Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Molecules ; 29(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339423

RESUMO

The development of epoxy resins is mainly dependent on non-renewable petroleum resources, commonly diglycidyl ether bisphenol A (DGEBA)-type epoxy monomers. Most raw materials of these thermoset resins are toxic to the health of human beings. To alleviate concerns about the environment and health, the design and synthesis of bio-based epoxy resins using biomass as raw materials have been widely studied in recent decades to replace petroleum-based epoxy resins. With the improvement in the requirements for the performance of bio-based epoxy resins, the design of bio-based epoxy resins with unique functions has attracted a lot of attention, and bio-based epoxy resins with flame-retardant, recyclable/degradable/reprocessable, antibacterial, and other functional bio-based epoxy resins have been developed to expand the applications of epoxy resins and improve their competitiveness. This review summarizes the research progress of functional bio-based epoxy resins in recent years. First, bio-based epoxy resins were classified according to their unique function, and synthesis strategies of functional bio-based epoxy resins were discussed, then the relationship between structure and performance was revealed to guide the synthesis of functional bio-based epoxy resins and stimulate the development of more types of functional bio-based epoxy resins. Finally, the challenges and opportunities in the development of functional bio-based epoxy resins are presented.


Assuntos
Resinas Epóxi , Resinas Epóxi/química , Resinas Epóxi/síntese química , Compostos de Epóxi/química , Humanos , Biomassa , Compostos Benzidrílicos/química , Retardadores de Chama/síntese química
2.
Int J Biol Macromol ; 277(Pt 4): 134644, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128740

RESUMO

This research describes the synthesis of a silane derivative containing phosphorus and nitrogen atoms, leveraging their synergistic flame retardant effect through the incorporation of a PH bond to the isocyanate moiety. The synthesized silane featured alkoxysilyl groups, facilitating permanent bonds with the cotton fabric surface via hydrolysis. Cotton fabrics were modified using silane solutions of varying concentrations (2.5 %, 5 %, and 10 %) through a dip-coating process to determine the effect of the modifier amount on fabric properties. The modified fabrics were subjected to FT-IR, TGA, SEM, and EDS analyses, as well as microcalorimetric and LOI tests, to assess changes in flammability. FT-IR, SEM/EDS, and add-on analyses confirmed effective coverage of the cotton fabric with the flame retardant. Thermogravimetric tests indicated a significant reduction in the mass loss rate during thermal degradation. LOI analyses demonstrated a decrease in flammability (increase in LOI value), while microcalorimetric tests showed a substantial decrease in the heat release rate, correlating with increased modifier concentration on the fabric surface. Post-washing analyses revealed that, although some of the modifier was washed out, the samples still retained reduced flammability.


Assuntos
Fibra de Algodão , Retardadores de Chama , Retardadores de Chama/síntese química , Silanos/química , Têxteis , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Organofosfonatos/química
3.
Int J Biol Macromol ; 273(Pt 2): 132775, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823732

RESUMO

A novel flame retardant containing Si, N, and S elements, ((2-(triethoxysilyl)ethyl)thio)ethan-1-amine hydrochloride (TETEA), was synthesized via a click reaction and characterized using nuclear magnetic resonance spectroscopy (NMR) and fourier transform infrared spectroscopy (FTIR). Subsequently, the flame-retardant cotton fabric was fabricated by sol-gel method. The results indicated that TETEA was successfully loaded on cotton fabric and formed a uniform protective layer on the surface of cotton fabric, exhibiting excellent flame retardancy. The flame-retardant cotton fabric achieved limiting oxygen index (LOI) of 28.3 % and passed vertical combustion test without after-flame or afterglow time at TETEA concentration of 500 g/L. Thermogravimetric analysis revealed that the residual carbon content of the flame-retardant cotton fabric was much higher than that of the control under air and N2 conditions. Besides, the flame-retardant cotton fabric was not ignited in cone calorimeter test with an external heat flux of 35 kW/m2. The peak heat release rate and the total heat release decreased from 133.4 kW/m2 to 25.8 kW/m2 and from 26.46 MJ/m2 to 17.96 MJ/m2, respectively. This phosphorus-free flame retardant offers a simplified synthesis process without adverse environmental impacts, opening up a new avenue for the development environmentally friendly flame retardants compared to traditional alternatives.


Assuntos
Celulose , Fibra de Algodão , Retardadores de Chama , Retardadores de Chama/síntese química , Retardadores de Chama/análise , Fibra de Algodão/análise , Celulose/química , Celulose/análogos & derivados , Nitrogênio/química , Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química
4.
Int J Biol Macromol ; 273(Pt 2): 132643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823751

RESUMO

In the field of building energy conservation, the development of biodegradable biomass aerogels with excellent mechanical performance, flame retardancy and thermal insulation properties is of particular importance. Here, a directional freeze-drying method was used for fabricating composite sodium alginate (SA) aerogels containing functionalized ammonium polyphosphate (APP) flame retardant. In particular, APP was coated with melamine (MEL) and phytic acid (PA) by a supramolecular assembly process. Through optimizing the flame retardant addition, the SA-20 AMP sample exhibited excellent flame retardant and thermal insulation properties, with the limiting oxygen index of 38.2 % and the UL-94 rating of V-0. Such aerogels with anisotropic morphology demonstrated a low thermal conductivity of 0.0288 (W/m·K) in the radial direction (perpendicular to the lamellar structure). In addition, as-obtained aerogels displayed remarkable water stability and mechanical properties, indicating significant potential for practical applications.


Assuntos
Retardadores de Chama , Polifosfatos , Géis , Liofilização , Retardadores de Chama/síntese química , Triazinas/química , Polifosfatos/química
5.
Int J Biol Macromol ; 271(Pt 1): 132636, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795567

RESUMO

The synthesis and characterization of [Ce2(PPPA)4(OH)2]·4H2O, wherein PPPA denotes 3-(hydroxy(phenyl)phosphoryl)propanoate, were conducted. Its potential as a flame-retardant additive for poly(L-lactic acid) (PLA) in conjunction with ammonium polyphosphate (APP) was investigated. Remarkably, with just incorporation of the 1 % Ce-complex and 4 % APP, the resulting PLA composite (PLA-8) meets the V-0 standard, exhibiting an impressive limiting oxygen index (LOI) of 29.4 %. Moreover, the introduction of the Ce-complex leads to a significant extension of ignition time (TTI), a significant 24.1 % decrease in total heat release (THR) compared to pure PLA, and a notable increase in residual carbon rate from 0.3 % to 3.51 %. Although PLA-8 exhibits a minor decline of 8.7 % in tensile strength and 3.4 % in elongation at break, respectively, compared to pure PLA, there is a substantial improvement of 32.2 % in Young's modulus and 29.9 % in impact resistance. These results emphasise the potential of cerium-based phosphorus-containing flame retardants, with cerium playing a key role in enhancing the flammability characteristics of PLA. This study contributes to the development of sustainable and fire-resistant materials in polymer chemistry.


Assuntos
Cério , Retardadores de Chama , Fósforo , Poliésteres , Retardadores de Chama/síntese química , Poliésteres/química , Poliésteres/síntese química , Cério/química , Fósforo/química , Resistência à Tração , Polifosfatos/química
6.
Int J Biol Macromol ; 267(Pt 2): 131358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580028

RESUMO

Polylactic acid (PLA) nonwovens, recognized as eco-friendly substitutes for petroleum-based synthetic fibers, face a significant challenge due to their inherent flammability. This work addresses this concern by synthesizing a hyperbranched polyphosphoramide flame retardant (TPDT) through a one-step polycondensation process without using solvent and catalyst. TPDT is subsequently applied to PLA nonwovens using a dip-pad finishing technique. Notably, with a mere 7 wt% weight gain of TPDT, the PLA nonwovens exhibit a substantial increase in the limited oxygen index (LOI) value, reaching 32.3 %. Furthermore, the damaged area in the vertical burning test is reduced by approximately 69.2 %. In the cone calorimeter test, 17 wt% weight gain of TPDT results in a 51.4 % decrease in peak heat release rate and a 56.0 % reduction in total heat release compared to the control PLA. Additionally, char residue increases from 1.5 wt% to 31.1 wt% after combustion. The strong affinity between TPDT and PLA molecules persists even after repeated abrasion, ensuring sustained flame retardancy. Importantly, the introduction of TPDT also imparts increased softness to the PLA nonwovens. This work addresses this concern by synthesizing a hyperbranched polyphosphoramide flame retardant (TPDT) through a solvent-free, catalyst-free, and one-step polycondensation process.


Assuntos
Retardadores de Chama , Poliésteres , Poliésteres/química , Retardadores de Chama/síntese química , Solventes/química , Têxteis
7.
Int J Biol Macromol ; 194: 945-953, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838858

RESUMO

Cotton fibers mainly consist of cellulose biological macromolecule, and its exceedingly flammable nature has severely restricted its application in the fields requiring flame retardancy. To endow cotton fabric with excellent flame retardancy and superior durability, a high-efficiency durable flame retardant (THPO-P) with ammonium phosphate ester and phosphine oxide groups was synthesized and chemically bonded to cotton fabric through padding-baking method. THPO-P showed high flame-retardant efficiency, and the add-on of 5.9% was sufficient to prepare cotton fabric with self-extinguished feature. With the add-on of 19.9%, treated fabric possessed excellent fire safety and durability. The total heat release and peak heat release rate values reduced by 77.1% and 91.8% in contrast to pristine fabric, respectively. Its LOI value still reached up to 33.4% even after 50 laundering cycles, which was far beyond the flame-retardant standard. THPO-P played flame-retardant role by restraining the release of flammable volatiles, liberating nonflammable gases and promoting the char formation during combustion. The flame-retardant treatment deteriorated the tensile strength, whiteness and softness of cotton fabric.


Assuntos
Celulose/química , Fibra de Algodão/análise , Ésteres/química , Retardadores de Chama/análise , Fosfatos/química , Fosfinas/química , Têxteis/análise , Técnicas de Química Sintética , Retardadores de Chama/síntese química , Estrutura Molecular , Óxidos , Análise Espectral , Termogravimetria
8.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208392

RESUMO

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.


Assuntos
Arginina/química , Retardadores de Chama/síntese química , Ácidos Fosfóricos/química , Têxteis/análise , Ureia/química , Animais , Calorimetria/métodos , Temperatura Alta , Espectroscopia Fotoeletrônica/métodos , Fenômenos Físicos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
9.
Int J Biol Macromol ; 187: 251-261, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34314792

RESUMO

A halogen-free, formaldehyde-free, efficient, durable, NP flame retardant, the ammonium salt of meglumine phosphoric ester acid (ASMPEA), was prepared. The Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR, and 31P NMR) results indicated that ASMPEA was grafted onto cotton fibers by P-O-C covalent bonds. The LOI value of 30 wt% ASMPEA-treated cotton fabric was 40.2%, and after 50 laundering cycles (LCs), the LOI value decreased to 29.4%, indicating that the cotton fibers treated with ASMPEA were endowed with excellent durable flame retardancy. Thermogravimetry (TG), cone calorimetry, and vertical flammability test results showed that ASMPEA-treated cotton decomposed into phosphoric acid or polyphosphoric acid during combustion, which promoted the thermal degradation and charring of treated cotton fabrics and hindered the spread of flames. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectrometry (EDS) verified that ASMPEA infiltrated the cotton fiber without obviously affecting its surface morphology or crystal structure; however, the mechanical properties of the treated cotton fabric decreased slightly. These results confirm that ASMPEA achieved excellent durable flame retardancy when used to coat cotton fabric.


Assuntos
Fibra de Algodão , Incêndios/prevenção & controle , Retardadores de Chama/síntese química , Química Verde , Meglumina/síntese química , Meglumina/análogos & derivados , Propriedades de Superfície , Temperatura , Resistência à Tração
10.
Carbohydr Polym ; 269: 118291, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294317

RESUMO

Bio-based aerogel (polysaccharide cryogel) have led to a growing interest because of eco-friendliness, sustainability and excellent thermal insulation properties. Herein, we report an eco-friendly strategy to construct lightweight and porous sodium alginate/carboxymethyl cellulose/chitosan polysaccharide-based composite aerogels (SCC-B) by freeze-drying and post-cross-linking technology. The ester cross-linking of polysaccharide component achieved strong web-like entangled structure when using 1,2,3,4-butanetetracarboxylic acid and sodium hypophosphite as eco-friendly co-additives, meanwhile significantly improved flame retardancy of SCC-B due to phosphorylation. The thermal kinetic behavior of SCC-B was investigated by Flynn-Wall-Ozawa and Kissinger models. Results indicated that peak heat release rate and total heat release of SCC-B decreased from 30 W/g to 20 W/g and 15 kJ/g to 10 kJ/g, respectively. Furthermore, the second-degree burn time of SCC-B reached up to 87.1 s under heat exposure of 11.3 kW/m2. These characteristics combine to suggest hopeful prospects for use of SCC-B in the fields of fire-protection clothing as a renewable flame-retardant material.


Assuntos
Alginatos/química , Carboximetilcelulose Sódica/química , Quitosana/química , Criogéis/química , Retardadores de Chama , Alginatos/síntese química , Alginatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Carboximetilcelulose Sódica/síntese química , Carboximetilcelulose Sódica/farmacologia , Quitosana/síntese química , Quitosana/farmacologia , Força Compressiva , Criogéis/síntese química , Criogéis/farmacologia , Escherichia coli/efeitos dos fármacos , Retardadores de Chama/síntese química , Retardadores de Chama/farmacologia , Cinética , Teste de Materiais , Testes de Sensibilidade Microbiana , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Condutividade Térmica
11.
PLoS One ; 16(5): e0251021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33939758

RESUMO

Two typical brominated flame retardants (BFRs), namely, tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD), were persistent organic pollutants widely detected in various environmental media. This study aimed to successfully synthesize micro-nano-structured magnetite particles (MNMPs) with surface modification by citric acid molecules. The synthesized composites served as an adsorbent for extracting TBBPA and HBCD from environmental water samples followed by gas chromatography-mass spectrometry analysis. The obtained MNMPs were characterized in terms of crystal structure, morphology, size distribution, hydrophobic and hydrophilic performance and magnetism. The results indicated that the MNMPs exhibited high surface area, good dispersibility, and strong magnetic responsiveness for separation. The parameters affecting the extraction efficiency were optimized, including sample pH, amount of sorbents, extraction time and desorption conditions. Under the optimum conditions, the recovery was 83.5 and 107.1%, limit of detection was 0.13 and 0.35µg/mL (S/N = 3), and limit of quantification was 0.37 and 0.59 µg/mL (S/N = 10) for TBBPA and HBCD respectively. The relative standard deviations obtained using the proposed method were less than 8.7%, indicating that the MNMP magnetic solid-phase extraction method had advantages of simplicity, good sensitivity and high efficiency for the extraction of the two BFRs from environmental water.


Assuntos
Hidrocarbonetos Bromados/química , Nanoestruturas/química , Bifenil Polibromatos/química , Água/química , Retardadores de Chama/síntese química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fenômenos Magnéticos , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/química
12.
Int J Biol Macromol ; 175: 140-146, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556399

RESUMO

Polyester/cotton blend fabrics are widely used in clothing and household textiles which combine the comfort of cotton and excellent mechanical strength of polyester. However, their high flammability due to the special "wick effect" resulting from the different thermal decomposition process of cotton and polyester causes greatly potential fire hazards. In this study, fully bio-based intumescent flame retardant (IFR) coating of chitosan/phytic acid (CS/PA) was layer-by-layer (LBL) assembly constructed on polyester/cotton blend fabrics. The LOI value of polyester/cotton blend fabric which was LBL assembly coated by 20 bilayers CS/PA reached 29.2%. And the dripping of coated fabric was eliminated. The results of cone calorimetry test confirmed CS/PA coating greatly improved the flame retardancy of polyester/cotton blend fabrics. Thermogravimetric analysis (TGA) results showed CS/PA coating changed the thermal decomposition process to promote the char formation of polyester/cotton blend fabrics. CS/PA coating on fabric could form the IFR system which acts through both condensed phase action by the catalysis dehydration reaction to forming stable char and gas phase action by the blowing effect. This research provides a new strategy to eco-friendly flame retardant and dripping-resistant for polyester/cotton blend fabrics by bio-based IFR system through facile LBL assembly method.


Assuntos
Quitosana/química , Retardadores de Chama/síntese química , Ácido Fítico/química , Calorimetria , Fibra de Algodão/análise , Poliésteres/química , Têxteis
13.
Int J Biol Macromol ; 178: 580-590, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631261

RESUMO

A novel and environmentally friendly lignin-based surfactant sodium lignosulfonate (SLS) modified layered double hydroxide (LDH) flame retardant (LDH-LS) was fabricated via co-precipitation method, and subsequently incorporated into polypropylene (PP) matrix to obtain the PP and LDH-LS composites (PP/LDH-LS) by melt blending method. The XRD, FT-IR and XPS results indicated that SLS had successfully modified LDH by adsorbing on the surface of the LDH nanosheet. The WCA and SEM results revealed that the hydrophobic property of LDH-LS had been evidently improved, and it displayed a more homogeneous dispersion than virgin LDH in the PP matrix. Furthermore, cone calorimetry tests (CCT) illustrated that the peak heat release rate (PHRR), total heat release (THR), and total smoke release (TSR) of PP/LDH-LS composites exhibited declines of 62.9%, 25.1%, and 43.3% compared with those of Neat PP, respectively. Besides, the PP/LDH-LS achieved a LOI value of 29.4% and a UL-94 V-0 rating, whereas the PP/LDH showed only a LOI value of 25.2% and a UL-94 V-2 rating at 20 wt% loading. These improvements of flame retardant properties can be attributed to that the well-dispersed LDH-LS and synergistic flame retardancy between LDH and SLS.


Assuntos
Retardadores de Chama/síntese química , Lignina/química , Polipropilenos/química , Tensoativos/química , Hidróxidos/química , Fumaça
14.
Artigo em Inglês | MEDLINE | ID: mdl-33406001

RESUMO

Any food contact material (FCM) must be approved by the US FDA as being compliant with Title 21 of the Code of Federal regulations Parts 170-199, and/or obtain a non-objection letter through the Food Contact Notification Process, before being placed into the United States market. In the past years, several scientific articles identified FCM or more specifically, food contact articles (FCAs), which were contaminated with brominated flame retardants (BFRs) in the European Union. Prior research has suggested the source of BFR contamination was likely poorly recycled plastics containing waste electrical and electronic equipment (WEEE). We conducted a retail survey to evaluate the presence of BFR-contaminated reusable FCA in the US market. Using a Direct Analysis in Real Time ionisation High-Resolution Mass Spectrometry (DART-HRMS) screening technique and extraction gas chromatography-mass spectrometry (GC-MS) confirmation we were able to identify BFRs present in retail FCAs. Among non-targeted retail samples, 4 of 49 reusable FCAs contained 1-4 BFRs each. The identified BFRs, found in greatest estimated concentrations, were 2,4,6-tribromophenol (TBP), 3,3',5,5'-tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), decabromodiphenylethane (DBDPE) and decabromodiphenylether (BDE-209). A second targeted FCA sampling (n = 28) confirmed these BFRs persisted in similar articles. Combined sample sets (n = 77) estimated DART false-positive/negative incidences of 5% & 4%, respectively, for BFR screening of FCAs. Because the presence of BFRs in some contaminated FCAs has been demonstrated and since these compounds are possible migrants into food, further studies are warranted. In order to estimate the potential exposure of the identified BFRs and conduct corresponding risk assessments, the next and logical step will be to study the mass transfer of BFRs from the contaminated FCM into food simulants and food.


Assuntos
Retardadores de Chama/análise , Análise de Alimentos , Contaminação de Alimentos/análise , Embalagem de Alimentos , Plásticos/análise , Retardadores de Chama/síntese química , Cromatografia Gasosa-Espectrometria de Massas , Halogenação , Espectrometria de Massas , Plásticos/síntese química , Fatores de Tempo
15.
Int J Biol Macromol ; 166: 117-126, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096172

RESUMO

Polyvinyl alcohol and phosphoric acid were used as primary raw materials to synthesize a polyvinyl alcohol/ammonium phosphate flame retardant (PVAAP) for cotton fabrics. The limiting oxygen index of the cotton fabric treated with 24% PVAAP was 42.1. After 50 standard laundry cycles, the limiting oxygen index remained relatively high (26.3), suggesting that the 24% PVAAP can be used as a durable flame retardant. The vertical flammability test of the cotton fabric treated with PVAAP exhibited no afterflame and afterglow. The cone calorimetry test indicated that the peak of the heat release rate and total heat release of the cotton fabric treated with 24% PVAAP were significantly lower than those of the control cotton. Thermogravimetric and thermogravimetric-infrared spectroscopy revealed that the initial decomposition temperature of the PVAAP-treated fabric was substantially lower than that of the control fabric, and more residual carbon was generated. The PVAAP altered the thermal decomposition pathway of the treated cotton. The X-ray diffraction patterns and scanning electron microscopy images suggested that the PVAAP treatment did not change the structure of the fibers.


Assuntos
Celulose/química , Fibra de Algodão , Retardadores de Chama/síntese química , Álcool de Polivinil/química , Formaldeído/química , Fosfatos/química , Ácidos Fosfóricos/química
16.
Int J Biol Macromol ; 166: 1429-1438, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171180

RESUMO

A novel flame retardant (FR), the ammonium salt of citrulline-penta (methylphosphonic acid) (ACPMPA) based on L-citrulline was synthesized, and its structure was characterized by 13C, 1H, and 31P nuclear magnetic resonance (NMR) spectroscopy. The ACPMPA flame retardant molecule contains five ammonium salts of phosphorus acid and one ammonium salt of carboxylic acid, which allowed the covalent attachment of ACPMPA onto cellulose via -P=O(-O-C) and -COOC bonds. The results showed that the treated cotton fabrics had very high flame retardance and excellent durability. The limiting oxygen index (LOI) of cotton fabric treated with 35%-ACPMPA reached 49.2% and only decreased to 34.2% after 50 laundry cycles. Vertical flame tests also demonstrated that the treated cotton fabric acquired good flame retardance. The thermogravimetry (TG) and TG-IR results showed that the treated cotton left more residues and released almost no flammable volatiles at high temperatures. The cone calorimetry results showed that the treated cotton released less heat than pure cotton. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results demonstrated that the structure of the treated cotton fabric was almost unchanged, and no free formaldehyde was detected, indicating that the treated cotton was safe. The treated cotton fabric also retained good tensile strength and whiteness.


Assuntos
Citrulina/química , Fibra de Algodão , Retardadores de Chama/síntese química , Compostos de Amônio/química , Celulose/química , Técnicas de Química Sintética/métodos , Retardadores de Chama/normas , Ácidos Fosfóricos/química
17.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348597

RESUMO

Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings.


Assuntos
Cobre/química , Resinas Epóxi/química , Retardadores de Chama/síntese química , Piperazinas/síntese química , Polímeros/química , Compostos Benzidrílicos/química , Calorimetria , Análise Diferencial Térmica , Fenóis/química , Piperazinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas/química
18.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158075

RESUMO

Due to their chemical structure, conventional flame retardants are often toxic, barely biodegradable and consequently neither healthy nor environmentally friendly. Their use is therefore increasingly limited by regulations. For this reason, research on innovative flame retardants based on sustainable materials is the main focus of this work. Wheat starch, wheat protein, xylan and tannin were modified with phosphate salts in molten urea. The functionalization leads to the incorporation of phosphates (up to 48 wt.%) and nitrogen (up to 22 wt.%). The derivatives were applied on wood fibers and tested as flame retardants. The results indicate that these modified biopolymers can provide the same flame-retardant performances as commercial compounds currently used in the wood fiber industry. Besides, the flame retardancy smoldering effects may also be reduced compared to unmodified wood fibers depending on the used biopolymer. These results show that different biopolymers modified in phosphate/urea systems are a serious alternative to conventional flame retardants.


Assuntos
Retardadores de Chama/síntese química , Organofosfatos/química , Proteínas de Plantas/química , Amido/química , Taninos/química , Triticum/química , Ureia/química , Madeira/química , Xilanos/química
19.
Int J Biol Macromol ; 163: 1659-1668, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979441

RESUMO

The NP flame retardant ammonium salt of hydroxyethyl hexahydrotristriazine-triphosphoric acid (AHTTPA) was prepared by a one-pot synthesis method under formaldehyde-free and solvent-free conditions. The AHTTPA was finished on the biomolecule of cotton by using the dip-roll-bake method. Nuclear magnetic resonance (NMR 1H, 13C, and 31P) demonstrated that AHTTPA was successfully synthesized. The flame retardancy of AHTTPA-treated cotton was studied by limiting oxygen index (LOI), vertical flaming test (VFT), scanning electron microscopy (SEM), and cone calorimetry (CC). The results from these tests indicate that AHTTPA-treated cotton exhibited favorable flame retardancy and durability (the LOI value of 40%-treated cotton after 50 laundering cycles (LCs) was 29.8%), the flame was immediately extinguished after removal from the treated cotton, no smoldering or continued burning, the burned part formed a complete carbon frame and generally maintained its original morphology, the peak heat release rate (PHRR) and total heat release (THR) of AHTTPA-treated cotton fabric were significantly lower than pure cotton. Thermogravimetric analysis (TGA) results showed that AHTTPA improved the thermal stability of cotton. The breaking strength and softness of AHTTPA-treated cotton was also retained.


Assuntos
Retardadores de Chama/síntese química , Formaldeído/química , Gossypium/química , Calorimetria/métodos , Carbono/química , Fibra de Algodão , Temperatura Alta , Microscopia Eletrônica de Varredura/métodos , Oxigênio/química , Polifosfatos/química , Têxteis , Termogravimetria/métodos
20.
Chem Biodivers ; 17(11): e2000481, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32924325

RESUMO

As an important branch of halogenated bisphenol compounds, the halogenated bisphenol monosubstituted-ether compounds have received a lot of attention in environmental health science because of their toxicity and variability. In this study, a synthetic method for bisphenol monosubstituted-ether byproduct libraries was developed. By using the versatile and efficient method, tetrachlorobisphenol A, tetrabromobisphenol A, and tetrabromobisphenol S monosubstituted alkyl-ether compounds were accessed in 39-82 % yield. Subsequently, the cytotoxicity of 27 compounds were screened using three different cell lines (HepG2, mouse primary astrocytes and Chang liver cells). Compound 2,6-dibromo-4-[3,5-dibromo-4-(2-hydroxyethoxy)benzene-1-sulfonyl]phenol was more toxic than other compounds in various cells, and the sensitivity of this compound to the normal hepatocytes and cancer cells was inconsistent. The compounds 2,6-dichloro-4-(2-{3,5-dichloro-4-[(prop-2-en-1-yl)oxy]phenyl}propan-2-yl)phenol and 2,6-dibromo-4-(2-{3,5-dibromo-4-[(prop-2-en-1-yl)oxy]phenyl}propan-2-yl)phenol were the most toxic to HepG2 cells, and most of the other compounds inhibited cell proliferation. Moreover, typical compounds were also reproductive and developmental toxic to zebrafish embryos at different concentrations. The synthetic byproduct libraries could be used as pure standard compounds and applied in research on environmental behavior and the transformation of halogenated flame retardants.


Assuntos
Compostos Benzidrílicos/química , Éteres/química , Retardadores de Chama/síntese química , Éteres Difenil Halogenados/química , Fenóis/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Retardadores de Chama/farmacologia , Éteres Difenil Halogenados/síntese química , Éteres Difenil Halogenados/farmacologia , Halogenação , Humanos , Camundongos , Bifenil Polibromatos/síntese química , Bifenil Polibromatos/química , Bifenil Polibromatos/farmacologia , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA