Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
1.
Water Res ; 257: 121661, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677109

RESUMO

Rapid small-scale column tests (RSSCT) are used to study the removal of per- and polyfluoroalkyl substances (PFAS) for drinking water treatment by ion exchange. Breakthroughs of 15 emerging per- and perfluoroalkyl ether acids and six legacy perfluoroalkyl acid analogs are studied using a single-use PFAS-selective anion exchange resin (AER1) and a regenerable, generic anion exchange resin (AER2). The Bohart-Adams model was used to describe and predict breakthrough, with the modeled results reasonably aligned with RSSCT results in most cases, enabling shorter RSSCT duration for future applications. AER1 exhibited high uptake capacity with no breakthrough for 11 of the 21 tested PFAS during the 144,175 BV continuous operation, allowing compliance with the new National Primary Drinking Water Regulation in many application scenarios. AER2 exhibited much faster breakthroughs for most PFAS and is not a promising option for drinking water treatment. However, the summed PFAS capacity via model fit and total PFAS adsorbed via measurement were only <0.01 % of both resin capacities at full breakthrough, suggesting PFAS could only occupy a tiny portion of the ion exchange sites even for the PFAS-selective AER1. Ether group insertion in the PFAS group leads to later breakthrough, and linear isomers were better captured by the resins than the branched isomers. Overall, PFAS uptake capacity increases and kinetics decrease when the PFAS molecular volume increases. Regeneration using 10 % NaCl solutions partially released PFAS from AER2 but not from AER1, with more short-chain PFAS released than long-chain ones. Ether group insertion decreased the PFAS recoveries during the regeneration of AER2. The regenerated resins showed much faster breakthroughs than the pristine resins, making them unfavorable for drinking water treatment applications. Adsorption displacement of short-chain PFAS by long-chain PFAS was observed in pristine AER1, and post-regeneration leaching occurred for both resins, both phenomena making the resins a possible PFAS source in long-term use.


Assuntos
Resinas de Troca Aniônica , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Resinas de Troca Aniônica/química , Purificação da Água/métodos , Fluorocarbonos/química
2.
Chemosphere ; 341: 139983, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643650

RESUMO

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) present in various water sources have raised a serious concern on their health risk worldwide. Anion exchange is known to be one of the effective treatment methods but the resin properties suitable for theses contaminants have not been fully understood. We examined four commercially available anion exchange resins with different properties (DIAION™ PA312, HPA25M, UBA120, and WA30) and one polymer-based adsorbent (HP20), for their PFOA and PFOS removal in the batch experiment. All or a part of the selected resins were further characterized for their functional group, surface morphology and pore size distribution. The 72 h batch experiment with the 100 mg/L PFOA or PFOS in the laboratory pure water matrix showed a superior capacity of the strong base anion exchange resins, the porous-type HPA25M and PA312, and the gel-type UBA120, for PFOA removal (92.6-97.9%). Among those resins, the high porous HPA25M was suggested most effective due to its remarkably high reaction rate and effectiveness to PFOS (99.9%). In the groundwater matrix, however, the performance of the those anion exchange resins was generally suppressed, causing up to 71% decrease in their removal rates. The least matrix impact was observed for PFOS removal by HPA25M, which indicated the resin's high selectivity to the contaminant. The physiochemical analysis indicated that the presence of relatively large pores (1 nm-10 nm) over HPA25M played an important role in the PFAS removal.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Resinas de Troca Aniônica/química , Poluentes Químicos da Água/análise , Água/análise , Fluorocarbonos/análise , Caprilatos/química , Ácidos Alcanossulfônicos/química , Água Subterrânea/química
3.
J Chromatogr A ; 1705: 464208, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37453173

RESUMO

The influence of the resin structure, on the competitive binding and separation of a two-component protein mixture with anion exchange resins is evaluated using conalbumin and green fluorescent protein as a model system. Two macroporous resins, one with large open pores and one with smaller pores, are compared to a resin with grafted polymers. Investigations include measurements of single and two-component isotherms, batch uptake kinetics and two-component column breakthrough. On both macroporous resins, the weaker binding protein, conalbumin, is displaced by the stronger binding green fluorescent protein. For the large pore resin, this results in a pronounced overshoot and efficient separation by frontal chromatography. The polymer-grafted resin exhibits superior capacity and kinetics for one-component adsorption, but is unable to achieve separation due to strongly hindered counter-diffusion. Intermediate separation efficiency is obtained with the smaller pore resin. Confocal laser scanning microscopy provides a mechanistic explanation of the underlying intra-particle diffusional phenomena revealing whether unhindered counter-diffusion of the displaced protein can occur or not. This study demonstrates that the resin's intra-particle structure and its effects on diffusional transport are crucial for an efficient separation process. The novelty of this work lies in its comprehensive nature which includes examples of the three most commonly used resin structures: a small pore agarose matrix, a large-pore polymeric matrix, and a polymer grafted resin. Comparison of the protein adsorption properties of these materials provides valuable clues about advantages and disadvantages of each for anion exchange chromatography applications.


Assuntos
Resinas de Troca Aniônica , Conalbumina , Adsorção , Proteínas de Fluorescência Verde , Resinas de Troca Aniônica/química , Polímeros/química , Cromatografia por Troca Iônica , Cinética , Ânions
4.
Protein Expr Purif ; 210: 106297, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209930

RESUMO

In downstream processing of protein therapeutics, ion exchange (IEX) chromatography is a powerful tool for removing byproducts whose isoelectric point (pI) is appreciably different from that of the product. Although in theory for a given case cation exchange (CEX) and anion exchange (AEX) chromatography should be equally effective for separation, in reality they may show different effectiveness. In the current work, with a case study, we demonstrated that AEX is more effective than CEX chromatography at removing the associated byproducts. In addition, we screened AEX resins and loading conditions to achieve best separation. Finally, we demonstrated that effective separation was achieved with the selected resin/condition, and chromatography performance was comparable between runs conducted at low and high load densities, suggesting that the developed process was relatively robust. The procedure described in this work can be used as a general approach for selecting resin and loading condition that allow for effective and robust removal of byproduct that binds weaker than the product to the selected type of column.


Assuntos
Resinas de Troca Aniônica , Cromatografia por Troca Iônica/métodos , Resinas de Troca Aniônica/química , Ânions , Cátions/química
5.
Chemosphere ; 323: 138285, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868424

RESUMO

Anion exchange resin is responsible for removing harmful anionic contaminants in drinking water treatment, but it may become a significant source of precursors for disinfection byproducts (DBPs) by shedding material during application without proper pretreatment. Batch contact experiments were performed to investigate the dissolution of magnetic anion exchange resins and their contribution to organics and DBPs. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) released from the resin were highly correlated with the dissolution conditions (contact time and pH), in which 0.7 mg/L DOC and 0.18 mg/L DON were distributed at exposure time of 2 h and pH 7. The formation potential of four DBPs in the shedding fraction was also revealed that trichloromethane (TCM), dichloroacetonitrile (DCAN), nitrosodimethylamine (NDMA), and dichloroacetamide (DCAcAm) concentrations could reach 21.4, 5.1, 12.1 µg/L, and 69.6 ng/L, respectively. Furthermore, the hydrophobic DOC that preferred to detach from the resin mainly originated from the residues of crosslinkers (divinylbenzene) and porogenic agents (straight-chain alkanes) detected by LC-OCD and GC-MS. Nevertheless, pre-cleaning inhibited the leaching of the resin, among which acid-base and ethanol treatments significantly lowered the concentration of leached organics, and formation potential of DBPs (TCM, DCAN, and DCAcAm) below 5 µg/L and NDMA dropped to 10 ng/L.


Assuntos
Resinas de Troca Aniônica , Técnicas de Química Analítica , Purificação da Água , Resinas de Troca Aniônica/química , Purificação da Água/instrumentação , Matéria Orgânica Dissolvida/análise , Matéria Orgânica Dissolvida/química , Clorofórmio/análise , Clorofórmio/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos
6.
J Chromatogr A ; 1693: 463878, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36827799

RESUMO

In this work, we have examined an array of isotherm formalisms and characterized them based on their relative complexities and predictive abilities with multimodal chromatography. The set of isotherm models studied were all based on the stoichiometric displacement framework, with considerations for electrostatic interactions, hydrophobic interactions, and thermodynamic activities. Isotherm parameters for each model were first determined through twenty repeated fits to a set of mAb - Capto MMC batch isotherm data spanning a range of loading, ionic strength, and pH as well as a set of mAb - Capto Adhere batch data at constant pH. The batch isotherm data were used in two ways-spanning the full range of loading or consisting of only the high concentration data points. Predictive ability was defined through the model's capacity to capture prominent changes in salt gradient elution behavior with respect to pH for Capto MMC or unique elution patterns and yield losses with respect to gradient slope for Capto Adhere. In both cases, model performance was quantified using a scoring metric based on agreement in peak characteristics for column predictions and accuracy of fit for the batch data. These scores were evaluated for all twenty isotherm fits and their corresponding column predictions, thereby producing a statistical distribution of model performances. Model complexity (number of isotherm parameters) was then considered through use of the Akaike information criterion (AIC) calculated from the score distributions. While model performance for Capto MMC benefitted substantially from removal of low protein concentration data, this was not the case for Capto Adhere; this difference was likely due to the qualitatively different shapes of the isotherms between the two resins. Surprisingly, the top-performing (high accuracy with minimal number of parameters) isotherm model was the same for both resins. The extended steric mass action (SMA) isotherm (containing both protein-salt and protein-protein activity terms) accurately captured both the pH-dependent elution behavior for Capto MMC as well as loss in protein recovery with increasing gradient slope for Capto Adhere. In addition, this isotherm model achieved the highest median score in both resin systems, despite it lacking any explicit hydrophobic stoichiometric terms. The more complex isotherm models, which explicitly accounted for both electrostatic and hydrophobic interaction stoichiometries, were ill-suited for Capto MMC and had lower AIC model likelihoods for Capto Adhere due to their increased complexity. Interestingly, the ability of the extended SMA isotherm to predict the Capto Adhere results was largely due to the protein-salt activity coefficient, as determined via isotherm parameter sensitivity analyses. Further, parametric studies on this parameter demonstrated that it had a major impact on both binding affinity and elution behavior, therein fully capturing the impact of hydrophobic interactions. In summary, we were able to determine the isotherm formalisms most capable of consistently predicting a wide range of column behavior for both a multimodal cation-exchange and multimodal anion-exchange resin with high accuracy, while containing a minimized set of model parameters.


Assuntos
Resinas de Troca Aniônica , Proteínas , Cromatografia por Troca Iônica/métodos , Proteínas/química , Resinas de Troca Aniônica/química , Termodinâmica
7.
Bioprocess Biosyst Eng ; 45(12): 2007-2017, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36352044

RESUMO

Replacement of the petroleum-based refineries with the biorefinery is regarded as an essential step towards a "zero" waste (circular) economy. Biobased succinic acid (SA) is listed by the United States Department of Energy among the top ten chemicals with the potential to replace chemicals from petroleum synthesis with renewable sources. Purification of bio-based succinic acid from fermentation by-products such as alcohols, formic acid, acetic acid and lactic is a major drawback of fermentative SA production. This study addresses this issue through a novel chromatographic separation using three distinct anionic resins: Amberlite IRA958 Cl (strong base anion exchange resin), Amberlite HPR 900 OH (strong base anion exchange resin) and Amberlyst A21 (week base anion exchange resin). The influence of process variables such as flow rate (0.18 BV/h, 0.42 BV/h and 0.84 BV/h), eluent concentration (1%, 5% and 10% HCl) and temperature (20, 30 and 40 °C) were investigated. The results indicated SA separation efficiency of 76.1%, 69.3% and 81.2% for Amberlyst A21, Amberlite HPR 900 OH and Amberlite IRA958 Cl, respectively. As the regenerant HCl concentration increased from 1 to 10%, calculated succinic acid separation efficiencies decreased from 80.3 to 70.7%. Notably, as the regenerant strength increased from 1 to 10%, the total amount of organic acids desorbed from the resin sharply increased. At operation temperatures of 20, 30 and 40 °C, SA separation efficacies were 81.2%, 73.9% and 76.4%, respectively. The insights from this study will be of great value in design of chromatographic separation systems for organic acids.


Assuntos
Resinas de Troca Aniônica , Petróleo , Resinas de Troca Aniônica/química , Fermentação , Ácido Succínico/química , Soro do Leite
8.
Water Res ; 226: 119198, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240713

RESUMO

Widespread contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) has required drinking water producers to quickly adopt practical and efficacious treatments to limit human exposure and deleterious health outcomes. This pilot-scale study comparatively investigated PFAS adsorption behaviors in granular activated carbon (GAC) and two strong-base gel anion exchange resin (AER) columns operated in parallel over a 441-day period to treat contaminated groundwater dominated by short-chain perfluorocarboxylic acids (PFCA). Highly-resolved breakthrough profiles of homologous series of 2-8 CF2 PFCA and perfluorosulfonic acids (PFSA), including ultrashort-chain compounds and branched isomers, were measured to elucidate adsorption trends. Sample ports at intermediate bed depths could predict 50% breakthrough of compounds on an accelerated basis, but lower empty bed contact times led to conservative estimates of initial breakthrough. Homologous PFAS series displayed linear (GAC) and log-linear (AER) relationships between chain-length and breakthrough, independent of initial concentration. AERs generally outperformed GAC on a normalized bed volume basis, and this advantage widened with increasing PFAS chain-length. As designed, all treatments would have short full-scale service times (≤142 days for GAC; ≤61 days for AERs) before initial breakthrough of short-chain (2-4 CF2) PFCA. However, AER displayed far longer breakthrough times for PFSA compared to GAC (>3× treatment time), and breakthrough was not observed for PFSA with >4 CF2 in AERs. GAC had a finite molar adsorption capacity for total PFAS, leading to a stoichiometric replacement of short-chain PFCA by PFSA and longer-chain PFCA over time. AERs quickly reached a finite adsorption capacity for PFCA, but they showed substantially greater selectivity for PFSA whose capacity was not reached within the duration of the pilot. Breakthrough characteristics of keto- and unsaturated-PFSA, identified in the groundwater by suspect screening, were also evaluated in absence of reference standards. Modified PFAS structures (branched, keto-, unsaturated-) broke through faster than linear and unmodified perfluorinated structures with equal degrees of fluorination, and the effects were more pronounced in GAC compared to AERs. The results highlight that the design of robust PFAS treatment systems should consider facets beyond current PFAS targets including operational complexities and impacts of unregulated and unmonitored co-contaminants.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Humanos , Carvão Vegetal/química , Resinas de Troca Aniônica/química , Adsorção , Fluorocarbonos/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-36252384

RESUMO

Commercially available, strongly basic anion-exchange resins with quaternary ammonium groups have been widely used in the purification of natural plant extracts. However, under the condition of high temperature (greater than 60 °C), these resins could not be used for long periods because of the Hofmann degradation of the strongly basic groups. In this work, the synthesis of novel, thermally stable, strongly basic resins, which has a cross-link biguanide structure, was reported. The mechanism of thermal degradation was investigated, and the result indicated that not only the stability of the functional group but also the link mode between the functional group and the resin matrix should influence the thermal stability of the resin. In our experiment, the PDG2 resin was selected to separate sodium copper chlorophyllin (SCC), a type of edible pigment derived from plants, due to its optimal thermal stability and adsorption capacity. The adsorption mechanism and thermodynamics of PDG2 were also investigated. The results demonstrated that the main adsorption affinity of PDG2 toward SCC was due to the synergistic effects of the hydrophobic and ionic interactions, and the rise in temperature will benefit the adsorption equilibrium, which differed from the equilibrium for lutein. Therefore, under suitable gradient desorption conditions, a high-purity SCC extract was prepared. After eight cycles, the adsorption capacity of the PDG2 remained constant and reproducible at a high temperature (70 °C).


Assuntos
Resinas de Troca Aniônica , Clorofilídeos , Resinas de Troca Aniônica/química , Biguanidas , Adsorção , Ânions
10.
Water Res ; 224: 119110, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126630

RESUMO

Ion exchange technology removes ionic compounds from waters effectively but treatment of the spent regenerant is expensive. The bioregeneration of sulfate-laden strong base anion exchange resin was successfully tested using both pure and mixed sulfate-reducing bacterial cultures. The resin was first used for removal of sulfate from neutral (pH 6.7 ± 0.5) synthetic sodium sulfate solutions, after which the spent resin was regenerated by incubating with a viable sulfate-reducing bacterial culture in batch and column modes. In the batch bioregeneration tests, the achieved bioregeneration was 36-95% of the original capacity of the fresh resin (112 mg SO42-/g) and it increased with regeneration time (1-14 days). The capacity achieved in the column tests during 24 hours of bioregeneration was 107 mg SO42-/g after the first regeneration cycle. During the bioregeneration, sulfate was mainly reduced by the sulfate-reducing bacteria (approx. 60%), but part of it was only detached from the resins (approx. 30%). The resin-attached sulfate was most likely replaced with ions present in the liquid sulfate-reducing bacterial culture (e.g., HCO3-, HS-, and Cl-). During the subsequent exhaustion cycles with the bioregenerated resin, the pH of the treated sodium sulfate solution increased from the original 6.7 ± 0.5 to around 9. The study showed that biological sulfate reduction could be used for sulfate removal in combination with ion exchange, and that the exhausted ion exchange resins could be regenerated using a liquid sulfate-reducing bacterial culture without producing any brine.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Resinas de Troca Aniônica/química , Troca Iônica , Resinas de Troca Iônica , Sulfatos/química , Óxidos de Enxofre , Poluentes Químicos da Água/química
11.
Water Res ; 223: 119019, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049246

RESUMO

This study reports the results of an 8-month pilot study comparing both regenerable and emerging single-use anion exchange resins (AERs) for treatment of per- and polyfluoroalkyl substances (PFASs) at a source zone impacted by historical use of aqueous film-forming foam (AFFF). Two regenerable (Purolite A860 and A520E) and three single-use (Purolite PFA694E, Calgon CalRes 2301, and Dowex PSR2+) AERs were tested in parallel, collecting effluent samples after treatment for 30-sec and 2-min total empty bed contact time (EBCT). Results demonstrate that single-use AERs significantly outperform regenerable resins, particularly for treatment of long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs). No detectable concentrations of ≥C7 PFCAs or PFSAs were observed within 150,000 bed volumes (BVs) after treatment with the single-use resins (2-min EBCT). Analysis of effluent samples following 30-sec EBCT treatment shows that even the shortest-chain PFSAs do not reach 50% breakthrough within the first 350,000 BVs, though differences in removal of short-chain PFCAs was less dramatic. The regenerable polyacrylic A860 resin performed very poorly compared to all polystyrene resins, with >90% breakthrough of all PFASs occurring within 10,000 BVs. The greater affinity of polystyrene resins is attributed to increased hydrophobic interactions in addition to electrostatic ion exchange. Analysis of breakthrough profiles reveals empirical correlation with ion exchange affinity coefficients (logKex) measured in batch experiments. Postmortem analysis of PFASs extracted from spent resins revealed chromatographic elution behavior and competition among PFASs for adsorption to the resins. PFSAs and long-chain PFCAs were preferentially adsorbed to earlier sections in the AER columns, whereas short-chain PFCAs were competitively displaced towards the later sections of the columns and into the effluent, consistent with effluent concentrations of the latter structures exceeding influent values. These results provide insights into the mechanisms that govern PFAS adsorption to AERs in real multisolute groundwater matrices and support findings from other diverse sites regarding PFAS affinity, elution behavior, and competition for exchange sites.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Resinas de Troca Aniônica/química , Ácidos Carboxílicos/análise , Fluorocarbonos/química , Projetos Piloto , Poliestirenos , Ácidos Sulfônicos , Poluentes Químicos da Água/química
12.
J Hazard Mater ; 431: 128521, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231815

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent and recalcitrant organic contaminant of exceptional environmental concern, and its removal from water has increasingly attracted global attention due to its wide distribution and strong bioaccumulation. Adsorption is considered an effective technique for PFOA removal and more efficient PFOA sorbents are still of interest. This study developed a dual grafted fluorinated hydrocarbon amine weak anion exchange (WAX) polymeric resin (Sepra-WAX-KelF-PEI) for PFOA removal from water. This polymer was synthesized by a two-step amine grafting reaction procedure involving first the reaction of the Sepra-WAX hydrocarbon polymer with poly(vinylidinefluoride-chlorotrifluoroethylene) (Kel-F 800) and then a second reaction with polyethyleneimine (PEI). Characterization of the synthesized polymers was performed using scanning electron microscopy and elemental analysis (F and Cl) by energy dispersive X-ray spectroscopy. The PFOA adsorption performance evaluations were conducted by packed column flow analyses with on-line detection. The results show the breakthrough of the Sepra-WAX-KelF-PEI synthesized with optimum stoichiometry was two times better than the starting anion exchange polymer Sepra-WAX, and six times better than powdered activated carbon, when using the same column size. The adsorption mechanisms of this novel adsorbent including hydrophobic interaction and electrostatic interaction were also clarified in this study. The adsorption kinetic parameters of the two optimum synthesized sorbents were determined using the Thomas model, the Yoon-Nelson model, and batch isotherm studies, and compared with those found with activated carbon and the starting WAX resin. Good agreement of the batch isotherm and column studies with respect to adsorption capacities trends between all three polymers (Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI) were noted.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Aminas , Resinas de Troca Aniônica/química , Caprilatos , Carvão Vegetal/química , Polímeros de Fluorcarboneto , Fluorocarbonos/análise , Cinética , Polietilenoimina/química , Polímeros , Água , Poluentes Químicos da Água/análise
13.
Methods Mol Biol ; 2295: 365-378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047987

RESUMO

The phosphate esters of myo-inositol (Ins) occur ubiquitously in biology. These molecules exist as soluble or membrane-resident derivatives and regulate a plethora of cellular functions including phosphate homeostasis, DNA repair, vesicle trafficking, metabolism, cell polarity, tip-directed growth, and membrane morphogenesis. Phosphorylation of all inositol hydroxyl groups generates phytic acid (InsP6), the most abundant inositol phosphate present in eukaryotic cells. However, phytic acid is not the most highly phosphorylated naturally occurring inositol phosphate. Specialized small molecule kinases catalyze the formation of the so-called myo-inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8. These molecules are characterized by one or several "high-energy" diphosphate moieties and are ubiquitous in eukaryotic cells. In plants, PP-InsPs play critical roles in immune responses and nutrient sensing. The detection of inositol derivatives in plants is challenging. This is particularly the case for inositol pyrophosphates because diphospho bonds are labile in plant cell extracts due to high amounts of acid phosphatase activity. We present two steady-state inositol labeling-based techniques coupled with strong anion exchange (SAX)-HPLC analyses that allow robust detection and quantification of soluble and membrane-resident inositol polyphosphates in plant extracts. These techniques will be instrumental to uncover the cellular and physiological processes controlled by these intriguing regulatory molecules in plants.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fosfatos de Inositol/química , Resinas de Troca Aniônica/química , Ânions/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Inositol/química , Fosfatos de Inositol/metabolismo , Fosfatidilinositóis/química , Fosforilação , Plantas/química , Plantas/metabolismo , Polifosfatos/química , Sementes/química , Transdução de Sinais/fisiologia
14.
Methods Mol Biol ; 2271: 107-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33908003

RESUMO

Glycosylation is a biologically important and complex protein posttranslational modification. The emergence of glycoproteomic technologies to identify and characterize glycans on proteins has the potential to enable a better understanding the role of glycosylation in biology, disease states, and other areas of interest. In particular, the analysis of intact glycopeptides by mass spectrometry allows information about glycan location and composition to be ascertained. However, such analysis is often complicated by extensive glycan diversity and the low abundance of glycopeptides in a complex mixture relative to nonglycosylated peptides. Enrichment of glycopeptides from a protein enzymatic digest is an effective approach to overcome such challenges. In this chapter, we described a glycopeptide enrichment method combining strong anion exchange, electrostatic repulsion, and hydrophilic interaction chromatography (SAX-ERLIC). Following enzymatic digestion of proteins into peptides, SAX-ERLIC is performed by solid phase extraction to enrich glycopeptides from biological samples with subsequent LC-MS/MS analysis. Glycopeptide data generated using the SAX-ERLIC enrichment yields a high number of total and unique glycopeptide identifications which can be mapped back to proteins. The enrichment strategy is robust, easy to perform, and does not require cleavage of glycans prior to LC-MS/MS analysis.


Assuntos
Resinas de Troca Aniônica/química , Cromatografia de Fase Reversa , Glicoproteínas/análise , Processamento de Proteína Pós-Traducional , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Projetos de Pesquisa , Eletricidade Estática , Fluxo de Trabalho
15.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572424

RESUMO

The phosphorylation of proteins modulates various functions of proteins and plays an important role in the regulation of cell signaling. In recent years, label-free quantitative (LFQ) phosphoproteomics has become a powerful tool to analyze the phosphorylation of proteins within complex samples. Despite the great progress, the studies of protein phosphorylation are still limited in throughput, robustness, and reproducibility, hampering analyses that involve multiple perturbations, such as those needed to follow the dynamics of phosphoproteomes. To address these challenges, we introduce here the LFQ phosphoproteomics workflow that is based on Fe-IMAC phosphopeptide enrichment followed by strong anion exchange (SAX) and porous graphitic carbon (PGC) fractionation strategies. We applied this workflow to analyze the whole-cell phosphoproteome of the fission yeast Schizosaccharomyces pombe. Using this strategy, we identified 8353 phosphosites from which 1274 were newly identified. This provides a significant addition to the S. pombe phosphoproteome. The results of our study highlight that combining of PGC and SAX fractionation strategies substantially increases the robustness and specificity of LFQ phosphoproteomics. Overall, the presented LFQ phosphoproteomics workflow opens the door for studies that would get better insight into the complexity of the protein kinase functions of the fission yeast S. pombe.


Assuntos
Fracionamento Químico/métodos , Fosfoproteínas/análise , Proteômica/métodos , Proteínas de Schizosaccharomyces pombe/análise , Resinas de Troca Aniônica/química , Carbono/química , Cromatografia por Troca Iônica/métodos , Grafite/química , Fosfoproteínas/química , Porosidade , Reprodutibilidade dos Testes , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/química
16.
Biotechnol Prog ; 37(3): e3129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33475239

RESUMO

This contribution reports on a study using Purexa™-MQ multimodal anion-exchange (AEX) membranes for protein polishing at elevated solution conductivities. Dynamic binding capacities (DBC10 ) of bovine serum albumin (BSA), human immunoglobulins, and salmon sperm DNA (ss-DNA) are reported for various salt types, salt concentrations, flowrates, and pH. Using 1 mg/ml BSA, DBC10 values for Purexa™-MQ were >90 mg/ml at conductivities up to 15 mS/cm. The membranes maintained a high, salt-tolerant BSA DBC10 of 89.8 ± 2.7 (SD) over the course of 100 bind-elute cycles. Polishing studies with acidic and basic monoclonal antibodies at >2 kg/L loads showed that Purexa™-MQ had higher clearance of host cell proteins and aggregate species at high conductivity (13 mS/cm) and in the presence of phosphate than other commercial AEX media. Purexa™-MQ also had a high ss-DNA DBC10 of 50 mg/ml at conductivities up to 15 mS/cm, markedly outperforming other commercial products. In addition to the effectiveness of Purexa™-MQ for protein polishing at elevated solution conductivities, its unusually high binding capacity for ss-DNA indicates potential applications for plasmid DNA purification.


Assuntos
Resinas de Troca Aniônica/química , Anticorpos Monoclonais , Cromatografia por Troca Iônica/métodos , Membranas Artificiais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , DNA/química , Cloreto de Sódio/química
17.
Chemosphere ; 263: 127938, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32829222

RESUMO

The urgent need for eutrophication control motivated the development of many novel adsorbents for enhanced phosphate polishing removal. Among these, zirconium-based nanomaterial was regarded as an effective kind because of its ability to bind phosphate specifically via inner-sphere complexation. In this study, we proposed a new strategy to improve the efficiency of zirconium oxides (HZO) nanoparticles by immobilizing them onto a gel-type anion exchange resin covalently attached with ammonium groups, denoted as HZO@N201. A previously developed macro-porous polymeric nanocomposite HZO@D201 was used for comparison. The immobilized nanoparticles in HZO@N201 were well dispersed in the gel matrix, manifesting smaller particle size and richer surface hydroxyl groups in comparison to HZO@D201. As a result of the structural merits in collective, HZO@N201 not only exhibited superior phosphate adsorptive capacity and affinity towards phosphate to HZO@D201, but also facilitate phosphate diffusion, based on isotherm, pH and kinetic tests. Mechanistic study by XPS and 31P SS-NMR substantiated the selective phosphate adsorption pathway as the formation of inner-sphere complexes by HZO@N201, which exhibited enhanced reactivity than HZO@D201. Lastly, fixed-bed runs of HZO@N201 was conducted, achieving an effective treatable volume of 2000 BV, which was 600 BV more than HZO@D201. Additional adsorption-regeneration cycle confirmed its reusability and potential for practical application. We believe the gel-type polymeric host could facilitate the formation and dispersion of smaller sized nanoparticles, exposing more surface hydroxyl groups highly accessible to phosphate. The results of this paper offer insights to a new strategy for immobilization of functional nanoparticles aiming at enhanced adsorptive removal of phosphate.


Assuntos
Fosfatos/química , Poliestirenos/química , Poluentes Químicos da Água/química , Zircônio/química , Adsorção , Resinas de Troca Aniônica/química , Concentração de Íons de Hidrogênio , Imobilização , Nanocompostos/química , Nanopartículas , Óxidos , Polímeros , Poluentes Químicos da Água/análise
18.
J Sep Sci ; 44(4): 805-821, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33285038

RESUMO

Ion exchange chromatography is a powerful and ubiquitous unit operation in the purification of therapeutic proteins. However, the performance of an ion-exchange process depends on a complex interrelationship between several parameters, such as protein properties, mobile phase conditions, and chromatographic resin characteristics. Consequently, batch variations of ion exchange resins play a significant role in the robustness of these downstream processing steps. Ligand density is known to be one of the main lot-to-lot variations, affecting protein adsorption and separation performance. The use of a model-based approach can be an effective tool for comprehending the impact of parameter variations (e.g., ligand density) and their influence on the process. The objective of this work was to apply mechanistic modeling to gain a deeper understanding of the influence of ligand density variations in anion exchange chromatography. To achieve this, 13 prototype resins having the same support as the strong anion exchange resin Fractogel® EMD TMAE (M), but differing in ligand density, were analyzed. Linear salt gradient elution experiments were performed to observe the elution behavior of a monoclonal antibody and bovine serum albumin. A proposed isotherm model for ion exchange chromatography, describing the dependence of ligand density variations on protein retention, was successfully applied.


Assuntos
Resinas de Troca Aniônica/química , Anticorpos Monoclonais/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Cromatografia por Troca Iônica , Ligantes , Modelos Moleculares , Propriedades de Superfície
19.
Physiol Rep ; 8(23): e14593, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33278069

RESUMO

A system for sorbent-assisted peritoneal dialysis (SAPD) has been developed that continuously recirculates dialysate via a tidal mode using a single-lumen peritoneal catheter with the regeneration of spent dialysate by means of sorbents. SAPD treatment may improve plasma clearance by the maintenance of a high plasma-to-dialysate concentration gradient and by increasing the mass transfer area coefficient (MTAC) of solutes. The system is designed for daily 8-hr treatment (12 kg, nighttime system). A wearable system (2.3 kg, daytime system) may further enhance the clearance of phosphate and organic waste solutes during the day. Uremic pigs (n = 3) were treated with the day- (n = 3) and nighttime system (n = 15) for 4-8 hr per treatment. Plasma clearance (Cl), MTAC, and total mass transport (MT) of urea, creatinine, phosphate, and potassium were compared with a static dwell (n = 28). Cl, MTAC, and MT of urea, creatinine, phosphate, and potassium were low in the pig as compared to humans due to the pig's low peritoneal transport status and could be enhanced only to a limited extent by SAPD treatment compared with a static dwell (nighttime system: Cl urea: ×1.5 (p = .029), Cl creatinine: ×1.7 (p = .054), Cl phosphate: ×1.5 (p = .158), Cl potassium: ×1.6 (p = .011); daytime system: Cl creatinine: ×2.7 (p = .040), Cl phosphate: ×2.2 (p = .039)). Sorbent-assisted peritoneal dialysis treatment in a uremic pig model is safe and enhances small solute clearance as compared to a static dwell. Future studies in humans or animal species with higher peritoneal transport should elucidate whether our SAPD system enhances clearance to a clinically relevant extent as compared to conventional PD.


Assuntos
Diálise Peritoneal/métodos , Uremia/terapia , Animais , Resinas de Troca Aniônica/química , Resinas de Troca Aniônica/normas , Catéteres/normas , Cloretos/sangue , Cloretos/urina , Creatinina/urina , Feminino , Diálise Peritoneal/instrumentação , Fosfatos/sangue , Fosfatos/urina , Potássio/sangue , Potássio/urina , Suínos , Ureia/sangue , Ureia/urina
20.
ACS Appl Mater Interfaces ; 12(49): 54459-54472, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33215917

RESUMO

One-pot synthesis of novel hydrogel-based anion exchange membranes (AEMs), with only a single-phase monomer mixture, was used to eliminate surface heterogeneity and generate reproducible electroconvective microvortices in the over-limiting region of the current-voltage characteristic (CVC) curves. Diallyldimethylammonium chloride (DDA) was used as the main component to provide the cation charge groups, and 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethyl acrylate (EGDMA) were used as the auxiliary structure monomers. The uniform membrane structure allowed reproducible and sensitive DNA detection and quantification, as probe-target surface complexes can gate the ion flux and produce large voltage shifts in the over-limiting region. Suppressed membrane curvature due to controlled swelling is a crucial part to avoid the reduction of depletion region for maintaining the influence of target gene hybridization. Fourier-transform infrared (FTIR) spectroscopy verified the synthesized membrane structure, with a residual vinyl group that allows easy carboxylation via additional photografting reaction. Consequently, a significantly higher DNA probe functionalization efficiency is obtained on the homogeneous AEMs, evidenced by the increasing nitrogen element content and bonding via X-ray photoelectron spectroscopy (XPS). The DDA content was optimized to provide a sufficient coulomb force between AEM and nucleic acid backbone to promote the specific binding efficiency but without high dimensional swelling which might change the surface geometry and restrict the voltage shifting for sensing in the over-limiting region, and the optimal DDA/HEMA ratio was found to be 4/10. The synthesized AEM sensor for recombinant 35S promoter sequence identification exhibited a reproducible calibration standard curve with dynamic range between 30 fM and 1 µM and high selectivity with only 0.01 V shift for 1 µM nontarget oligo.


Assuntos
Resinas de Troca Aniônica/química , Técnicas Biossensoriais/métodos , DNA/análise , Membranas Artificiais , DNA/metabolismo , Sondas de DNA/química , Sondas de DNA/metabolismo , DNA de Plantas/análise , DNA de Plantas/metabolismo , Hidrogéis/química , Limite de Detecção , Metacrilatos/química , Microfluídica , Hibridização de Ácido Nucleico , Plantas Geneticamente Modificadas/genética , Reprodutibilidade dos Testes , Glycine max/genética , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA