence fused to CFTR at its C-terminus and follows the system developed by Drew et al. (2008)(10). The GFP allows the expression and purification of CFTR to be followed relatively easily. The JoVE visualized protocol finishes after the preparation of microsomes from the yeast cells, although we include some suggestions for purification of the protein from the microsomes. Readers may wish to add their own modifications to the microsome purification procedure, dependent on the final experiments to be carried out with the protein and the local equipment available to them. The yeast-expressed CFTR protein can be partially purified using metal ion affinity chromatography, using an intrinsic polyhistidine purification tag. Subsequent size-exclusion chromatography yields a protein that appears to be >90% pure, as judged by SDS-PAGE and Coomassie-staining of the gel.


Assuntos
Biotecnologia/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Saccharomyces cerevisiae/química , Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Histidina , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
19.
Protein Eng Des Sel ; 25(1): 7-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22119790

RESUMO

Post-translational modifications (PTMs) play a crucial role during biogenesis of many transmembrane proteins. Previously, it had not been possible to evaluate PTMs in cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial ion channel responsible for cystic fibrosis, because of difficulty obtaining sufficient amounts of purified protein. We recently used an inducible overexpression strategy to generate recombinant CFTR protein at levels suitable for purification and detailed analysis. Using liquid chromatography (LC) tandem and multiple reaction ion monitoring (MRM) mass spectrometry, we identified specific sites of PTMs, including palmitoylation, phosphorylation, methylation and possible ubiquitination. Many of these covalent CFTR modifications have not been described previously, but are likely to influence key and clinically important molecular processes including protein maturation, gating and the mechanisms underlying certain mutations associated with disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Cromatografia Líquida , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Humanos , Lipoilação , Metilação , Dados de Sequência Molecular , Mutação , Fosforilação , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitinação
20.
Mol Cell Proteomics ; 10(7): M000052MCP200, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742800

RESUMO

Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (< 0.1% of membrane proteins) for in vitro functional and structural characterization, and induction of the expression of CFTR resulted in growth arrest. We used isobaric tagging for relative and absolute quantitation based quantitative proteomics to find out why production of CFTR in L. lactis was problematic. Protein abundances in membrane and soluble fractions were monitored as a function of induction time, both in CFTR expression cells and in control cells that did not express CFTR. Eight hundred and forty six proteins were identified and quantified (35% of the predicted proteome), including 163 integral membrane proteins. Expression of CFTR resulted in an increase in abundance of stress-related proteins (e.g. heat-shock and cell envelope stress), indicating the presence of misfolded proteins in the membrane. In contrast to the reported consequences of membrane protein overexpression in Escherichia coli, there were no indications that the membrane protein insertion machinery (Sec) became overloaded upon CFTR production in L. lactis. Nutrients and ATP became limiting in the control cells as the culture entered the late exponential and stationary growth phases but this did not happen in the CFTR expressing cells, which had stopped growing upon induction. The different stress responses elicited in E. coli and L. lactis upon membrane protein production indicate that different strategies are needed to overcome low expression yields and toxicity.


Assuntos
Adaptação Fisiológica , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Lactococcus lactis/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA