Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.051
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731935

RESUMO

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia , Linfoma , Mitocôndrias , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/patologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citostáticos/farmacologia , Antineoplásicos/farmacologia
2.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725016

RESUMO

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Assuntos
Malária Falciparum , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Gravidez , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Adulto , Estudos Transversais , Polimorfismo de Nucleotídeo Único/genética , Nigéria/epidemiologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Alelos , Adulto Jovem , Complicações Parasitárias na Gravidez/parasitologia , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/diagnóstico , Resistência a Múltiplos Medicamentos/genética , Di-Hidropteroato Sintase/genética , Tetra-Hidrofolato Desidrogenase/genética , Proteínas de Protozoários/genética , Adolescente
3.
J Biochem Mol Toxicol ; 38(6): e23732, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769657

RESUMO

Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.


Assuntos
Produtos Biológicos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Nanotecnologia , Neoplasias , Humanos , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nanotecnologia/métodos , Organismos Aquáticos/química , Animais , Nanomedicina/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sistemas de Liberação de Medicamentos
4.
Nurs Health Sci ; 26(2): e13126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754867

RESUMO

Multidrug-resistant organism infections are a serious health problem globally, and can result in patient mortality and morbidity. In this descriptive study, we produced the first web application for transmission prevention specific to the situation based on nursing experience, knowledge, and practice guidelines and to evaluate web application satisfaction among Thai nurses. The sample comprised 282 Thai registered nurses experienced in caring for patients with multidrug-resistant organisms in a tertiary hospital. A demographic form and knowledge test were completed anonymously online. Data were analyzed using descriptive statistics. The application emphasized crucial topics for which participants had low preliminary knowledge and included tutorial sessions, pictures, video clips, drills, and a post-test. The application was piloted with a random sample of 30 nurses, and an instrument tested their satisfaction with this. Results revealed that preliminary knowledge scores for preventing transmission were moderate, and participants were highly satisfied with the application. Findings suggest the application is suitable for Thai nurses and could be applied to nursing practice elsewhere. However, further testing is recommended before implementing it into nursing practice.


Assuntos
Internet , Humanos , Feminino , Tailândia , Adulto , Masculino , Inquéritos e Questionários , Pessoa de Meia-Idade , Enfermeiras e Enfermeiros/psicologia , Enfermeiras e Enfermeiros/estatística & dados numéricos , Satisfação Pessoal , Resistência a Múltiplos Medicamentos
5.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611964

RESUMO

Two new phenylspirodrimanes, stachybotrins K and L (1 and 2), together with eight known analogues (3-10), were isolated from deep-sea-derived Stachybotrys sp. MCCC 3A00409. Their structures were determined by extensive NMR data and mass spectroscopic analysis. Absolute configurations of new compounds were determined through a comparison of their circular dichroism (CD) spectra with other reported compounds. The possible reversal effects of all compounds were assayed in the resistant cancer cell lines. Stachybotrysin B (8) can reverse multidrug resistance (MDR) in ABCB1-overexpression cells (KBv200, Hela/VCR) at the non-cytotoxic concentration. Doxorubicin accumulation assay and molecular-docking analysis reveal that the mechanism of its reversal MDR effect may be related to the increase in the intracellular concentration of substrate anticancer drugs.


Assuntos
Stachybotrys , Humanos , Bioensaio , Dicroísmo Circular , Células HeLa , Resistência a Múltiplos Medicamentos
6.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593587

RESUMO

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico
7.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557176

RESUMO

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Quimioterapia Combinada , Linhagem Celular Tumoral
8.
Open Vet J ; 14(1): 553-563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633170

RESUMO

Background: Bacterial infections causing digestive problems are among the most serious threats to Egypt's duck industry, owing to their effects on feed utilization and body weight gain. Aim: As a result, the goal of this study was to identify bacterial pathogens causing enteritis in ducks as well as testing their antimicrobials resistance capabilities. Methods: Forty-two duck flocks from different localities at four Egyptian Governorates (El-Sharkia, El-Gharbia, El-Dakahlia, and El-Qaliobia) have been subjected to clinical and postmortem examination as well as bacterial isolation and identification. The liver samples have been collected aseptically from freshly euthanized ducks for bacterial isolation followed by identification using conventional biochemical tests, VITEK 2 system, and confirmatory polymerase chain reaction (PCR) for detection of the uid A gene (beta-glucuronidase enzyme) of Escherichia coli. In addition, antimicrobial sensitivity testing for the isolates against different antimicrobials by the VITEK 2 system was used. Results: Forty-six positive bacterial isolates were identified using conventional methods and the VITEK 2 system including Staphylococcus spp. (52.17%), E. coli (41.30%), and 2.17% for each of Enterococcus casseli lavus, Salmonella enterica subspecies arizonae, and Enterobacter cloacae. PCR was positive for E. coli uid A gene at 556 bp. The antibiogram patterns of isolated pathogens from naturally infected ducks in our work demonstrated 87% multidrug resistance with varying results against different antimicrobial drugs tested. Such findings supported the fact of the upgrading multidrug resistance of Staphylococci and Enterobacteriacae. Conclusion: The most prevalent bacterial pathogens associated with duck enteritis were Staphylococcus spp. and E. coli with the first report of S. enterica subspecies arizonae causing duck enteritis in Egypt.


Assuntos
Salmonella enterica , Animais , Salmonella arizonae , Patos , Egito , Escherichia coli , Antibacterianos/farmacologia , Staphylococcus , Resistência a Múltiplos Medicamentos
9.
Sci Rep ; 14(1): 9259, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649719

RESUMO

Chemotherapy resistance poses clinical challenges in pancreatic cancer treatment. Developing cell lines resistant to chemotherapy is crucial for investigating drug resistance mechanisms and identifying alternative treatment pathways. The genetic and biological attributes of pancreatic cancer depend on its aetiology, racial demographics and anatomical origin, underscoring the need for models that comprehensively represent these characteristics. Here, we introduce PDAC-X2, a pancreatic cancer cell line derived from Chinese patients. We conducted a comprehensive analysis encompassing the immune phenotype, biology, genetics, molecular characteristics and tumorigenicity of the cell line. PDAC-X2 cells displayed epithelial morphology and expressed cell markers (CK7 and CK19) alongside other markers (E-cadherin, Vimentin, Ki-67, CEA and CA19-9). The population doubling time averaged around 69 h. In vivo, PDAC-X2 cells consistently maintained their tumorigenicity, achieving a 100% tumour formation rate. Characterised by a predominantly tetraploid karyotype, this cell line exhibited a complex genetic markup. Notably, PDAC-X2 cells demonstrated resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil and oxaliplatin. In conclusion, PDAC-X2 presents an invaluable preclinical model. Its utility lies in facilitating the study of drug resistance mechanisms and the exploration of alternative therapeutic approaches aimed at enhancing the prognosis of this tumour type.


Assuntos
Carcinoma Ductal Pancreático , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Animais , Camundongos , Resistência a Múltiplos Medicamentos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Gencitabina , Povo Asiático , População do Leste Asiático
10.
Nanoscale ; 16(17): 8434-8446, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38592819

RESUMO

Combination therapy has proven effective in counteracting tumor multidrug resistance (MDR). However, the pharmacokinetic differences among various drugs and inherent water insolubility for most small molecule agents greatly hinder their synergistic effects, which makes the delivery of drugs for combination therapy in vivo a key problem. Herein, we propose a protonated strategy to transform a water-insoluble small molecule drug-inhibitor conjugate into an amphiphilic one, which then self-assembles into nanoparticles for co-delivery in vivo to overcome tumor MDR. Specifically, paclitaxel (PTX) is first coupled with a third-generation P-glycoprotein (P-gp) inhibitor zosuquidar (Zos) through a glutathione (GSH)-responsive disulfide bond to produce a hydrophobic drug-inhibitor conjugate (PTX-ss-Zos). Subsequently treated with hydrochloric acid ethanol solution (HCl/EtOH), PTX-ss-Zos is transformed into the amphiphilic protonated precursor and then forms nanoparticles (PTX-ss-Zos@HCl NPs) in water by molecular self-assembly. PTX-ss-Zos@HCl NPs can be administered intravenously and accumulated specifically at tumor sites. Once internalized by cancer cells, PTX-ss-Zos@HCl NPs can be degraded under the overexpressed GSH to release PTX and Zos simultaneously, which synergistically reverse tumor MDR and inhibit tumor growth. This offers a promising strategy to develop small molecule self-assembled nanoagents to reverse tumor MDR in combination therapy.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Paclitaxel , Humanos , Paclitaxel/química , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Camundongos Nus , Prótons , Camundongos Endogâmicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Feminino , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo
11.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542082

RESUMO

Intracellular calcium, as a second messenger, is involved in multilevel cellular regulatory pathways and plays a role (among other processes) in switching between survival and initiation of cell death in neoplastic cells. The development of multidrug resistance (MDR) in neoplastic cells is associated with the ability of cells to escape programmed cell death, in which dysregulation of intracellular calcium may play an important role. Therefore, reliable monitoring of intracellular calcium levels is necessary. However, such a role might be limited by a real obstacle since several fluorescent intracellular calcium indicators are substrates of membrane ABC drug transporters. For example, Fluo-3/AM is a substrate of P-glycoprotein (ABCB1 member of the ABC family), whose overexpression is the most frequent cause of MDR. The overexpression of ABCB1 prevents MDR cell variants from retaining this tracer in the intracellular space where it is supposed to detect calcium. The solution is to use a proper inhibitor of P-gp efflux activity to ensure the retention of the tracer inside the cells. The present study showed that Zosuquidar and Tariquidar (P-gp inhibitors) are suitable for monitoring intracellular calcium, either by flow cytometry or confocal microscopy, in cells overexpressing P-gp.


Assuntos
Cálcio , Resistência a Múltiplos Medicamentos , Cálcio/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
12.
Eur J Pharm Biopharm ; 198: 114267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514020

RESUMO

Due to the high prevalence of cancer, progress in the management of cancer is the need of the hour. Most cancer patients develop chemotherapeutic drug resistance, and many remain insidious due to overexpression of Multidrug Resistance Protein 1 (MDR1), also known as Permeability-glycoprotein (P-gp) or ABCB1 transporter (ATP-binding cassette subfamily B member 1). P-gp, a transmembrane protein that protects vital organs from outside chemicals, expels medications from malignant cells. The blood-brain barrier (BBB), gastrointestinal tract (GIT), kidneys, liver, pancreas, and cancer cells overexpress P-gp on their apical surfaces, making treatment inefficient and resistant. Compounds that compete with anticancer medicines for transportation or directly inhibit P-gp may overcome biological barriers. Developing nanotechnology-based formulations may help overcome P-gp-mediated efflux and improve bioavailability and cell chemotherapeutic agent accumulation. Nanocarriers transport pharmaceuticals via receptor-mediated endocytosis, unlike passive diffusion, which bypasses ABCB1. Anticancer drugs and P-gp inhibitors in nanocarriers may synergistically increase drug accumulation and chemotherapeutic agent toxicity. The projection of desirable binding and effect may be procured initially by molecular docking of the inhibitor with P-gp, enabling the reduction of preliminary trials in formulation development. Here, P-gp-mediated efflux and several possible outcomes to overcome the problems associated with currently prevalent cancer treatments are highlighted.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Resistência a Múltiplos Medicamentos , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico
13.
Int J Pharm ; 655: 124028, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38518871

RESUMO

Ovarian cancer is a malignant tumor that seriously endangers the lives of women, with chemotherapy being the primary clinical treatment. However, chemotherapy encounters the problem of generating multidrug resistance (MDR), mainly due to drug efflux induced by P-glycoprotein (P-gp), which decreases intracellular accumulation of chemotherapeutic drugs. The drugs efflux mediated by P-gp requires adenosine triphosphate (ATP) hydrolysis to provide energy. Therefore, modulating energy metabolism pathways and inhibiting ATP production may be a potential strategy to reverse MDR. Herein, we developed a PTX-ATO-QUE nanoparticle (PAQNPs) based on a PLGA-PEG nanoplatform capable of loading the mitochondrial oxidative phosphorylation (OXPHOS) inhibitor atovaquone (ATO), the glycolysis inhibitor quercetin (QUE), and the chemotherapeutic drug paclitaxel (PTX) to reverse MDR by inhibiting energy metabolism through multiple pathways. Mechanistically, PAQNPs could effectively inhibit the OXPHOS and glycolytic pathways of A2780/Taxol cells by suppressing the activities of mitochondrial complex III and hexokinase II (HK II), respectively, ultimately decreasing intracellular ATP levels in tumor cells. Energy depletion can effectively inhibit cell proliferation and reduce P-gp activity, increasing the chemotherapeutic drug PTX accumulation in the cells. Moreover, intracellular reactive oxygen species (ROS) is increased with PTX accumulation and leads to chemotherapy-resistant cell apoptosis. Furthermore, PAQNPs significantly inhibited tumor growth in the A2780/Taxol tumor-bearing NCG mice model. Immunohistochemical (IHC) analysis of tumor tissues revealed that P-gp expression was suppressed, demonstrating that PAQNPs are effective in reversing MDR in tumors by inducing energy depletion. In addition, the safety study results, including blood biochemical indices, major organ weights, and H&E staining images, showed that PAQNPs have a favorable in vivo safety profile. In summary, the results suggest that the combined inhibition of the two energy pathways, OXPHOS and glycolysis, can enhance chemotherapy efficacy and reverse MDR in ovarian cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Paclitaxel , Neoplasias Ovarianas/patologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo
14.
Toxicol Appl Pharmacol ; 485: 116888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452945

RESUMO

Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Benzodioxóis , Resistencia a Medicamentos Antineoplásicos , Indolizinas , Survivina , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Survivina/genética , Survivina/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Camundongos Nus , Camundongos , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Reguladoras de Apoptose/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Paclitaxel/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Camundongos Endogâmicos BALB C , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética
15.
Eur J Med Chem ; 269: 116294, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508119

RESUMO

Lamellarins are polyaromatic alkaloids isolated from marine organisms, including mollusks, tunicates, and sponges. Currently, over 60 structurally distinct natural lamellarins have been reported, and most of them exhibit promising biological activities, such as topoisomerase inhibition, mitochondrial function inhibition, multidrug resistance reversing, and anti-HIV activity. There has also been a significant progress on the synthetic study of lamellarins which has been regularly updated by numerous medicinal chemists as well. This review provides a detailed summary of the synthesis, pharmacology, and structural modification of lamellarins over the past decades.


Assuntos
Alcaloides , Produtos Biológicos , Urocordados , Animais , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Mitocôndrias , Urocordados/química , Alcaloides/química
16.
Int J Pharm ; 654: 123970, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447779

RESUMO

Multidrug resistance (MDR) poses a significant impediment to the efficacy of chemotherapy in clinical settings. Despite Paclitaxel (PTX) being designated as the primary pharmaceutical agent for treating recurrent and metastatic breast cancer, the emergence of PTX resistance frequently results in therapeutic shortcomings, representing a substantial obstacle in clinical breast cancer management. In response, we developed a delivery system exhibiting dual specificity for both tumors and mitochondria. This system facilitated the sequential administration of small interfering B-cell lymphoma-2 (siBcl-2) and PTX to the tumor cytoplasm and mitochondria, respectively, with the aim of surmounting PTX resistance in tumor cells through the activation of the mitochondrial apoptosis pathway. Notably, we employed genetic engineering techniques to fabricate a recombinant ferritin containing the H-subunit (HFn), known for its tumor-targeting capabilities, for loading siBcl-2. This HFn-siBcl-2 complex was then combined with positively charged Triphenylphosphine-Liposome@PTX (TL@PTX) nanoparticles (NPs) to formulate HFn/siBcl-2@TL/PTX. Guided by HFn, these nanoparticles efficiently entered cells and released siBcl-2 through the action of triphenylphosphine (TPP)-mediated "proton sponge," thereby precisely modulating the expression of Bcl-2 protein. Simultaneously, PTX was directed to the mitochondria through the accurate targeting of TL@PTX, synergistically initiating the mitochondrial apoptosis pathway and effectively suppressing PTX resistance both in vitro and in vivo. In conclusion, the development of this dual-targeting delivery system presents a promising therapeutic strategy for overcoming PTX resistance in the clinical treatment of breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Compostos Organofosforados , Humanos , Feminino , Paclitaxel , Resistencia a Medicamentos Antineoplásicos , Mitocôndrias , Neoplasias da Mama/patologia , Resistência a Múltiplos Medicamentos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos
17.
Bioorg Med Chem Lett ; 103: 129700, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479483

RESUMO

This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH2) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.) and oral routes in Swiss mice. Ether derivative 13c was the most active compound by i.m. route, it has shown 100 % protection at the dose of 12 mg/kg × 4 days and showed 100 % clearance of parasitaemia on day 4 at dose of 6 mg/kg. Amine 11a, ether derivatives 13d, 13e and ether 15a also showed promising antimalarial activity. ß-Arteether gave 100 % protection at the dose of 48 mg/kg × 4 days and 20 % protection at 24 mg/kg × 4 days dose by oral route, while it showed 100 % protection at 6 mg/kg × 4 days and no protection at 3 mg/kg × 4 days by i.m. route.


Assuntos
Antimaláricos , Plasmodium yoelii , Animais , Camundongos , Antimaláricos/química , Éter/farmacologia , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Etil-Éteres/farmacologia , Éteres/farmacologia
18.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493478

RESUMO

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Histonas/metabolismo , Cromatina , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Resistência a Múltiplos Medicamentos , Neoplasias da Mama/genética
19.
Blood Cancer Discov ; 5(3): 180-201, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442309

RESUMO

In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML. We derived pharmacologic sensitivity for 22 AML PDX models using dynamic BH3 profiling (DBP), together with genomics and transcriptomics. Using in vivo acquired resistant PDXs, we found that resistance to unrelated, narrowly targeted agents in distinct PDXs was accompanied by broad resistance to drugs with disparate mechanisms. Moreover, baseline mitochondrial apoptotic priming was consistently reduced regardless of the class of drug-inducing selection. By applying DBP, we identified drugs showing effective in vivo activity in resistant models. This study implies evasion of apoptosis drives drug resistance and demonstrates the feasibility of the DBP approach to identify active drugs for patients with relapsed AML. SIGNIFICANCE: Acquired resistance to targeted therapy remains challenging in AML. We found that reduction in mitochondrial priming and common transcriptomic signatures was a conserved mechanism of acquired resistance across different drug classes in vivo. Drugs active in vivo can be identified even in the multidrug resistant state by DBP.


Assuntos
Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Humanos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Precursoras de Granulócitos/efeitos dos fármacos , Células Precursoras de Granulócitos/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Carbohydr Polym ; 332: 121897, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431408

RESUMO

Cancer multidrug resistance (MDR) dramatically hindered the efficiency of standard chemotherapy. Mitochondria are highly involved in the occurrence and development of MDR; thus, inducing its malfunction will be an appealing strategy to treat MDR tumors. In this paper, a natural polysaccharides-based nanoplatform (TDTD@UA/HA micelles) with cell and mitochondria dual-targeting ability was facilely fabricated to co-deliver ursolic acid (UA) and doxorubicin (DOX) for combinatorial MDR therapy. TDTD@UA/HA micelles featured a spherical morphology, narrow size distribution (∼140 nm), as well as favorable drug co-loading capacity (DOX: 8.41 %, UA: 9.06 %). After hyaluronic acid (HA)-mediated endocytosis, the lysosomal hyaluronidase promoted the degradation of HA layer and then the positive triphenylphosphine groups were exposed, which significantly enhanced the mitochondria-accumulation of nano micelles. Subsequently, DOX and UA were specifically released into mitochondria under the trigger of endogenous reactive oxygen species (ROS), followed by severe mitochondrial destruction through generating ROS, exhausting mitochondrial membrane potential, and blocking energy supply, etc.; ultimately contributing to the susceptibility restoration of MCF-7/ADR cells to chemotherapeutic agents. Importantly, TDTD@UA/HA micelles performed potent anticancer efficacy without distinct toxicity on the MDR tumor-bearing nude mice model. Overall, the versatile nanomedicine represented a new therapeutic paradigm and held great promise in overcoming MDR-related cancer.


Assuntos
Micelas , Neoplasias , Humanos , Animais , Camundongos , Ácido Ursólico , Ácido Hialurônico/farmacologia , Dextranos/metabolismo , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Polímeros/metabolismo , Células MCF-7 , Mitocôndrias , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA