Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.978
Filtrar
1.
Reprod Fertil Dev ; 362024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753959

RESUMO

Context Melatonin may have a heat-stress-alleviating role during pregnancy. Aims To investigate the effects of melatonin administration during the first half of pregnancy on heat-tolerance capacity and pregnancy outputs of naturally heat-stressed rabbits. Methods Forty female rabbits were stratified equally into two experimental groups and daily received 1mg melatonin/kg body weight or not (control) for 15 consecutive days post-insemination. Heat tolerance indices, hormone profile, ovarian structures, and fetal loss were determined. Key results Treatment with melatonin significantly decreased respiration rate and rectal temperature, improved concentrations of nitric oxide, and tended to decrease malondialdehyde concentrations (P =0.064) compared to control. Melatonin treatment significantly increased concentrations of high-density lipoprotein, oestradiol, and progesterone compared to control. No significant differences in the numbers of visible ovarian follicles, corpora lutea, and total implantation sites on day 18 of pregnancy were observed between experimental groups. However, melatonin treatment significantly reduced the number of absorbed implantation sites and significantly improved amniotic fluid volume and conception rate compared to control. Conclusions Melatonin administration during the first half of pregnancy can improve reproductive performance of heat-stressed female rabbits. Implications Melatonin can improve fetal survivability via improving heat-tolerance capacity of does and steroidogenesis.


Assuntos
Resposta ao Choque Térmico , Melatonina , Reprodução , Animais , Feminino , Melatonina/farmacologia , Melatonina/administração & dosagem , Coelhos , Gravidez , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Progesterona/farmacologia , Transtornos de Estresse por Calor/veterinária , Transtornos de Estresse por Calor/tratamento farmacológico , Transtornos de Estresse por Calor/metabolismo , Ovário/efeitos dos fármacos , Estradiol/farmacologia , Estradiol/administração & dosagem , Termotolerância/efeitos dos fármacos
2.
Plant Cell Rep ; 43(6): 137, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713285

RESUMO

KEY MESSAGE: cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.


Assuntos
AMP Cíclico , Resposta ao Choque Térmico , Nicotiana , Proteínas de Plantas , Fosforilação , Nicotiana/genética , Nicotiana/metabolismo , Resposta ao Choque Térmico/fisiologia , AMP Cíclico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731961

RESUMO

Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.


Assuntos
Glucose , Resposta ao Choque Térmico , Pectinidae , Filogenia , Animais , Pectinidae/metabolismo , Pectinidae/genética , Glucose/metabolismo , Resposta ao Choque Térmico/fisiologia , Anaerobiose , Ácido Succínico/metabolismo , Redes e Vias Metabólicas , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética
4.
Plant Physiol Biochem ; 210: 108649, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653099

RESUMO

The translation elongation factor 1α (EF1α) protein is a highly conserved G protein that is crucial for protein translation in all eukaryotic organisms. EF1α quickly became insoluble at temperatures 42 °C treatment for 2h in vitro, but generally remained soluble in vivo even after being exposed to temperatures as high as 45 °C for an extended period, which suggests that protective mechanisms exist for keeping EF1α soluble in plant cells under heat stress. EF1α had fast in vivo insolubilization when exposed to 45 °C, resulting in about 40% of the protein aggregating after 9 h. Given its established role in protein translation, heat-induced aggregation is most likely to impact the function of the elongation factor. Overexpression of constitutive mutants in both GTP-bound and GDP-bound forms of EF1α resulted in significantly decreased heat tolerance. These findings provide evidence to support the critical role of EF1α, a thermosensitive protein, in the heat tolerance of plants.


Assuntos
Fator 1 de Elongação de Peptídeos , Termotolerância , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Termotolerância/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Alta , Agregados Proteicos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resposta ao Choque Térmico/fisiologia
5.
Neuroreport ; 35(9): 558-567, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38687900

RESUMO

Heat stroke induced cerebral damage via neuroinflammation. This study aimed to approach whether heat stress would promote NOD-like receptor protein 3 (NLRP3) inflammasome via reactive oxygen species (ROS). The mice were randomly divided into the sham group, the heat stress group, and the heat stress + TEMPOL (ROS scavenger) group. And the NLRP3 -/- mice were applied and divided into the NLRP3 -/-  + sham group and the NLRP3 -/-  + heat stress group. Furthermore, the BV2 cells were divided into four groups following the intervention measures: the heat stress + TEMPOL group, the heat stress + Z-VAD-FMK (caspase-1 inhibitor) group, the heat stress group, and the control group. ROS levels were examined. The expression levels of NLRP3, caspase-1, IL-1ß, and IL-18 were detected by western blotting and double immunofluorescence. We found that heat stress attack induced excessive ROS in microglia and subsequently activated NLRP3 inflammasome in both mice and BV2 cells. When ROS scavenged, the expression level of NLRP3 was downregulated. Furthermore, with NLRP3 inflammasome activation, the expression levels of caspase-1, IL-1ß, and IL-18 were increased. In NLRP3 -/- mice, however, the caspase-1, IL-1ß, and IL-18 were significantly declined. Further experiments showed that pretreatment of caspase-1 inhibitor decreased the expression levels of IL-1ß and IL-18. These results suggest that heat stress attack caused neuroinflammation via excessive ROS activating the NLRP3 inflammasome in microglia cells.


Assuntos
Golpe de Calor , Inflamassomos , Interleucina-18 , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-18/metabolismo , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Golpe de Calor/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Camundongos Knockout , Masculino , Caspase 1/metabolismo , Resposta ao Choque Térmico/fisiologia , Resposta ao Choque Térmico/efeitos dos fármacos
6.
Plant Physiol Biochem ; 210: 108614, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626655

RESUMO

Heat-priming improves plants' tolerance to a recurring heat stress event. The underlying molecular mechanisms of heat-priming are largely unknown in seagrasses. Here, ad hoc mesocosm experiments were conducted with two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa. Plants were first exposed to heat-priming, followed by a heat-triggering event. A comprehensive assessment of plant stress response across different levels of biological organization was performed at the end of the triggering event. Morphological and physiological results showed an improved response of heat-primed P. oceanica plants while in C. nodosa both heat- and non-primed plants enhanced their growth rates at the end of the triggering event. As resulting from whole transcriptome sequencing, molecular functions related to several cellular compartments and processes were involved in the response to warming of non-primed plants, while the response of heat-primed plants involved a limited group of processes. Our results suggest that seagrasses acquire a primed state during the priming event, that eventually gives plants the ability to induce a more energy-effective response when the thermal stress event recurs. Different species may differ in their ability to perform an improved heat stress response after priming. This study provides pioneer molecular insights into the emerging topic of seagrass stress priming and may benefit future studies in the field.


Assuntos
Alismatales , Transcriptoma , Alismatales/genética , Alismatales/metabolismo , Transcriptoma/genética , Especificidade da Espécie , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Regulação da Expressão Gênica de Plantas , Mar Mediterrâneo , Temperatura Alta
7.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563292

RESUMO

Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.


Assuntos
Antozoários , Dinoflagellida , Resposta ao Choque Térmico , Simbiose , Antozoários/fisiologia , Antozoários/metabolismo , Animais , Dinoflagellida/fisiologia , Dinoflagellida/metabolismo , Resposta ao Choque Térmico/fisiologia , Nutrientes/metabolismo , Nitrogênio/metabolismo , Compostos de Nitrogênio/metabolismo , Água do Mar/química , Temperatura Alta , Aminoácidos/metabolismo
9.
Am J Physiol Renal Physiol ; 326(5): F802-F813, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38545652

RESUMO

Men are likely at greater risk for heat-induced acute kidney injury compared with women, possibly due to differences in vascular control. We tested the hypothesis that the renal vasoconstrictor and vasodilator responses will be greater in younger women compared with men during passive heat stress. Twenty-five healthy adults [12 women (early follicular phase) and 13 men] completed two experimental visits, heat stress or normothermic time-control, assigned in a block-randomized crossover design. During heat stress, participants wore a water-perfused suit perfused with 50°C water. Core temperature was increased by ∼0.8°C in the first hour before commencing a 2-min cold pressor test (CPT). Core temperature remained clamped and at 1-h post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75 min, and 150 min post-protein. Beat-to-beat blood pressure (Penaz method) was measured and segmental artery vascular resistance (VR, Doppler ultrasound) was calculated as segmental artery blood velocity ÷ mean arterial pressure. CPT-induced increases in segmental artery VR did not differ between trials (trial effect: P = 0.142) nor between men (heat stress: 1.5 ± 1.0 mmHg/cm/s, normothermia: 1.4 ± 1.0 mmHg/cm/s) and women (heat stress: 1.4 ± 1.2 mmHg/cm/s, normothermia: 2.1 ± 1.1 mmHg/cm/s) (group effect: P = 0.429). Reductions in segmental artery VR following oral protein loading did not differ between trials (trial effect: P = 0.080) nor between men (heat stress: -0.6 ± 0.8 mmHg/cm/s, normothermia: -0.6 ± 0.6 mmHg/cm/s) and women (heat stress: -0.5 ± 0.5 mmHg/cm/s, normothermia: -1.1 ± 0.6 mmHg/cm/s) (group effect: P = 0.204). Renal vasoconstrictor responses to the cold pressor test and vasodilator responses following an oral protein load during heat stress or normothermia do not differ between younger men and younger women in the early follicular phase of the menstrual cycle.NEW & NOTEWORTHY The mechanisms underlying greater heat-induced acute kidney injury risk in men versus women remain unknown. This study examined renal vascular control, including both vasodilatory (oral protein load) and vasoconstrictor (cold presser test) responses, during normothermia and heat stress and compared these responses between men and women. The results indicated that in both conditions neither renal vasodilatory nor vasoconstrictor responses differ between younger men and younger women.


Assuntos
Resposta ao Choque Térmico , Vasodilatação , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Resposta ao Choque Térmico/fisiologia , Estudos Cross-Over , Fatores Sexuais , Resistência Vascular , Rim/irrigação sanguínea , Vasoconstrição , Circulação Renal , Artéria Renal , Transtornos de Estresse por Calor/fisiopatologia , Pressão Sanguínea/fisiologia , Fatores Etários
10.
Poult Sci ; 103(4): 103537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428202

RESUMO

Over the past years, the poultry industry has been assigned to greater production performance but has become highly sensitive to environmental changes. The average world temperature has recently risen and is predicted to continue rising. In open-sided houses, poultry species confront high outside temperatures, which cause heat stress (HS) problems. Cellular responses are vital in poultry, as they may lead to identifying confirmed HS biomarkers. Heat shock proteins (HSP) are highly preserved protein families that play a significant role in cell function and cytoprotection against various stressors, including HS. The optimal response in which the cell survives the HS elevates HSP levels that prevent cellular proteins from damage caused by HS. The HSP have chaperonic action to ensure that stress-denatured proteins are folded, unfolded, and refolded. The HSP70 and HSP90 are the primary HSP in poultry with a defensive function during HS. HSP70 was the optimal biological marker for assessing HS among the HSP studied. The current review attempts to ascertain the value of HSP as a heat stress defense mechanism in poultry.


Assuntos
Proteínas de Choque Térmico , Aves Domésticas , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Aves Domésticas/metabolismo , Galinhas/metabolismo , Proteínas de Choque Térmico HSP70 , Resposta ao Choque Térmico/fisiologia , Mecanismos de Defesa
11.
PLoS One ; 19(3): e0300719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527055

RESUMO

Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.


Assuntos
Lactação , Ácido Linoleico , Feminino , Humanos , Bovinos , Animais , Lactação/fisiologia , Ácido Linoleico/metabolismo , Resposta ao Choque Térmico/fisiologia , Homeostase , Frutose/metabolismo , Temperatura Alta , Leite/metabolismo
12.
Int J Biometeorol ; 68(5): 883-890, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308728

RESUMO

This study aimed to determine the influence of heat stress during the dry period on milk yield and reproductive performance of Holstein cows in a hot environment. Breeding and milk production records of cows, as well as meteorological data between 2017 and 2020 from a commercial dairy herd (n = 12,102 lactations), were used to determine the relationship between climatic conditions during the dry period (average of the temperature-humidity index (THI) at the beginning, middle, and end of the dry period) and reproductive efficiency and milk yield traits. THI was divided into < 70 (no heat stress), 70-80 (moderate heat stress), and > 80 (severe heat stress). First-service pregnancy rate of cows decreased (P < 0.01) with increasing hyperthermia during the dry period (9.5, 7.3, and 3.4% for THI < 70, 70-80, and > 80, respectively). All-service pregnancy rate was highest (P < 0.01) for cows not undergoing heat stress during the dry period (60.2%) and lowest (42.6%) for cows with severe heat stress during the dry period. Cows not experiencing heat stress during the dry period required a mean ± SD of 5.6 ± 3.8 services per pregnancy compared with 6.5 ± 3.6 (P < 0.01) for cows subjected to THI > 80 during the dry period. Cows not suffering heat stress during the dry period produced more (P < 0.01) 305-day milk (10,926 ± 1206 kg) than cows subjected to moderate (10,799 ± 1254 kg) or severe (10,691 ± 1297 kg) heat stress during the dry period. Total milk yield did not differ (P > 0.10) between cows not undergoing heat stress (13,337 ± 3346 kg) and cows subjected to severe heat stress during the dry period (13,911 ± 4018 kg). It was concluded that environmental management of dry cows during hot months is warranted to maximize reproductive performance and milk yield in the following lactation.


Assuntos
Resposta ao Choque Térmico , Umidade , Lactação , Leite , Reprodução , Animais , Bovinos/fisiologia , Feminino , Reprodução/fisiologia , Resposta ao Choque Térmico/fisiologia , Gravidez , Transtornos de Estresse por Calor/veterinária , Transtornos de Estresse por Calor/fisiopatologia , Temperatura Alta
13.
Reprod Sci ; 31(5): 1311-1322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38180610

RESUMO

The problem of male infertility is a global health crisis and poses a serious threat to the well-being of families. Under heat stress (HS), the reduction of Sertoli cells (SCs) inhibits energy transport and nutrient supply to germ cells, leading to spermatogenesis failure. DNA methylation of genes is a central epigenetic regulatory mechanism in mammalian reproduction. However, it remains unclear how DNA methylation regulates gene expression in heat-stressed SCs. In this study, we investigated whether the decrease in SC levels during HS could be related to epigenetic DNA modifications. The cells exposed to HS showed changes in differential methylation cytosines and regions (DMCs/DMRs) and differential expression genes (DEGs), but not in global DNA methylations. One of the most important biological processes affected by HS is cell apoptosis induced by the intrinsic apoptotic signaling pathway (GO: 2,001,244, P < 0.05) by enrichment in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The joint analysis showed that several gene expressions in RNA-seq and WGBS overlapped and the shortlisted genes BAX, HSPH1, HSF1B, and BAG were strongly correlated with stress response and apoptosis. Methylation-specific PCR (MSP) and flow cytometry (FCM) analyzes showed that reduced promoter methylation and enhanced gene expression of BAX with a consequence of apoptosis. The activity of BAX, as well as an increase in its expression, is likely to result in a reduction of SCs population which could further impair ATP supply and adversely affect membrane integrity. These findings provide novel insights into the molecular mechanisms through which stressors cause male reproductive dysfunction and a new molecular etiology of male infertility.


Assuntos
Apoptose , Metilação de DNA , Resposta ao Choque Térmico , Células de Sertoli , Proteína X Associada a bcl-2 , Masculino , Resposta ao Choque Térmico/fisiologia , Resposta ao Choque Térmico/genética , Células de Sertoli/metabolismo , Animais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Epigênese Genética , Camundongos
14.
J Exp Bot ; 75(8): 2246-2255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236036

RESUMO

Plants can be primed to withstand otherwise lethal heat stress (HS) through exposure to a preceding temporary and mild HS, commonly known as the 'thermopriming stimulus'. Plants have also evolved mechanisms to establish 'memories' of a previous stress encounter, or to reset their physiology to the original cellular state once the stress has ended. The priming stimulus triggers a widespread change of transcripts, proteins, and metabolites, which is crucial for maintaining the memory state but may not be required for growth and development under optimal conditions or may even be harmful. In such a scenario, recycling mechanisms such as autophagy are crucial for re-establishing cellular homeostasis and optimizing resource use for post-stress growth. While pivotal for eliminating heat-induced protein aggregates and protecting plants from the harmful impact of HS, recent evidence implies that autophagy also breaks down heat-induced protective macromolecules, including heat shock proteins, functioning as a resetting mechanism during the recovery from mild HS. This review provides an overview of the latest advances in understanding the multifaceted functions of autophagy in HS responses, with a specific emphasis on its roles in recovery from mild HS, and the modulation of HS memory.


Assuntos
Proteínas de Choque Térmico , Resposta ao Choque Térmico , Resposta ao Choque Térmico/fisiologia , Autofagia , Homeostase
15.
Plant Physiol Biochem ; 207: 108353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219426

RESUMO

Because of a high sensitivity to high temperature, both the yield and quality of tomato (Solanum lycopersicum L.) are severely restricted by heat stress. The Bcl-2-associated athanogene (BAG) proteins, a family of multi-functional co-chaperones, are involved in plant growth, development, and stress tolerance. We have previously demonstrated that BAG9 positively regulates thermotolerance in tomato. However, the BAG9-mediated mechanism of thermotolerance in tomato has remained elusive. In the present study, we report that BAG9 interacts with heat shock protein 70 (HSP70) in vitro and in vivo. Silencing HSP70 decreased thermotolerance of tomato plants, as reflected by the phenotype, relative electrolyte leakage and malondialdehyde. Furthermore, the photosystem activities, activities of antioxidant enzymes and expression of key genes encoding antioxidant enzymes were reduced in HSP70-silenced plants under heat stress. Additionally, silencing HSP70 decreased thermotolerance of overexpressing BAG9 plants, which was related to decreased photosynthetic rate, increased damage to photosystem I and photosystem II, decreased activity of antioxidant enzymes, and decreased expression of key genes encoding antioxidant enzymes. Taken together, the present study identified that HSP70 is involved in BAG9-mediated thermotolerance by protecting the photosystem stability and improving the efficiency of the antioxidant system in tomato. This knowledge can be helpful to breed improved crop cultivars that are better equipped with thermotolerance.


Assuntos
Solanum lycopersicum , Termotolerância , Termotolerância/genética , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Melhoramento Vegetal , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279240

RESUMO

In this study, we examined the effects of rumen-protected L-tryptophan supplementation on the productivity and physiological metabolic indicators in lactating Holstein cows under heat stress conditions. The study involved eight early lactating Holstein cows (days in milk = 40 ± 9 days; milk yield 30 ± 1.5 kg/day; parity 1.09 ± 0.05, p < 0.05), four cows per experiment, with environmentally controlled chambers. In each experiment, two distinct heat stress conditions were created: a low-temperature and low-humidity (LTLH) condition at 25 °C with 35-50% humidity and a high-temperature and high-humidity (HTHH) condition at 31 °C with 80-95% humidity. During the adaptation phase, the cows were subjected to LTLH and HTHH conditions for 3 days. This was followed by a 4-day heat stress phase and then by a 7-day phase of heat stress, which were complemented by supplementation with rumen-protected L-tryptophan (ACT). The findings revealed that supplementation with ACT increased dry matter intake as well as milk yield and protein and decreased water intake, heart rate, and rectal temperature in the HTHH group (p < 0.05). For plateletcrit (PCT, p = 0.0600), the eosinophil percentage (EOS, p = 0.0880) showed a tendency to be lower, while the monocyte (MONO) and large unstained cells (LUC) amounts were increased in both groups (p < 0.05). Albumin and glucose levels were lower in the HTHH group (p < 0.05). The gene expressions of heat shock proteins 70 and 90 in the peripheral blood mononuclear cells were higher in the ACT group (HTHH, p < 0.05). These results suggest that ACT supplementation improved productivity, physiological indicators, blood characteristics, and gene expression in the peripheral blood mononuclear cells of early lactating Holstein cows under heat-stress conditions. In particular, ACT supplementation objectively relieved stress in these animals, suggesting that L-tryptophan has potential as a viable solution for combating heat-stress-induced effects on the cattle in dairy farming.


Assuntos
Proteínas de Choque Térmico , Lactação , Gravidez , Feminino , Bovinos , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Dieta/veterinária , Triptofano/farmacologia , Triptofano/metabolismo , Rúmen , Leucócitos Mononucleares , Leite/metabolismo , Resposta ao Choque Térmico/fisiologia , Suplementos Nutricionais , Expressão Gênica , Temperatura Alta
18.
J Physiol Biochem ; 80(1): 161-173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37930617

RESUMO

Resistance training (RT) can increase the heat shock response (HSR) in the elderly. As middle-aged subjects already suffer physiological declines related to aging, it is hypothesized that RT may increase the HSR in these people. To assess the effects of resistance training on heat shock response, intra and extracellular HSP70, oxidative stress, inflammation, body composition, and metabolism in middle-aged subjects. Sixteen volunteers (40 - 59 years) were allocated to two groups: the trained group (n = 7), which performed 12 weeks of RT; and the physically inactive-control group (n = 9), which did not perform any type of exercise. The RT program consisted of 9 whole-body exercises (using standard gym equipment) and functional exercises, carried out 3 times/week. Before and after the intervention, body composition, muscle mass, strength, functional capacity, and blood sample measurements (lipid profile, glucose, insulin, oxidative damage, TNF-α, the HSR, HSP70 expression in leukocytes, and HSP72 in plasma) were performed. The HSR analysis demonstrated that this response is maintained at normal levels in middle-aged people and that RT did not cause any improvement. Also, RT increases muscle mass, strength, and functional capacity. Despite no additional changes of RT on the antioxidant defenses (catalase, glutathione peroxidase, and reductase) or inflammation, lipid peroxidation was diminished by RT (group x time interaction, p = 0.009), indicating that other antioxidant defenses may be improved after RT. HSR is preserved in middle-aged subjects without metabolic complications. In addition, RT reduces lipid peroxidation and can retard muscle mass and strength loss related to the aging process.


Assuntos
Resposta ao Choque Térmico , Treinamento Resistido , Idoso , Humanos , Pessoa de Meia-Idade , Antioxidantes , Resposta ao Choque Térmico/fisiologia , Inflamação/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R210-R219, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105763

RESUMO

We investigated whether reducing face skin temperature alters arterial blood pressure control and lower body negative pressure (LBNP) tolerance after exercise heat stress. Eight subjects (1 female; age, 27 ± 9 yr) exercised at ∼63% V̇o2max until core temperature had increased ∼1.5°C before undergoing LBNP to presyncope either with fanning to return face skin temperature to baseline (Δ-5°C, Fan trial) or without (No Fan trial). LBNP tolerance was quantified as cumulative stress index (CSI; mmHg·min). Before LBNP, whole body and face skin temperatures were elevated from baseline in both trials (38.0 ± 0.5°C and 36.3 ± 0.5°C, respectively, both P < 0.001). During LBNP, face skin temperature decreased in the Fan trial (30.9 ± 1.0°C) but was unchanged in the No Fan trial (36.1 ± 0.6°C, between trials P < 0.001). Mean arterial pressure was not different between trials (P = 0.237) and was similarly reduced at presyncope in both trials (from 82 ± 7 to 67 ± 8 mmHg, P < 0.001). During LBNP, heart rate was attenuated in the Fan trial at Mid LBNP (146 ± 16 vs. 158 ± 12 beats/min, P = 0.036) and at peak heart rate (158 ± 15 vs. 170 ± 15 beats/min; P < 0.001). LBNP tolerance was not different between trials (321 ± 248 vs. 328 ± 115 mmHg·min, P = 0.851). In exercise heat-stressed individuals, lowering face skin temperature to normothermic values suppressed heart rate thereby altering cardiovascular control during a simulated hemorrhagic challenge without reducing tolerance.


Assuntos
Transtornos de Estresse por Calor , Temperatura Cutânea , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem , Pressão Arterial/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Resposta ao Choque Térmico/fisiologia , Hemorragia , Pressão Negativa da Região Corporal Inferior , Síncope , Masculino
20.
Animal ; 17 Suppl 5: 101042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38142154

RESUMO

Climate change is expected to increase the number of heat wave events, leading to prolonged exposures to severe heat stress (HS) and the corresponding adverse effects on dairy cattle productivity. Modelling dairy cattle productivity under HS conditions is complicated because it requires comprehending the complexity, non-linearity, dynamicity, and delays in animal response. In this paper, we applied the System Dynamics methodology to understand the dynamics of animal response and system delays of observed milk yield (MY) in dairy cows under HS. Data on MY and temperature-humidity index were collected from a dairy cattle farm. Model development involved: (i) articulation of the problem, identification of the feedback mechanisms, and development of the dynamic hypothesis through a causal loop diagram; (ii) formulation of the quantitative model through a stock-and-flow structure; (iii) calibration of the model parameters; and (iv) analysis of results for individual cows. The model was successively evaluated with 20 cows in the case study farm, and the relevant parameters of their HS response were quantified with calibration. According to the evaluation of the results, the proposed model structure was able to capture the effect of HS for 11 cows with high accuracy with mean absolute percent error <5%, concordance correlation coefficient >0.6, and R2 > 0.6, except for two cows (ID #13 and #20) with R2 less than 0.6, implying that the rest of the nine animals do not exhibit heat-sensitive behaviour for the defined parameter space. The presented HS model considered non-linear feedback mechanisms as an attempt to help farmers and decision makers quantify the animal response to HS, predict MY under HS conditions, and distinguish the heat-sensitive cows from heat-tolerant cows at the farm level.


Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Feminino , Bovinos , Animais , Lactação/fisiologia , Temperatura Alta , Leite/química , Resposta ao Choque Térmico/fisiologia , Temperatura , Transtornos de Estresse por Calor/veterinária , Doenças dos Bovinos/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA