Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0305003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39116109

RESUMO

The latex of Ipomoea (Convolvulaceae) is a source of a special kind of acylsugars called resin glycosides, which are highly appreciated because of their biological activities (i.e. laxative, antimicrobial, cytotoxic etc.). Most research has been conducted in perennials with tuberous roots, where resin glycosides are stored. However, their content and variation are unknown in annual vines that lack this type of root, such as in the case of Ipomoea parasitica. This species contains research/biological and human value through its fast growth, survival in harsh environments, and employment in humans for mental/cognitive improvements. These qualities make I. parasitica an ideal system to profile resin glycosides and their variations in response to edaphoclimate. Topsoil samples (0-30 cm depth) and latex from petioles of I. parasitica were collected in two localities of central Mexico. The latex was analyzed through UHPLC-ESI-QTOF, and soil physico-chemical characteristics, the rainfall, minimum, average, and maximum temperatures were recorded. We also measured canopy (%), rockiness (%), and plant cover (%). A Principal Component Analysis was conducted to find associations between edaphoclimate and the resin glycosides. Forty-four resin glycosides were found in the latex of I. parasitica. Ten correlated significantly with three components (47.07%) and contained tetrasaccharide, pentasaccharide, and dimers of tetrasaccharide units. Five resin glycosides were considered constitutive because they were in all the plants. However, exclusive molecules to each locality were also present, which we hypothesize is in response to significant microhabitat conditions found in this study (temperature, clay content, pH, and potassium). Our results showed the presence of resin glycosides in I. parasitica latex and are the basis for experimentally testing the effect of the conditions above on these molecules. However, ecological, molecular, and biochemical factors should be considered in experiments designed to produce these complex molecules.


Assuntos
Glicosídeos , Ipomoea , Resinas Vegetais , Glicosídeos/química , Ipomoea/química , Resinas Vegetais/química , México , Látex/química , Solo/química
2.
Chin J Nat Med ; 22(7): 643-653, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39059833

RESUMO

The resin of Ferula sinkiangensis has been traditionally utilized for treating gastrointestinal disorders, inflammation, tumors, various cancers, and alopecia areata. The primary bioactive constituents, sesquiterpene coumarins, have demonstrated notable therapeutic potential against neuroinflammation. In this study, a structure-guided fractionation method was used to isolate nine novel sesquiterpene coumarins from the resin of F. sinkiangensis. These compounds were characterized and structurally elucidated using comprehensive physicochemical and spectroscopic techniques, including calculated electronic circular dichroism (ECD). Anti-neuroinflammatory assays revealed that compounds 2, 3, and 6 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells, with IC50 values ranging from 1.63 to 12.25 µmol·L-1.


Assuntos
Anti-Inflamatórios , Cumarínicos , Ferula , Microglia , Óxido Nítrico , Sesquiterpenos , Ferula/química , Cumarínicos/farmacologia , Cumarínicos/isolamento & purificação , Cumarínicos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Microglia/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Animais , Camundongos , Linhagem Celular , Lipopolissacarídeos/farmacologia , Resinas Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999095

RESUMO

Propolis is a bee product mainly consisting of plant resins and is used by bees to maintain the structural integrity of the colony. Propolis is known to contribute to bee health via its antimicrobial activity and is a valued product for human use owing to its nutritional and medicinal properties. Propolis is often characterised into seven categories depending on the resin source. New Zealand propolis is typically assumed as being poplar-type propolis, but few studies have chemically characterised New Zealand propolis to confirm or reject this assumption. Here, for the first time, we characterise propolis originating from different regions in New Zealand based on its volatile organic compounds, using gas chromatography coupled with mass spectrometry (GC-MS). To support this characterisation, we also collected and analysed resin samples from a variety of resin-producing plants (both native to New Zealand and introduced). Our findings suggest that bees mainly use poplar as a resin source, but also utilize native plant species to produce propolis. While regional variation did not allow for clear separation between samples, some patterns emerged, with samples from some regions having more chemical complexity and a higher contribution from native species (as suggested by a higher number of compounds unique to native species resin). Further studies are needed to accurately identify the botanical sources contributing to these samples. It may be also of interest to explore the biological activity of regional propolis samples and their potential nutritional or medicinal benefits.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Própole , Compostos Orgânicos Voláteis , Própole/química , Nova Zelândia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Abelhas/química , Animais , Resinas Vegetais/química
4.
Int J Biol Macromol ; 271(Pt 2): 132623, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845255

RESUMO

Shellac is a natural resin featuring some attractive properties such as amphiphilicity, pH responsiveness, biocompatibility, and biodegradability. There has been increasing interest in employing shellac for controlled delivery of food bioactive compounds. This review outlines the recent advances in different types of shellac-based delivery systems, including nanoparticles, zein-shellac particles, hydrogels, nanofibers, and nanomicelles. The preparation method, formation mechanism, structure, and delivery performance are investigated. These systems could improve the stability and shelf-life of bioactive compounds, allow for targeted release at the small intestine or colon site, and increase bioavailability. The deficiencies and challenges of each of the systems are also discussed. The promising results in this review could guide future trends in more efficient shellac-based delivery platforms for functional food applications.


Assuntos
Resinas Vegetais , Humanos , Resinas Vegetais/química , Sistemas de Liberação de Medicamentos , Zeína/química , Nanopartículas/química , Hidrogéis/química , Nanofibras/química , Animais , Disponibilidade Biológica
5.
Food Res Int ; 188: 114475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823838

RESUMO

This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.


Assuntos
Quitosana , Nanocompostos , Resinas Vegetais , Solubilidade , Ceras , Óxido de Zinco , Quitosana/química , Óxido de Zinco/química , Nanocompostos/química , Resinas Vegetais/química , Ceras/química , Nanopartículas/química , Embalagem de Alimentos/métodos , Permeabilidade
6.
Int J Biol Macromol ; 273(Pt 2): 133152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878928

RESUMO

The design of polymer-based composites possessing good mechanical and self-healing properties remains a challenge in the development of high-performance self-healing materials. In this study, we used two-dimensional polyamide (2DPA), biomass rosin ester, and a dynamic crosslinking agent poly (urethane-urea) as raw materials, and prepared biomass rosin-based composites via in situ polymerization. The composites with 1 wt% 2DPA exhibited excellent self-healing properties (self-healing efficiency of 94 % after 24 h at 80 °C) and mechanical properties (tensile strength = 7.8 MPa). Moreover, the composites were applied to anticorrosion and antimicrobial coatings, which possessed excellent anticorrosion and antimicrobial properties. This study provides a new strategy for developing high-performance bio-based self-healing composites.


Assuntos
Anti-Infecciosos , Nylons , Resinas Vegetais , Nylons/química , Resinas Vegetais/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Resistência à Tração , Poliuretanos/química
7.
Fitoterapia ; 177: 106068, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38857833

RESUMO

Rosin, a natural resin obtained from conifer trees, has a long history of use in traditional folk medicine for treating abscesses, wounds, carbuncles, and burns, etc. It has been employed in ancient Egypt, China, Nordic countries, and Turkey as a therapeutic remedy. This comprehensive review examines the traditional uses, phytochemistry, and pharmacology of rosin, and it provides a critical update on current knowledge of rosin and identifies potential therapeutic opportunities. The chemical composition of rosin is known to vary depending on factors such as botanical sources, geographical locations, and processing methods. Rosin acids, which account for over 90% of its primary chemical constituents, have been identified as the predominant compounds in rosin. Researchers have isolated approximately 50 compounds from rosin, with terpenoid rosin acids being the most prevalent. Furthermore, the review highlights the potential pharmacological activities of rosin and its constituents. Crude extracts and isolated rosin acids have demonstrated promising properties, including antimicrobial, anti-inflammatory, anti-tumor, insecticidal, wound healing, and anti-obesity effects. However, the review emphasizes that further research is needed, as existing studies are predominantly preliminary. Many of the reported bioactivities require further verification, and the underlying mechanisms of action remain largely unexplored. In conclusion, rosin has been extensively used in traditional medicine across different cultures, and its chemical composition has been confirmed to a significant extent. The pharmacological activities observed in crude extracts and isolated rosin acids support its traditional uses. Nevertheless, additional research is necessary to deepen our understanding of the pharmacological mechanisms underlying its effects.


Assuntos
Medicina Tradicional , Compostos Fitoquímicos , Resinas Vegetais , Resinas Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Estrutura Molecular , Humanos , Animais , Traqueófitas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
8.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792084

RESUMO

Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.


Assuntos
Cistus , Hipoglicemiantes , Fármacos Neuroprotetores , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Humanos , Cistus/química , Resinas Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proliferação de Células/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Células Hep G2 , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação
9.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743441

RESUMO

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Assuntos
Portadores de Fármacos , Hidrogéis , Inseticidas , Ivermectina , Resinas Vegetais , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Ivermectina/toxicidade , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Concentração de Íons de Hidrogênio , Inseticidas/química , Inseticidas/farmacologia , Resinas Vegetais/química , Portadores de Fármacos/química , Temperatura , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Mariposas/efeitos dos fármacos , Rosaceae/química , Zinco/química , Zinco/farmacologia , Resinas Acrílicas
10.
Carbohydr Res ; 540: 109142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718742

RESUMO

Resin glycosides act as laxatives in crude drugs derived from plants of the Convolvulaceae family. These compounds have exhibited antibacterial, ionophoric, anti-inflammatory, antiviral, and multidrug resistance-modulating properties, as well as cytotoxicity against cancer cells. This study investigated the organic acid, hydroxyl fatty acid, monosaccharide, and glycosidic acid components of the crude resin glycoside fraction obtained from the methanol extract of Ipomoea alba L. (Convolvulaceae) seeds, which was subjected to alkaline and acidic hydrolysis. The alkaline hydrolysis yielded acetic, isobutyric, (E)-2-methylbut-2-enoic, and 2S-methyl-3S-hydroxybutyric acids as organic acid components, along with a glycosidic acid fraction. The acidic hydrolysis of the glycosidic acid fraction resulted in the isolation of 11S-hydroxytetradecanoic and 11S-hydroxyhexadecanoic acids as hydroxyl fatty acid components, as well as d-glucose, d-quinovose, d-fucose, d-xylose, and l-rhamnose as monosaccharide components. In addition, 10 new glycosidic acid methyl esters were isolated from the glycosidic acid fraction treated with trimethylsilyldiazomethane-hexane, along with one known glycosidic acid methyl ester. Of these, eight compounds contained new glycans. Four of these compounds were unusual natural glycosides with four glycosidic linkages to one monosaccharide. Their structures were determined using MS and NMR spectral analyses, which provided valuable insights into the unique glycosidic composition of I. alba seeds.


Assuntos
Glicosídeos , Ipomoea , Sementes , Ipomoea/química , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Sementes/química , Resinas Vegetais/química , Hidrólise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124384, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701576

RESUMO

The bioactive compounds Acetyl-11-keto-ß-boswellic acid (AKBA) and 11-keto-ß-boswellic acid (KBA), found in the resin of the Boswellia tree, exhibit anti-inflammatory properties, rendering Boswellia resin an intriguing natural medicinal products. However, the content of boswellic acids varies across different Boswellia species and proper knowledge of its species-dependent nature, as well as alternatives to the resource- and time-intensive HPLC analysis, are lacking. Here we present a comprehensive investigation into the boswellic acid content of seven Boswellia species from ten countries and introduce a novel and non-destructive Near-Infrared spectroscopy method for predicting boswellic acid concentrations in solid resin samples. The HPLC-UV reference analysis revealed AKBA concentrations of up to 7.27 % (w/w) with KBA concentrations reaching up to 1.28 % (w/w). Principal Component Analysis of the HPLC and NIR spectroscopy data unveiled species-specific variations, facilitating differentiation based on boswellic acid content, characteristic chromatograms and NIR spectra. Using the HPLC-UV quantification as reference, we developed a Partial Least Squares regression model based on NIR spectra of the resin samples. This model demonstrated highly satisfactory predictive capabilities for AKBA content, achieving a root mean square error of prediction of 0.74 % (w/w) and an R2val of 0.79 in independent test set validation. Although the model was less effective for predicting KBA content, it still offered valuable estimates. The spectroscopic method introduced in this study provides a cost-effective and solvent-free approach for predicting boswellic acid content, demonstrating the potential for application in non-laboratory settings through the use of miniaturized NIR spectrometers. Consequently, this method aligns well with the principles of green chemistry and addresses the growing demand for alternative analytical techniques.


Assuntos
Boswellia , Análise de Componente Principal , Resinas Vegetais , Espectroscopia de Luz Próxima ao Infravermelho , Triterpenos , Boswellia/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Triterpenos/análise , Cromatografia Líquida de Alta Pressão/métodos , Resinas Vegetais/química , Resinas Vegetais/análise , Análise Multivariada , Especificidade da Espécie
12.
Int J Biol Macromol ; 269(Pt 2): 132168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729496

RESUMO

Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.


Assuntos
Ferula , Ferula/química , Gomas Vegetais/química , Vias Biossintéticas/genética , Resinas Vegetais/química , Terpenos/metabolismo , Terpenos/química , Edição de Genes
13.
Int J Biol Macromol ; 270(Pt 1): 132221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729499

RESUMO

Cellulose acetate (CA) is a non-toxic, renewable, and biodegradable polymeric material that can be effectively electrospuned into bacterial filtration efficient nanofiber membrane for face mask application. However, its fragile and non-antibacterial nature influenced its scalability. In this context, natural antibacterial gum rosin (GR) additive can be explored. Therefore, the present study aimed to produce a CA/GR composite nanofibers membrane for the finest bacterial filtration, excellent antibacterial moiety, and improved tensile properties for facemask application. Hence, in this work, we have studied the effect of GR concentrations (0-15 g) on the needleless electrospinning behavior and fibers' morphology through rheology, electrical conductivity, and SEM analysis. These analyses revealed that GR significantly affects the fibers' spinning behavior, morphology, and diameter of the produced fibers. Later, ATR-FTIR spectroscopy mapped the functional changes in the produced nanofibers that affirmed the integration of GR with CA polymer. This modification resulted in a 3-fold rise in tensile strength and an 11-fold decline in elongation% in 15 g CA/GR composite nanofibers membrane than the control sample. Furthermore, it has shown 98.79 ± 0.10% bacterial filtration efficiency and âˆ¼ 93 % reduction in Staphylococcus Aureus and Klebsiella Pneumoniae bacterial growth, elucidating a high-efficiency level for potential facemask application.


Assuntos
Antibacterianos , Bactérias , Celulose , Máscaras , Nanofibras , Resinas Vegetais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Condutividade Elétrica , Filtração/métodos , Filtração/normas , Máscaras/microbiologia , Máscaras/normas , Nanofibras/química , Nanofibras/microbiologia , Nanofibras/ultraestrutura , Resinas Vegetais/química , Reologia , Celulose/análogos & derivados , Celulose/química , Celulose/farmacologia
14.
Fitoterapia ; 176: 106000, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729248

RESUMO

Five new characteristic cembrane-type diterpenoids (olibacartiols A-E, 1-5) were acquired from the gum resin of Boswellia carterii. The structures of these diterpenoids were characterized by detailed spectroscopic analysis, and compounds 1-3 were unambiguously confirmed by single-crystal X-ray diffraction experiments. The anti-inflammatory activities of the isolated compounds were evaluated using LPS-induced BV2 cell model and compounds 2-5 showed moderate NO inhibitory effects with IC50 values of 8.84 ± 1.02, 9.82 ± 1.95, 9.75 ± 2.24, and 7.39 ± 1.24 µM, respectively.


Assuntos
Anti-Inflamatórios , Boswellia , Diterpenos , Óxido Nítrico , Compostos Fitoquímicos , Resinas Vegetais , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/química , Boswellia/química , Óxido Nítrico/metabolismo , Estrutura Molecular , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Resinas Vegetais/química , Camundongos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Linhagem Celular , China , Gomas Vegetais/química , Gomas Vegetais/farmacologia
15.
Planta Med ; 90(10): 810-820, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749480

RESUMO

Copaifera duckei oleoresin is a plant product extensively used by the Brazilian population for multiple purposes, such as medicinal and cosmetic. Despite its ethnopharmacological relevance, there is no pharmacokinetic data on this important medicinal plant. Due to this, we determined the pharmacokinetic profile of the major nonvolatile compounds of C. duckei oleoresin. The diterpenes ent-polyalthic acid and dihydro-ent-agathic acid correspond to approximately 40% of the total oleoresin. Quantification was performed using LC-MS/MS, and the validated analytical method showed to be precise, accurate, robust, reliable, and linear between 0.57 and 114.74 µg/mL plasma and 0.09 to 18.85 µg/mL plasma, respectively, for ent-polyalthic acid and dihydro-ent-agathic acid, making it suitable for application in preclinical pharmacokinetic studies. Wistar rats received a single 200 mg/kg oral dose (gavage) of C. duckei oleoresin, and blood was collected from their caudal vein through 48 h. Population pharmacokinetics analysis of ent-polyalthic and dihydro-ent-agathic acids in rats was evaluated using nonlinear mixed-effects modeling conducted in NONMEN software. The pharmacokinetic parameters of ent-polyalthic acid were absorption constant rate = 0.47 h-1, central and peripheral apparent volume of distribution = 0.04 L and 2.48 L, respectively, apparent clearance = 0.15 L/h, and elimination half-life = 11.60 h. For dihydro-ent-agathic acid, absorption constant rate = 0.28 h-1, central and peripheral apparent volume of distribution = 0.01 L and 0.18 L, respectively, apparent clearance = 0.04 L/h, and elimination half-life = 3.49 h. The apparent clearance, central apparent volume of distribution, and peripheral apparent volume of distribution of ent-polyalthic acid were approximately 3.75, 4.00-, and 13.78-folds higher than those of dihydro-ent-agathic.


Assuntos
Diterpenos , Ratos Wistar , Animais , Diterpenos/farmacocinética , Diterpenos/sangue , Diterpenos/química , Ratos , Masculino , Resinas Vegetais/farmacocinética , Resinas Vegetais/química , Espectrometria de Massas em Tandem , Fabaceae/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/química , Cromatografia Líquida
16.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675598

RESUMO

Plant extracts and essential oils can be alternative environmentally friendly agents to combat pathogenic microbes and malaria vectors. Myrrh is an aromatic oligum resin that is extracted from the stem of Commiphora spp. It is used in medicine as an insecticide, cytotoxic, and aromatic. The current study assessed the effect of Commiphora myrrha resin extracts on the biological potency of the third larval stage of Aedes aegypti, as well as its antioxidant and cytotoxic properties against two types of tumor cells (HepG-2 and Hela cell lines). It also used GC-MS to determine the chemical composition of the C. myrrha resin extracts. Fifty components from the extracted plant were tentatively identified using the GC-MS method, with curzerene (33.57%) typically listed as the primary ingredient, but other compounds also make up a significant portion of the mixture, including 1-Methoxy-3,4,5,7-tetramethylnaphthalene (15.50%), ß-Elemene (5.80%), 2-Methoxyfuranodiene (5.42%), 2-Isopropyl-4,7-Dimethyl-1-Naphthol (4.71%), and germacrene B (4.35%). The resin extracts obtained from C. myrrha exhibited significant efficacy in DPPH antioxidant activity, as evidenced by an IC50 value of 26.86 mg/L and a radical scavenging activity percentage of 75.06%. The 50% methanol extract derived from C. myrrha resins exhibited heightened potential for anticancer activity. It demonstrated substantial cytotoxicity against HepG-2 and Hela cells, with IC50 values of 39.73 and 29.41 µg mL-1, respectively. Notably, the extract showed non-cytotoxic activity against WI-38 normal cells, with an IC50 value exceeding 100 µg mL-1. Moreover, the selectivity index for HepG-2 cancer cells (2.52) was lower compared to Hela cancer cells (3.40). Additionally, MeOH resin extracts were more efficient against the different growth stages of the mosquito A. aegypti, with lower LC50, LC90, and LC95 values of 251.83, 923.76, and 1293.35 mg/L, respectively. In comparison to untreated groups (1454 eggs/10 females), the average daily number of eggs deposited (424 eggs/L) decreases at higher doses (1000 mg/L). Finally, we advise continued study into the possible use of C. myrrha resins against additional pests that have medical and veterinary value, and novel chemicals from this extract should be isolated and purified for use in medicines.


Assuntos
Antioxidantes , Commiphora , Cromatografia Gasosa-Espectrometria de Massas , Larva , Extratos Vegetais , Resinas Vegetais , Commiphora/química , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HeLa , Resinas Vegetais/química , Larva/efeitos dos fármacos , Células Hep G2 , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Aedes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
17.
Phytochem Anal ; 35(5): 1072-1087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38500403

RESUMO

INTRODUCTION: Mastic is a natural resin produced by Pistacia lentiscus L. (Anacardiaceae). The beneficial properties of this resin are attributed to its triterpenes and volatile compounds. OBJECTIVE: This study was conducted to screen and characterize the terpenes in mastic ethyl acetate extract (M-Ex). METHODS: An ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) method was developed for the qualitative analysis of terpenes in M-Ex. We utilized in-house-isolated compounds as reference substance (Rs), including monoterpenes (A) with α-pinane structures, tetracyclic triterpene (B) containing tirucallane skeletons, and pentacyclic triterpene (C) belonging to olean, moronic, amyrone, and lupane types. Based on the mass spectrometric characteristics of the above compounds, and the difference in characteristic diagnostic fragment ions (DFIs) in isomeric compounds, the terpene compounds were further identified in M-Ex. RESULTS: Out of a total of 70 compounds, including monoterpenes and tetra-, and pentacyclic triterpenes, 20 were accurately determined by Rs, retention time (RT), and DFIs. Based on the cleavage patterns summarized from the above 20 compounds and with reference to the reported literature, another 50 compounds were putatively identified. Based on our discovery, six terpenic acids with A-seco-tirucallane types and one monoterpene dimer were identified for the first time in mastic. CONCLUSION: Our research serves not only as a foundation for the rapid identification and screening of terpene compounds in mastic but also as a supplementary basis for the identification of such compounds in other types of resins.


Assuntos
Pistacia , Terpenos , Cromatografia Líquida de Alta Pressão/métodos , Terpenos/análise , Terpenos/química , Pistacia/química , Espectrometria de Massas/métodos , Extratos Vegetais/química , Resina Mástique/química , Resinas Vegetais/química , Estrutura Molecular , Triterpenos/análise , Triterpenos/química
18.
Phytochemistry ; 222: 114060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522560

RESUMO

Natural rubber produced in stems of the guayule plant (Parthenium argentatum) is susceptible to post-harvest degradation from microbial or thermo-oxidative processes, especially once stems are chipped. As a result, the time from harvest to extraction must be minimized to recover high quality rubber, especially in warm summer months. Tocopherols are natural antioxidants produced in plants through the shikimate and methyl-erythtiol-4-phosphate (MEP) pathways. We hypothesized that increased in vivo guayule tocopherol content might protect rubber from post-harvest degradation, and/or allow reduced use of chemical antioxidants during the extraction process. With the objective of enhancing tocopherol content in guayule, we overexpressed four Arabidopsis thaliana tocopherol pathway genes in AZ-2 guayule via Agrobacterium-mediated transformation. Tocopherol content was increased in leaf and stem tissues of most transgenic lines, and some improvement in thermo-oxidative stability was observed. Overexpression of the four tocopherol biosynthesis enzymes, however, altered other isoprenoid pathways resulting in reduced rubber, resin and argentatins content in guayule stems. The latter molecules are mainly synthesized from precursors derived from the mevalonate (MVA) pathway. Our results suggest the existence of crosstalk between the MEP and MVA pathways in guayule and the possibility that carbon metabolism through the MEP pathway impacts rubber biosynthesis.


Assuntos
Asteraceae , Folhas de Planta , Caules de Planta , Tocoferóis , Tocoferóis/metabolismo , Tocoferóis/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Caules de Planta/metabolismo , Caules de Planta/química , Caules de Planta/genética , Asteraceae/metabolismo , Asteraceae/química , Asteraceae/genética , Borracha/metabolismo , Borracha/química , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/química , Resinas Vegetais/metabolismo , Resinas Vegetais/química
19.
J Nat Med ; 78(3): 525-536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38457082

RESUMO

Ipomoea muricata (L.) Jacq. seeds (Convolvulaceae) are used as a traditional laxative and carminative medicine. Muricatins XIV (1), XV (2), XVI (3), and XVII (4), were isolated from I. muricata seeds as four new resin glycosides, along with seven known compounds, three of which were isolated for the first time as natural products; their structures were determined using MS and NMR spectroscopy. Compounds 1-4 are macrolactones (jalapins); the sugar moieties of 1, 2, and 4 are partially acylated with 2S-methylbutyric acid, while that of 3 is esterified with 2S-methylbutyric and 2S-methyl-3S-hydroxybutyric acids. In addition, the antiviral activities of the seven compounds obtained in this study, together with five known compounds obtained in our previous study into resin glycosides from I. muricata seeds, were evaluated against herpes simplex virus type 1 (HSV-1); their cytotoxicities against HL-60 human promyelocytic leukemia cells were also investigated. All examined jalapins exhibited similar or slightly weaker anti-HSV-1 activities than acyclovir, the positive control; however, the glycosidic acid of 4 was inactive, while its methyl ester was weakly active. On the other hand, cytotoxicity testing against HL-60 cells showed similar results to those observed during anti-HSV-1 activity testing, with the exception that one jalapin was less active.


Assuntos
Antivirais , Glicosídeos , Ipomoea , Resinas Vegetais , Sementes , Ipomoea/química , Sementes/química , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Resinas Vegetais/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Estrutura Molecular , Herpesvirus Humano 1/efeitos dos fármacos , Células HL-60 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética
20.
Chem Biodivers ; 21(5): e202400185, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513004

RESUMO

The resin essential oil (REO) of the Tunisian Araucaria heterophylla trunk bark was investigated for its chemical composition. Then, it was evaluated for its insecticidal and allelopathic activities. The REO was obtained by hydrodistillation for 9 h (yield of 4.2 % w/w). Moreover, fractional hydrodistillation was carried out at 3-hour intervals, resulting in 3 fractions (R1-R3), to facilitate chemical identification and localization of the aforementioned biological activities. GC/MS analysis of the obtained samples allowed the identification of 25 compounds, representing between 91.2 and 96.3 % of their total constituents, which consisted predominantly of sesquiterpene hydrocarbons, oxygenated sesquiterpenes and diterpene hydrocarbons. α-Copaene (10.8 %), γ-muurolene (5.8 %), α-copaen-11-ol (7.8 %), spathulenol (10.5 %), 15-copaenol (8.2 %), ylangenal (10.3 %), dehydrosaussurea lactone (7.7 %), and sandaracopimaradiene (11.4 %) were identified as major compounds. The second part aimed to assess the impact of the A. heterophylla EO and its three fractions for their insecticidal and repellent activity against Tribolium castaneum (Herbst), a stored grain pest, of which a strong repellent activity was noted. In addition, the studied samples showed high phytotoxic effects against Lactuca sativa. The third fraction (R3) performed a total inhibitory potential on seed germination and seedling growth of the target plant. Furthermore, alongside this discovery, an estimation was conducted through molecular docking analysis. Wherein the main compounds of the studied samples were docked into the active pocket of protoporphyrinogen IX oxidase (PDB: 1SEZ), a key enzyme in chlorophyll biosynthesis. Thus, it is recommended to use the REO of A. heterophylla as a natural herbicide.


Assuntos
Araucaria , Inseticidas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Tunísia , Animais , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Araucaria/efeitos dos fármacos , Araucaria/química , Araucaria/metabolismo , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Repelentes de Insetos/isolamento & purificação , Resinas Vegetais/química , Simulação de Acoplamento Molecular , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA