Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77.271
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758698

RESUMO

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Assuntos
Resfriado Comum , Imunidade Inata , Interferons , Mucosa Nasal , SARS-CoV-2 , Transdução de Sinais , Humanos , Mucosa Nasal/virologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Interferons/metabolismo , Interferons/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Transdução de Sinais/imunologia , SARS-CoV-2/imunologia , Replicação Viral , Rhinovirus/imunologia , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavirus Humano NL63/imunologia
2.
J Med Virol ; 96(5): e29669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773784

RESUMO

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


Assuntos
DNA Circular , Furocumarinas , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Transcrição Gênica , Furocumarinas/farmacologia , Humanos , Animais , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/genética , Células Hep G2 , Camundongos , DNA Circular/genética , DNA Circular/metabolismo , Transcrição Gênica/efeitos dos fármacos , Antivirais/farmacologia , DNA Viral , Simulação de Acoplamento Molecular , Replicação Viral/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Modelos Animais de Doenças , Regiões Promotoras Genéticas
3.
Theranostics ; 14(7): 2706-2718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773966

RESUMO

Background: Neurotropic virus infections actively manipulate host cell metabolism to enhance virus neurovirulence. Although hyperglycemia is common during severe infections, its specific role remains unclear. This study investigates the impact of hyperglycemia on the neurovirulence of enterovirus 71 (EV71), a neurovirulent virus relying on internal ribosome entry site (IRES)-mediated translation for replication. Methods: Utilizing hSCARB2-transgenic mice, we explore the effects of hyperglycemia in EV71 infection and elucidate the underlying mechanisms. Results: Remarkably, administering insulin alone to reduce hyperglycemia in hSCARB2-transgenic mice results in a decrease in brainstem encephalitis and viral load. Conversely, induced hyperglycemia exacerbates neuropathogenesis, highlighting the pivotal role of hyperglycemia in neurovirulence. Notably, miR-206 emerges as a crucial mediator induced by viral infection, with its expression further heightened by hyperglycemia and concurrently repressed by insulin. The use of antagomiR-206 effectively mitigates EV71-induced brainstem encephalitis and reduces viral load. Mechanistically, miR-206 facilitates IRES-driven virus replication by repressing the stress granule protein G3BP2. Conclusions: Novel therapeutic approaches against severe EV71 infections involve managing hyperglycemia and targeting the miR-206-stress granule pathway to modulate virus IRES activity.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Hiperglicemia , Sítios Internos de Entrada Ribossomal , Camundongos Transgênicos , MicroRNAs , Replicação Viral , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Enterovirus Humano A/fisiologia , Enterovirus Humano A/genética , Hiperglicemia/metabolismo , Hiperglicemia/virologia , Camundongos , Infecções por Enterovirus/virologia , Infecções por Enterovirus/metabolismo , Humanos , Carga Viral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Insulina/metabolismo , Modelos Animais de Doenças
4.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767756

RESUMO

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Potyvirus/patogenicidade , Potyvirus/fisiologia , Arabidopsis/virologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral , Nicotiana/virologia , Nicotiana/genética
5.
Front Immunol ; 15: 1385473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720890

RESUMO

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Assuntos
Vírus Chikungunya , Vírus da Dengue , Dengue , Interferons , Janus Quinases , Macrófagos , Fatores de Transcrição STAT , Transdução de Sinais , Replicação Viral , Humanos , Vírus Chikungunya/fisiologia , Vírus Chikungunya/imunologia , Vírus da Dengue/fisiologia , Vírus da Dengue/imunologia , Janus Quinases/metabolismo , Replicação Viral/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Macrófagos/metabolismo , Interferons/metabolismo , Dengue/imunologia , Dengue/virologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Interleucina-27/metabolismo , Interleucinas/metabolismo , Interleucinas/farmacologia , Interleucinas/imunologia , Transcriptoma , Células Cultivadas
6.
Arch Virol ; 169(5): 116, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722402

RESUMO

In this study, we investigated the role of serum/glucocorticoid-regulated kinase 1 (SGK1) in varicella-zoster virus (VZV) replication. VZV DNA replication and plaque formation were inhibited by SGK1 knockout and treatment with an SGK1 inhibitor. Furthermore, SGK1 inhibition suppressed the increase in cyclin B1 expression induced by VZV infection. These results suggest that VZV infection induces SGK1 activation, which is required for efficient viral proliferation through the expression of cyclin B1. This is the first study to report that SGK1 is involved in the VZV life cycle.


Assuntos
Ciclina B1 , Herpesvirus Humano 3 , Proteínas Imediatamente Precoces , Proteínas Serina-Treonina Quinases , Replicação Viral , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Humanos , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ciclina B1/metabolismo , Ciclina B1/genética , Linhagem Celular , Replicação do DNA
7.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731543

RESUMO

Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a promising nucleic acid-based gene targeting approach for gene expression knock-down and modulation. The RNase P-EGS strategy is unique as an EGS can be designed to basepair any mRNA sequence and recruit intracellular RNase P for hydrolysis of the target mRNA. In this study, we provide the first direct evidence that the RNase P-based approach effectively blocks the gene expression and replication of herpes simplex virus 2 (HSV-2), the causative agent of genital herpes. We constructed EGSs to target the mRNA encoding HSV-2 single-stranded DNA binding protein ICP8, which is essential for viral DNA genome replication and growth. In HSV-2 infected cells expressing a functional EGS, ICP8 levels were reduced by 85%, and viral growth decreased by 3000 folds. On the contrary, ICP8 expression and viral growth exhibited no substantial differences between cells expressing no EGS and those expressing a disabled EGS with mutations precluding RNase P recognition. The anti-ICP8 EGS is specific in targeting ICP8 because it only affects ICP8 expression but does not affect the expression of the other viral immediate-early and early genes examined. This study shows the effective and specific anti-HSV-2 activity of the RNase P-EGS approach and demonstrates the potential of EGS RNAs for anti-HSV-2 applications.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 2 , Replicação Viral , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiologia , Humanos , Ribonuclease P/metabolismo , Ribonuclease P/genética , Animais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Chlorocebus aethiops , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Vero , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Ligação a DNA
8.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734691

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


Assuntos
COVID-19 , Receptores ErbB , Mitocôndrias , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/efeitos dos fármacos , Humanos , Animais , Camundongos , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Replicação Viral/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Células Vero , Chlorocebus aethiops , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725448

RESUMO

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Assuntos
Antivirais , Heme Oxigenase-1 , Infecções por Herpesviridae , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Rutina , Transdução de Sinais , Rutina/farmacologia , Rutina/uso terapêutico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Camundongos , Infecções por Herpesviridae/tratamento farmacológico , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Modelos Animais de Doenças , Antioxidantes/farmacologia , Linhagem Celular , Carga Viral/efeitos dos fármacos , Cavalos , Feminino , Proteínas de Membrana
10.
Front Cell Infect Microbiol ; 14: 1380736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716191

RESUMO

Introduction: Chikungunya virus (CHIKV) infection is associated with acute clinical manifestations and chronic joint inflammation. CHIKV has emerged as a significant causative agent of central nervous system (CNS) complications, including encephalitis and related sequelae. Microglial cells, crucial for immune responses and tissue repair in the CNS, play a vital role in the host response to viral infections, with their activation potentially leading to either protection or pathology. In this study, the infection biology of CHIKV in the C20 human microglial cell line was investigated. Methods: The permissiveness of C20 cells to CHIKV infection was assessed, and viral replication kinetics were compared to Vero E6 cells. Cytopathic effects of CHIKV infection on C20 cells were examined, along with ultrastructural changes using transmission electron microscopy. Additionally, apoptosis induction, mitochondrial membrane potential, and alterations in cell surface marker expression were evaluated by flow cytometry. Results: CHIKV infection demonstrated permissiveness in C20 cells, similar to Vero cells, resulting in robust viral replication and cytopathic effects. Ultrastructural analysis revealed viral replication, mature virion formation, and distinctive cytoplasmic and nuclear changes in infected C20 cells. CHIKV infection induced significant apoptosis in C20 cells, accompanied by mitochondrial membrane depolarization and altered expression of cell surface markers such as CD11c, CD14, and HLA-DR. Notably, decreased CD14 expression was observed in CHIKV-infected C20 cells. Discussion: The study findings suggest that CHIKV infection induces apoptosis in C20 microglial cells via the mitochondrial pathway, with significant alterations in cell surface marker expression, particularly CD14 that is linked with apoptosis induction. These observations provide valuable insights into the role of human microglial cells in the host response to CHIKV infection and contribute to the knowledge on the neuropathogenesis of this virus.


Assuntos
Apoptose , Febre de Chikungunya , Vírus Chikungunya , Microglia , Mitocôndrias , Replicação Viral , Microglia/virologia , Vírus Chikungunya/fisiologia , Humanos , Mitocôndrias/ultraestrutura , Linhagem Celular , Chlorocebus aethiops , Animais , Células Vero , Febre de Chikungunya/virologia , Potencial da Membrana Mitocondrial , Efeito Citopatogênico Viral
11.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717918

RESUMO

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Assuntos
Doenças das Plantas , Tisanópteros , Tospovirus , Tospovirus/imunologia , Tospovirus/fisiologia , Tospovirus/genética , Animais , Tisanópteros/virologia , Tisanópteros/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Capsicum/virologia , Capsicum/imunologia , Replicação Viral , Interferência de RNA , Insetos Vetores/virologia , Insetos Vetores/imunologia , Perfilação da Expressão Gênica , Transdução de Sinais
12.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 375-379, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38733195

RESUMO

Hepatitis B virus (HBV) DNA integration occurs during the reverse transcription process of HBV replication, which develops in the early stages of HBV infection and accompanies the entire disease course. The integration of HBV DNA is detrimental to the attainment of clinical cure goals and also raises the risk of developing liver cancer. Theoretically, nucleos(t)ide analogs can reduce the synthesis of new double-stranded linear DNA, but there is no clearance function for hepatocytes that have already integrated HBV. Therefore, patients with serum HBV DNA-negative conversions still have the risk of developing liver cancer. As an immunomodulatory drug, interferon can not only inhibit viral replication but also inhibit or even eliminate existing clonally amplified hepatocytes carrying integrated HBV DNA fragments. However, there are currently few studies on the effects of nucleos(t)ide analogues and interferon therapy on HBV DNA integration. Thus, large-scale clinical studies are urgently needed for further clarification.


Assuntos
Antivirais , DNA Viral , Vírus da Hepatite B , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Integração Viral , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Replicação Viral/efeitos dos fármacos , Interferons/uso terapêutico
13.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 318-324, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38733186

RESUMO

Objective: To explore the antiviral activity of the small-molecule compound AM679 in hepatitis B virus (HBV) replication and infection cell models. Methods: The positive regulatory effect of AM679 on EFTUD2 expression was validated by qPCR and Western blotting. HepAD38 and HepG2-NTCP cells were treated with AM679 (0.5, 1, and 2 nmol/L). Negative control, positive control, and AM679 combined with the entecavir group were set up. HBV DNA intra-and extracellularly, as well as the expression levels of intracellular HBV total RNAs and 3.5kb-RNA changes, were detected with qPCR. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) levels were measured in the cell supernatant by an enzyme-linked immunosorbent assay (ELISA). The t-test method was used for the statistical analysis of the mean difference between groups. Results: EFTUD2 mRNA and protein expression levels were significantly increased in HepAD38 and HepG2-NTCP cells following AM679 treatment, with a statistically significant difference (P < 0.001). Intra-and extracellular indicators such as HBV DNA, HBV RNAs, HBV 3.5kb-RNA, HBsAg, and HBeAg were decreased to varying degrees in both cell models, and the decrease in these indicators was more pronounced with the increase in AM679 concentration and prolonged treatment duration, while the combined use of AM679 and entecavir had a more significant antiviral effect. The HBV DNA inhibition rates in the supernatant of HepAD38 cells with the use of 2 nmol/L AM679 were 21% and 48% on days three and nine, respectively. The AM679 combined with the ETV treatment group had the most significant inhibitory effect (62%), with a P < 0.01. More active HBV replication was observed after silencing EFTUD2, while the antiviral activity of AM679 was significantly weakened. Conclusion: AM679 exerts anti-HBV activity in vitro by targeting the regulation of EFTUD2 expression.


Assuntos
Antivirais , Guanina/análogos & derivados , Vírus da Hepatite B , Replicação Viral , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Células Hep G2 , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , DNA Viral
14.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732151

RESUMO

The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication and immune evasion, has been identified as a significant drug target with substantial potential to contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains highlights the urgent need for novel therapeutics. This study proposes a combined theoretical criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual screening and molecular docking, we proposed the most promising candidate as a potential NS1 inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing measurable virus replication inhibition activity in cell culture. This approach offers a promising avenue for developing novel anti-influenza agents targeting the NS1 protein.


Assuntos
Antivirais , Produtos Biológicos , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Vírus da Influenza A/efeitos dos fármacos , Animais , Células Madin Darby de Rim Canino , Cães
15.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732202

RESUMO

Acquiring resistance against antiviral drugs is a significant problem in antimicrobial therapy. In order to identify novel antiviral compounds, the antiviral activity of eight plants indigenous to the southern region of Hungary against herpes simplex virus-2 (HSV-2) was investigated. The plant extracts and the plant compound carnosic acid were tested for their effectiveness on both the extracellular and intracellular forms of HSV-2 on Vero and HeLa cells. HSV-2 replication was measured by a direct quantitative PCR (qPCR). Among the tested plant extracts, Salvia rosmarinus (S. rosmarinus) exhibited a 90.46% reduction in HSV-2 replication at the 0.47 µg/mL concentration. Carnosic acid, a major antimicrobial compound found in rosemary, also demonstrated a significant dose-dependent inhibition of both extracellular and intracellular forms of HSV-2. The 90% inhibitory concentration (IC90) of carnosic acid was between 25 and 6.25 µg/mL. Proteomics and high-resolution respirometry showed that carnosic acid suppressed key ATP synthesis pathways such as glycolysis, citrate cycle, and oxidative phosphorylation. Inhibition of oxidative phosphorylation also suppressed HSV-2 replication up to 39.94-fold. These results indicate that the antiviral action of carnosic acid includes the inhibition of ATP generation by suppressing key energy production pathways. Carnosic acid holds promise as a potential novel antiviral agent against HSV-2.


Assuntos
Abietanos , Trifosfato de Adenosina , Antivirais , Herpesvirus Humano 2 , Extratos Vegetais , Replicação Viral , Abietanos/farmacologia , Replicação Viral/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Humanos , Animais , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/fisiologia , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HeLa
16.
Pak J Pharm Sci ; 37(1): 107-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741406

RESUMO

Entecavir, an effective anti-hepatitis B drug with low resistance rate, was designed as sustained-release micro spheres in our previous study. Here, we aimed to reveal the drug-release mechanism by observing the drug distribution and degradation behavior of poly (lactic-co-glycolic acid) and to investigate the pharmacodynamics of entecavir micro spheres. Raman spectroscopy was used to analyze the distribution of active pharmaceutical ingredients in the micro spheres. The results showed that there was little entecavir near the micro sphere surface. With increasing micro sphere depth, the drug distribution gradually increased and larger-size entecavir crystals were mainly distributed near the spherical center. The degradation behavior of poly (lactic-co-glycolic acid) was investigated using gel permeation chromatography. Changes in poly (lactic-co-glycolic acid) molecular weights during micro sphere degradation revealed that dissolution dominated the release process, which proved our previous research results. Pharmacodynamics studies on transgenic mice indicated that the anti-hepatitis B virus replication effect was maintained for 42 days after a single injection of entecavir micro spheres, similar to the effect of daily oral administration of entecavir tablets for 28 days. The entecavir micro spheres prepared in this study had a good anti-hepatitis B virus replication effect and it is expected to be used in anti hepatitis B virus treatment against hepatitis B virus.


Assuntos
Antivirais , Guanina , Vírus da Hepatite B , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Guanina/farmacologia , Guanina/análogos & derivados , Guanina/farmacocinética , Animais , Antivirais/farmacologia , Antivirais/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vírus da Hepatite B/efeitos dos fármacos , Liberação Controlada de Fármacos , Camundongos Transgênicos , Camundongos , Replicação Viral/efeitos dos fármacos , Microesferas , Preparações de Ação Retardada , Hepatite B/tratamento farmacológico , Tamanho da Partícula , Ácido Poliglicólico/química , Análise Espectral Raman , Ácido Láctico
17.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711929

RESUMO

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Assuntos
Infecções por Bunyaviridae , Imunidade Inata , Orthobunyavirus , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Humanos , Animais , Orthobunyavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferons/imunologia , Interferons/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Citocinas/imunologia , Doenças Transmitidas por Vetores/imunologia , Doenças Transmitidas por Vetores/virologia , Doenças Transmitidas por Vetores/prevenção & controle , Replicação Viral
18.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730463

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Assuntos
Antivirais , Histona Desmetilases , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Animais , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Histona Desmetilases/antagonistas & inibidores , Suínos , Chlorocebus aethiops , Doenças dos Suínos/virologia , Doenças dos Suínos/tratamento farmacológico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Células Vero
19.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731834

RESUMO

Tripartite motif (TRIM) proteins are a multifunctional E3 ubiquitin ligase family that participates in various cellular processes. Recent studies have shown that TRIM proteins play important roles in regulating host-virus interactions through specific pathways, but their involvement in response to rabies virus (RABV) infection remains poorly understood. Here, we identified that several TRIM proteins are upregulated in mouse neuroblastoma cells (NA) after infection with the rabies virus using RNA-seq sequencing. Among them, TRIM44 was found to regulate RABV replication. This is supported by the observations that downregulation of TRIM44 inhibits RABV replication, while overexpression of TRIM44 promotes RABV replication. Mechanistically, TRIM44-induced RABV replication is brought about by activating autophagy, as inhibition of autophagy with 3-MA attenuates TRIM44-induced RABV replication. Additionally, we found that inhibition of autophagy with rapamycin reverses the TRIM44-knockdown-induced decrease in LC3B expression and autophagosome formation as well as RABV replication. The results suggest that TRIM44 promotes RABV replication by an autophagy-dependent mechanism. Our work identifies TRIM44 as a key host factor for RABV replication, and targeting TRIM44 expression may represent an effective therapeutic strategy.


Assuntos
Autofagia , Vírus da Raiva , Proteínas com Motivo Tripartido , Replicação Viral , Autofagia/genética , Animais , Camundongos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Vírus da Raiva/fisiologia , Vírus da Raiva/genética , Linhagem Celular Tumoral , Humanos , Raiva/virologia , Raiva/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Interações Hospedeiro-Patógeno
20.
Biol Pharm Bull ; 47(5): 912-916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692868

RESUMO

The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.


Assuntos
Herpesviridae , Humanos , Herpesviridae/fisiologia , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais , Genoma Viral , Capsídeo/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA