Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.549
Filtrar
1.
PLoS Pathog ; 20(5): e1012157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723104

RESUMO

Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Interações Hospedeiro-Patógeno , Relógios Circadianos/fisiologia , Animais , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Ritmo Circadiano/fisiologia
2.
Nat Commun ; 15(1): 3840, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714698

RESUMO

As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tauFisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's performance in adding timestamps to both bulk and single-cell transcriptomic samples collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNAseq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNAseq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Animais , Camundongos , Ritmo Circadiano/genética , Relógios Circadianos/genética , Humanos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Pele/metabolismo , Software , Fibroblastos/metabolismo , Análise de Sequência de RNA/métodos
3.
Elife ; 122024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743049

RESUMO

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/genética , Relógios Circadianos/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fotoperíodo , Cnidários/fisiologia , Cnidários/genética
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731986

RESUMO

Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.


Assuntos
Relógios Circadianos , Músculo Esquelético , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Humanos , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Ritmo Circadiano
5.
Elife ; 132024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716806

RESUMO

Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.


Assuntos
Relógios Circadianos , Anêmonas-do-Mar , Animais , Evolução Biológica , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Cnidários/fisiologia , Anêmonas-do-Mar/fisiologia
6.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716727

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Transcriptoma , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ritmo Circadiano/genética , Organoides/efeitos dos fármacos , Relógios Circadianos/genética , Relógios Circadianos/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Cronoterapia/métodos
7.
J Pineal Res ; 76(4): e12956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695262

RESUMO

The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.


Assuntos
Ritmo Circadiano , Glucose , Humanos , Animais , Ritmo Circadiano/fisiologia , Glucose/metabolismo , Relógios Circadianos/fisiologia , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia
8.
Nat Commun ; 15(1): 3712, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697963

RESUMO

The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA, an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints.


Assuntos
Proteínas de Bactérias , Relógios Circadianos , Cyanothece , Fixação de Nitrogênio , Oxigênio , Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Cyanothece/metabolismo , Cyanothece/genética , Nitrogenase/metabolismo , Nitrogenase/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Regulação Bacteriana da Expressão Gênica , Cianobactérias/metabolismo , Cianobactérias/genética
9.
Science ; 384(6695): 563-572, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696572

RESUMO

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Assuntos
Encéfalo , Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/fisiologia , Encéfalo/fisiologia , Envelhecimento/fisiologia , Homeostase , Relógios Circadianos/fisiologia , Senilidade Prematura/prevenção & controle , Ritmo Circadiano/fisiologia , Masculino
10.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739791

RESUMO

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fotossíntese , Fotossíntese/genética , Relógios Circadianos/genética , Biotecnologia/métodos , Cianobactérias/genética , Cianobactérias/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
11.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673986

RESUMO

The circadian rhythms generated by the master biological clock located in the brain's hypothalamus influence central physiological processes. At the molecular level, a core set of clock genes interact to form transcription-translation feedback loops that provide the molecular basis of the circadian rhythm. In animal models of disease, a desynchronization of clock genes in peripheral tissues with the central master clock has been detected. Interestingly, patients with vascular dementia have sleep disorders and irregular sleep patterns. These alterations in circadian rhythms impact hormonal levels, cardiovascular health (including blood pressure regulation and blood vessel function), and the pattern of expression and activity of antioxidant enzymes. Additionally, oxidative stress in vascular dementia can arise from ischemia-reperfusion injury, amyloid-beta production, the abnormal phosphorylation of tau protein, and alterations in neurotransmitters, among others. Several signaling pathways are involved in the pathogenesis of vascular dementia. While the precise mechanisms linking circadian rhythms and vascular dementia are still being studied, there is evidence to suggest that maintaining healthy sleep patterns and supporting proper circadian rhythm function may be important for reducing the risk of vascular dementia. Here, we reviewed the main mechanisms of action of molecular targets related to the circadian cycle and oxidative stress in vascular dementia.


Assuntos
Ritmo Circadiano , Demência Vascular , Estresse Oxidativo , Animais , Humanos , Relógios Circadianos/genética , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Demência Vascular/patologia , Demência Vascular/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular
12.
Nat Commun ; 15(1): 2834, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565846

RESUMO

The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Ritmo Circadiano/fisiologia , Temperatura , Sono/fisiologia , Drosophila , Relógios Circadianos/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia
13.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 163-171, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597076

RESUMO

OBJECTIVES: To investigate the mechanism of circadian clock protein Bmal1 (Bmal1) on renal injury with chronic periodontitis, we established an experimental rat periodontitis model. METHODS: Twelve male Wistar rats were randomly divided into control and periodontitis groups (n=6, each group). The first maxillary molars on both sides of the upper jaw of rats with periodontitis were ligated by using orthodontic ligature wires, whereas the control group received no intervention measures. After 8 weeks, clinical periodontal parameters, including probing depth, bleeding index, and tooth mobility, were evaluated in both groups. Micro-CT scanning and three-dimensional image reconstruction were performed on the maxillary bones of the rats for the assessment of alveolar bone resorption. Histopatholo-gical observations of periodontal and renal tissues were conducted using hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining. Renal function indicators, such as creatinine, albumin, and blood urea nitrogen levels, and oxidative stress markers, including superoxide dismutase, glutathione, and malondialdehyde levels, were measured using biochemical assay kits. MitoSOX red staining was used to detect reactive oxygen species (ROS) content in the kidneys. The gene and protein expression levels of Bmal1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in rat renal tissues were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining. RESULTS: Micro-CT and HE staining results showed significant bone resorption and attachment loss in the maxillary first molar region of the periodontitis group. Histological examination through HE and PAS staining revealed substantial histopathological damage to the renal tissues of the rats in the periodontitis group. The findings of the assessment of renal function and oxidative stress markers indicated that the periodontitis group exhibited abnormal levels of oxidative stress, whereas the renal function levels showed abnormalities without statistical significance. MitoSOX Red staining results showed that the content of ROS in the renal tissue of the periodontitis group was significantly higher than that of the control group, and RT-qPCR and immunohistochemistry results showed that the expression levels of Bmal1, Nrf2, and HO-1 in the renal tissues of the rats in the periodontitis group showed a decreasing trend. CONCLUSIONS: Circadian clock protein Bmal1 plays an important role in the oxidative damage process involved in the renal of rats with periodontitis.


Assuntos
Reabsorção Óssea , Relógios Circadianos , Compostos Organofosforados , Periodontite , Fenantridinas , Animais , Masculino , Ratos , Reabsorção Óssea/metabolismo , Rim/metabolismo , Rim/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Periodontite/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
14.
Curr Top Dev Biol ; 158: 307-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670711

RESUMO

Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.


Assuntos
Ritmo Circadiano , Regeneração , Células Satélites de Músculo Esquelético , Células Satélites de Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Regeneração/fisiologia , Humanos , Ritmo Circadiano/fisiologia , Músculo Esquelético/fisiologia , Desenvolvimento Muscular , Relógios Circadianos/fisiologia , Epigênese Genética
15.
Nat Commun ; 15(1): 3523, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664421

RESUMO

Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.


Assuntos
Relógios Circadianos , Proteínas Fúngicas , Neurospora crassa , Neurospora crassa/genética , Neurospora crassa/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Ligação Proteica , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/química , Mutação , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Análise Serial de Proteínas
16.
PLoS Biol ; 22(4): e3002572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603542

RESUMO

The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Humanos , Animais , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Relógios Circadianos/genética , Atividade Motora , Drosophila melanogaster/metabolismo
17.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558188

RESUMO

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Assuntos
Medula Óssea , Relógios Circadianos , Camundongos , Animais , Medula Óssea/metabolismo , Fotoperíodo , Ritmo Circadiano/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Relógios Circadianos/genética
18.
Methods Mol Biol ; 2795: 43-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594526

RESUMO

The pace of circadian rhythms remains relatively unchanged across a physiologically relevant range of temperatures, a phenomenon known as temperature compensation. Temperature compensation is a defining characteristic of circadian rhythms, ensuring that clock-regulated processes occur at approximately the same time of day across a wide range of conditions. Despite the identification of several genes involved in the regulation of temperature compensation, the molecular mechanisms underlying this process are still not well understood. High-throughput assays of circadian period are essential for the investigation of temperature compensation. In this chapter, we present a luciferase imaging-based method that enables robust and accurate examination of temperature compensation in the plant circadian clock.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Temperatura , Relógios Circadianos/genética , Arabidopsis/genética , Ritmo Circadiano/genética , Luciferases/genética , Proteínas de Arabidopsis/genética
19.
Methods Mol Biol ; 2795: 17-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594523

RESUMO

Hypocotyl elongation in Arabidopsis is widely utilized as a readout for phytochrome B (phyB) signaling and thermomorphogenesis. Hypocotyl elongation is gated by the circadian clock and, therefore, it occurs at distinct times depending on day length or seasonal cues. In short-day conditions, hypocotyl elongation occurs mainly at the end of nighttime when phyB reverts to the inactive form. In contrast, in long-day conditions, hypocotyl elongation occurs during the daytime when phyB is in the photoactivated form. Warm temperatures can induce hypocotyl growth in both long-day and short-day conditions. However, the corresponding daytime and nighttime temperature responses reflect distinct underpinning mechanisms. Here, we describe assays for dissecting the mechanisms between daytime and nighttime thermoresponsive hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fitocromo B/metabolismo , Luz
20.
Methods Mol Biol ; 2795: 123-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594534

RESUMO

Phase separation is an important mechanism for regulating various cellular functions. The EARLY FLOWERING 3 (ELF3) protein, an essential element of the EVENING COMPLEX (EC) involved in circadian clock regulation, has been shown to undergo phase separation. ELF3 is known to significantly influence elongation growth and flowering time regulation, and this is postulated to be due to whether the protein is in the dilute or phase-separated state. Here, we present a brief overview of methods for analyzing ELF3 phase separation in vitro, including the generation of phase diagrams as a function of pH and salt versus protein concentrations, optical microscopy, fluorescence recovery after photobleaching (FRAP), and turbidity assays.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Separação de Fases , Mutação , Luz , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas , Ritmo Circadiano/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA