RESUMO
In photosynthetic reaction centers, quenching of the primary donor triplet state by energy transfer to the carotenoid molecule provides efficient suppression of generation of singlet-excited oxygen, potent chemical oxidant. This process in the Cereibacter sphaeroides reaction centers is thermoactivated, and discontinues at temperatures below 40 K. In these reaction centers, substitution of amino acid residue isoleucine at the 177 position of the L-subunit with histidine results in the sharp decrease of activation energy, so that the carotenoid triplets are populated even at 10 K. Activation energy of the T-T energy transfer was estimated as 7.5 cm-1, which is more than 10-fold lower than activation energy in the wild type reaction centers. At certain temperatures, the energy transfer in the mutant is decelerated, which is related to the increase of effective distance of the triplet-triplet transfer. To the best of our knowledge, the described mutation presents the first reaction center modification leading to the significant decrease in activation energy of the T-T energy transfer to carotenoid molecule. The I(L177)H mutant reaction centers present a considerable interest for further studies of the triplet state quenching mechanisms, and of other photophysical and photochemical processes in the reaction centers of bacterial photosynthesis.
Assuntos
Transferência de Energia , Mutação , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/química , Temperatura , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Carotenoides/metabolismo , Carotenoides/químicaRESUMO
Hydrogen bonding plays a crucial role in stabilizing proteins throughout their folding process. In photosynthetic light-harvesting chromoproteins, enriched with pigment chromophores, hydrogen bonds also fine-tune optical absorption to align with the solar irradiation spectrum. Despite its significance for photosynthesis, the precise mechanism of spectral tuning through hydrogen bonding remains inadequately understood. This study investigates wild-type and genetically engineered LH2 and LH1 light-harvesting complexes from Rhodobacter sphaeroides using a unique set of advanced spectroscopic techniques combined with simple exciton modeling. Our findings reveal an intricate interplay between exciton and site energy shift mechanisms, challenging the prevailing belief that spectral changes observed in these complexes upon the modification of tertiary structure hydrogen bonds almost directly follow shifting site energies. These deeper insights into natural adaptation processes hold great promise for advancing sustainable solar energy conversion technologies.
Assuntos
Ligação de Hidrogênio , Complexos de Proteínas Captadores de Luz , Fotossíntese , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismoRESUMO
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl ß-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.
Assuntos
Engenharia Genética , Rhodobacter sphaeroides , Sphingomonadaceae , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Engenharia Genética/métodos , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Sistemas CRISPR-CasRESUMO
Femtosecond transient absorption spectroscopy was used to study the dynamics of the excited primary electron donor in the reaction centers of the purple bacterium Rhodobacter sphaeroides. Using global analysis and the interval method, we found a correlation between the vibrational coherence damping of the excited primary electron donor and the lifetime of the charge-separated state P+BA-, indicating the reversibility of electron transfer to the primary electron acceptor, the BA molecule. In the reaction centers, the signs of superposition of two electronic states of P were found for a delay time of less than 200 fs. It is suggested that the admixture value of the charge transfer state PA+PB- with the excited primary electron donor P* is about 24%. The results obtained are discussed in terms of the two-step electron transfer mechanism.
Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Transporte de Elétrons , Elétrons , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismoRESUMO
Rhodobacter sphaeroides is a facultative phototrophic bacterium that performs aerobic respiration when oxygen is available. Only when oxygen is present at low concentrations or absent are pigment-protein complexes formed, and anoxygenic photosynthesis generates ATP. The regulation of photosynthesis genes in response to oxygen and light has been investigated for decades, with a focus on the regulation of transcription. However, many studies have also revealed the importance of regulated mRNA processing. This study analyzes the phenotypes of wild type and mutant strains and compares global RNA-seq datasets to elucidate the impact of ribonucleases and the small non-coding RNA StsR on photosynthesis gene expression in Rhodobacter. Most importantly, the results demonstrate that, in particular, the role of ribonuclease E in photosynthesis gene expression is strongly dependent on growth phase.
Assuntos
Endorribonucleases , Regulação Bacteriana da Expressão Gênica , Fotossíntese , Rhodobacter sphaeroides , Ribonuclease III , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/enzimologia , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/crescimento & desenvolvimento , Fotossíntese/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Ribonuclease III/metabolismo , Ribonuclease III/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to increase in size and abundance when growth was arrested by chloramphenicol treatment. The accumulation of PHB and PP was quantified from three-dimensional (3D) segmentations in cryo-tomograms and the analysis of these 3D models. The quantification of PHB using both segmentation analysis and liquid chromatography and mass spectrometry (LCMS) each demonstrated an over 10- to 20-fold accumulation of PHB. The cytoplasmic location of PHB in cells was assessed with fluorescence light microscopy using a PhaP-mNeonGreen fusion-protein construct. The subcellular location and enumeration of these organelles were correlated by comparing the cryo-ET and fluorescence microscopy data. A potential link between PHB and PP localization and possible explanations for co-localization are discussed. Finally, the study of PHB and PP granules, and their accumulation, is discussed in the context of advancing fundamental knowledge about bacterial stress response, the study of renewable sources of bioplastics, and highly energetic compounds.
Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Polifosfatos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Polifosfatos/metabolismo , Polifosfatos/química , Organelas/metabolismo , Organelas/ultraestrutura , Hidroxibutiratos/metabolismo , Hidroxibutiratos/química , Microscopia de Fluorescência/métodos , Poliésteres/metabolismo , Poliésteres/química , Poli-HidroxibutiratosRESUMO
Small, diffusible redox proteins play an essential role in electron transfer (ET) in respiration and photosynthesis, sustaining life on Earth by shuttling electrons between membrane-bound complexes via finely tuned and reversible interactions. Ensemble kinetic studies show transient ET complexes form in two distinct stages: an "encounter" complex largely mediated by electrostatic interactions, which subsequently, through subtle reorganization of the binding interface, forms a "productive" ET complex stabilized by additional hydrophobic interactions around the redox-active cofactors. Here, using single-molecule force spectroscopy (SMFS) we dissected the transient ET complexes formed between the photosynthetic reaction center-light harvesting complex 1 (RC-LH1) of Rhodobacter sphaeroides and its native electron donor cytochrome c2 (cyt c2). Importantly, SMFS resolves the distribution of interaction forces into low (â¼150 pN) and high (â¼330 pN) components, with the former more susceptible to salt concentration and to alteration of key charged residues on the RC. Thus, the low force component is suggested to reflect the contribution of electrostatic interactions in forming the initial encounter complex, whereas the high force component reflects the additional stabilization provided by hydrophobic interactions to the productive ET complex. Employing molecular dynamics simulations, we resolve five intermediate states that comprise the encounter, productive ET and leaving complexes, predicting a weak interaction between cyt c2 and the LH1 ring near the RC-L subunit that could lie along the exit path for oxidized cyt c2. The multimodal nature of the interactions of ET complexes captured here may have wider implications for ET in all domains of life.
Assuntos
Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Transporte de Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Citocromos c2/química , Citocromos c2/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismoRESUMO
The rates, yields, mechanisms and directionality of electron transfer (ET) are explored in twelve pairs of Rhodobacter (R.) sphaeroides and R. capsulatus mutant RCs designed to defeat ET from the excited primary donor (P*) to the A-side cofactors and re-direct ET to the normally inactive mirror-image B-side cofactors. In general, the R. sphaeroides variants have larger P+HB- yields (up to â¼90%) than their R. capsulatus analogs (up to â¼60%), where HB is the B-side bacteriopheophytin. Substitution of Tyr for Phe at L-polypeptide position L181 near BB primarily increases the contribution of fast P* â P+BB- â P+HB- two-step ET, where BB is the "bridging" B-side bacteriochlorophyll. The second step (â¼6-8 ps) is slower than the first (â¼3-4 ps), unlike A-side two-step ET (P* â P+BA- â P+HA-) where the second step (â¼1 ps) is faster than the first (â¼3-4 ps) in the native RC. Substitutions near HB, at L185 (Leu, Trp or Arg) and at M-polypeptide site M133/131 (Thr, Val or Glu), strongly affect the contribution of slower (20-50 ps) P* â P+HB- one-step superexchange ET. Both ET mechanisms are effective in directing electrons "the wrong way" to HB and both compete with internal conversion of P* to the ground state (â¼200 ps) and ET to the A-side cofactors. Collectively, the work demonstrates cooperative amino-acid control of rates, yields and mechanisms of ET in bacterial RCs and how A- vs. B-side charge separation can be tuned in both species.
Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter capsulatus , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Transporte de Elétrons , Rhodobacter capsulatus/metabolismo , Rhodobacter capsulatus/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/química , Mutação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Bacterioclorofilas/metabolismo , Bacterioclorofilas/química , FotossínteseRESUMO
The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.
Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Multimerização Proteica , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicolipídeos/metabolismo , Glicolipídeos/química , Modelos Moleculares , Cristalografia por Raios XRESUMO
Shewanella putrefaciens is a vital bacterial pathogen implicated in serious diseases in Chinese mitten crab Eriocheir sinensis. Yet the use of probiotics to improve the defense ability of E. sinensis against S. putrefaciens infection remains poorly understood. In the present study, the protective effect of dietary R. sphaeroides against S. putrefaciens infection in E. sinensis was evaluated through antioxidant capability, immune response, and survival under bacterial challenge assays, and its protective mechanism was further explored using a combination of intestinal flora and metabolome assays. Our results indicated that dietary R. sphaeroides could significantly improve immunity and antioxidant ability of Chinese mitten crabs, thereby strengthening their disease resistance with the relative percentage survival of 81.09% against S. putrefaciens. In addition, dietary R. sphaeroides could significantly alter the intestinal microbial composition and intestinal metabolism of crabs, causing not only the reduction of potential threatening pathogen load but also the increase of differential metabolites in tryptophan metabolism, pyrimidine metabolism, and glycerophospholipid metabolism. Furthermore, the regulation of differential metabolites such as N-Acetylserotonin positively correlated with beneficial Rhodobacter could be a potential protection strategy for Shewanella infection. To the best of our knowledge, this is the first study to illustrate the protective effect and mechanism of R. sphaeroides supplementation to protect E. sinensis against S. putrefaciens infection.
Assuntos
Braquiúros , Microbioma Gastrointestinal , Rhodobacter sphaeroides , Shewanella putrefaciens , Animais , Braquiúros/microbiologia , Braquiúros/imunologia , Microbioma Gastrointestinal/fisiologia , Rhodobacter sphaeroides/metabolismo , Probióticos/farmacologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos NutricionaisRESUMO
Quinone analogue molecules, functioning as herbicides, bind to the secondary quinone site, QB, in type-II photosynthetic reaction centers, including those from purple bacteria (PbRC). Here, we investigated the impact of herbicide binding on electron transfer branches, using herbicide-bound PbRC crystal structures and employing the linear Poisson-Boltzmann equation. In contrast to urea and phenolic herbicides [Fufezan, C. Biochemistry 2005, 44, 12780-12789], binding of atrazine and triazine did not cause significant changes in the redox-potential (Em) values of the primary quinone (QA) in these crystal structures. However, a slight Em difference at the bacteriopheophytin in the electron transfer inactive branch (HM) was observed between the S(-)- and R(+)-triazine-bound PbRC structures. This discrepancy is linked to variations in the protonation pattern of the tightly coupled Glu-L212 and Glu-H177 pairs, crucial components of the proton uptake pathway in native PbRC. These findings suggest the existence of a QB-mediated link between the electron transfer inactive HM and the proton uptake pathway in PbRCs.
Assuntos
Atrazina , Herbicidas , Complexo de Proteínas do Centro de Reação Fotossintética , Triazinas , Herbicidas/química , Herbicidas/metabolismo , Atrazina/química , Atrazina/metabolismo , Transporte de Elétrons , Triazinas/química , Triazinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Oxirredução , Modelos Moleculares , Rhodobacter sphaeroides/metabolismo , Cristalografia por Raios XRESUMO
This study investigated the mediating effect of Triethanolamine on Fe@C-Rhodobacter sphaeroides hybrid photosynthetic system to achieve efficient biohydrogen production. The biocompatible Fe@C generates excited electrons upon exposure to light, releasing ferrum for nitrogenase synthesis, and regulating the pH of the fermentation environment. Triethanolamine was introduced to optimize the electron transfer chain, thereby improving system stability, prolonging electron lifespan, and facilitating ferrum corrosion. This, in turn, stimulated the lactic acid synthetic metabolic pathway of Rhodobacter sphaeroides, resulting in increased reducing power in the biohybrid system. The ternary coupling system was analyzed through the regulation of concentration, initial pH, and light intensity. The system achieved the highest total H2 production of 5410.9 mL/L, 1.29 times higher than the control (2360.5 mL/L). This research provides a valuable strategy for constructing ferrum-carbon-based composite-cellular biohybrid systems for photo-fermentation H2 production.
Assuntos
Etanolaminas , Hidrogênio , Luz , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Hidrogênio/metabolismo , Etanolaminas/metabolismo , Etanolaminas/química , Ferro/química , Catálise , Concentração de Íons de Hidrogênio , Carbono , Fermentação , FotossínteseRESUMO
It is essential to identify suitable supplements that enhance cell growth, viability, and functional development in cell culture systems. The use of fetal bovine serum (FBS) has been common, but it has limitations, such as batch-to-batch variability, ethical concerns, and risks of environmental contamination. In this study, we explore the potential of Rhodobacter sphaeroides extract, derived from a probiotic photosynthetic bacterium, as an alternative supplement. Our results demonstrate that the extract from R. sphaeroides significantly improves various aspects of cell behavior compared to serum-free conditions. It enhances cell growth and viability to a greater extent than FBS supplementation. Additionally, the extract alleviates oxidative stress by reducing intracellular levels of reactive oxygen species and stimulates lysosomal activity, contributing to cellular processes. The presence of abundant amino acids, glycine and arginine, in the extract may play a role in promoting cell growth. These findings emphasize the potential of R. sphaeroides extract as a valuable supplement for cell culture, offering advantages over the use of FBS.IMPORTANCEThe choice of supplements for cell culture is crucial in biomedical research, but the widely used fetal bovine serum (FBS) has limitations in terms of variability, ethics, and environmental risks. This study explores the potential of an extract from Rhodobacter sphaeroides, a probiotic bacterium, as an alternative supplement. The findings reveal that the R. sphaeroides extract surpasses FBS in enhancing cell growth, viability, and functionality. It also mitigates oxidative stress and stimulates lysosomal activity, critical for cellular health. The extract's abundance of glycine and arginine, amino acids with known growth-promoting effects, further highlights its potential. By providing a viable substitute for FBS, the R. sphaeroides extract addresses the need for consistent, ethical, and environmentally friendly cell culture supplements. This research paves the way for sustainable and reliable cell culture systems, revolutionizing biomedical research and applications in drug development and regenerative medicine.
Assuntos
Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Soroalbumina Bovina/metabolismo , Técnicas de Cultura de Células/métodos , Suplementos Nutricionais , Aminoácidos/metabolismo , Arginina/metabolismo , Glicina/metabolismoRESUMO
Overexpression of recombinant Bacillus cereus TSPO (BcTSPO) in E. coli bacteria leads to its recovery with a bound hemin both in bacterial membrane (MB) and inclusion bodies (IB). Unlike mouse TSPO, BcTSPO purified in SDS detergent from IB is well structured and can bind various ligands such as high-affinity PK 11195, protoporphyrin IX (PPIX) and δ-aminolevulinic acid (ALA). For each of the three ligands, 1H-15N HSQC titration NMR experiments suggest that different amino acids of BcTSPO binding cavity are involved in the interaction. PPIX, an intermediate of heme biosynthesis, binds to the cavity of BcTSPO and its fluorescence can be significantly reduced in the presence of light and oxygen. The light irradiation leads to two products that have been isolated and characterized as photoporphyrins. They result from the addition of singlet oxygen to the two vinyl groups hence leading to the formation of hydroxyaldehydes. The involvement of water molecules, recently observed along with the binding of heme in Rhodobacter sphaeroides (RsTSPO) is highly probable. Altogether, these results raise the question of the role of TSPO in heme biosynthesis regulation as a possible scavenger of reactive intermediates.
Assuntos
Bacillus cereus , Proteínas Recombinantes , Animais , Camundongos , Ácido Aminolevulínico/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Heme/metabolismo , Hemina/metabolismo , Protoporfirinas/metabolismo , Protoporfirinas/química , Receptores de GABA/metabolismo , Receptores de GABA/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genéticaRESUMO
Light-harvesting 2 (LH2) and reaction-centre light-harvesting 1 (RC-LH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were reconstituted into proteoliposomes either separately, or together at three different LH2:RC-LH1 ratios, for excitation energy transfer studies. Atomic force microscopy (AFM) was used to investigate the distribution and association of the complexes within the proteoliposome membranes. Absorption and fluorescence emission spectra were similar for LH2 complexes in detergent and liposomes, indicating that reconstitution retains the structural and optical properties of the LH2 complexes. Analysis of fluorescence emission shows that when LH2 forms an extensive series of contacts with other such complexes, fluorescence is quenched by 52.6 ± 1.4%. In mixed proteoliposomes, specific excitation of carotenoids in LH2 donor complexes resulted in emission of fluorescence from acceptor RC-LH1 complexes engineered to assemble with no carotenoids. Extents of energy transfer were measured by fluorescence lifetime microscopy; the 0.72 ± 0.08 ns lifetime in LH2-only membranes decreases to 0.43 ± 0.04 ns with a ratio of 2:1 LH2 to RC-LH1, and to 0.35 ± 0.05 ns for a 1:1 ratio, corresponding to energy transfer efficiencies of 40 ± 14% and 51 ± 18%, respectively. No further improvement is seen with a 0.5:1 LH2 to RC-LH1 ratio. Thus, LH2 and RC-LH1 complexes perform their light harvesting and energy transfer roles when reconstituted into proteoliposomes, providing a way to integrate native, non-native, engineered and de novo designed light-harvesting complexes into functional photosynthetic systems.
Assuntos
Proteolipídeos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Citoplasma/metabolismo , Fotossíntese , Transferência de Energia , Proteínas de Bactérias/metabolismoRESUMO
In photosynthetic bacteria, the absorbed light drives the canonical cyclic electron transfer between the reaction center and the cytochrome bc1 complexes via the pools of mobile electron carriers. If kinetic or structural barriers hinder the participation of the bc1 complex in the cyclic flow of electrons, then the pools of mobile redox agents must supply the electrons for the multiple turnovers of the reaction center. These conditions were achieved by continuous high light excitation of intact cells of bacterial strains Rba. sphaeroides and Rvx. gelatinosus with depleted donor side cytochromes c2 (cycA) and tetraheme cytochrome subunit (pufC), respectively. The gradual oxidation by ferricyanide further reduced the availability of electron donors to pufC. Electron transfer through the reaction center was tracked by absorption change and by induction and relaxation of the fluorescence of the bacteriochlorophyll dimer. The rate constants of the electron transfer (~ 3 × 103 sâ1) from the mobile donors of Rvx. gelatinosus bound either to the RC (pufC) or to the tetraheme subunit (wild type) were similar. The electrons transferred through the reaction center dimer were supplied entirely by the donor pool; their number amounted to about 5 in wild type Rvx. gelatinosus and decreased to 1 in pufC oxidized by ferricyanide. Fluorescence yield was measured as a function of the oxidized fraction of the dimer and its complex shape reveals the contribution of two competing processes: the migration of the excitation energy among the photosynthetic units and the availability of electron donors to the oxidized dimer. The experimental results were simulated and rationalized by a simple kinetic model of the two-electron cycling of the acceptor side combined with aperiodic one-electron redox function of the donor side.
Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Humanos , Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Citocromos/metabolismo , Oxirredução , Transporte de Elétrons , Citocromos c/metabolismo , Proteobactérias/metabolismo , Ferricianetos , Doadores de Tecidos , Cinética , Rhodobacter sphaeroides/metabolismoRESUMO
5-Aminolevulinic acid (ALA) is a precursor of heme and a natural amino acid synthesized in the cells of most living organisms. Currently, ALA is used as an ingredient in pharmaceuticals, supplements, cosmetics, feed, fertilizers, and other products. ALA is mainly produced by industrial fermentation by the photosynthetic bacterium Rhodobacter sphaeroides. In this study, we tried to improve the ALA productivity by R. sphaeroides using a genetic strategy to highly express ALA synthase (ALAS) genes. We inserted a constitutive promoter (PrrnB or Prsp_7571) upstream of genes encoding ALAS (hemA and/or hemT) to construct strains that constitutively express ALAS. The highest transcript levels of hemA were observed in the strain where PrrnB was inserted into the hemA promoter region and were 3.5-fold higher than those in the wild-type. The highest transcript levels of hemT were observed in the strain where PrrnB was inserted into the hemT promoter region and were 46-fold higher than those in the wild-type. The maximum ALAS activity was observed in crude cell extracts of the strain where PrrnB was inserted into the hemT promoter region under optimized growth conditions that was 2.7-fold higher than that in the wild type. This strain showed 12-fold accumulation of ALA compared to the wild-type. Thus, we improved ALA productivity without using exogenous DNA sequences. In the future, further improvement in ALA productivity may be expected by applying this approach to current industrial ALA-producing bacteria.
Assuntos
Ácido Aminolevulínico , Rhodobacter sphaeroides , Ácido Aminolevulínico/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Sequência de Bases , Regiões Promotoras GenéticasRESUMO
AlphaFold2 (ref. 1) has revolutionized structural biology by accurately predicting single structures of proteins. However, a protein's biological function often depends on multiple conformational substates2, and disease-causing point mutations often cause population changes within these substates3,4. We demonstrate that clustering a multiple-sequence alignment by sequence similarity enables AlphaFold2 to sample alternative states of known metamorphic proteins with high confidence. Using this method, named AF-Cluster, we investigated the evolutionary distribution of predicted structures for the metamorphic protein KaiB5 and found that predictions of both conformations were distributed in clusters across the KaiB family. We used nuclear magnetic resonance spectroscopy to confirm an AF-Cluster prediction: a cyanobacteria KaiB variant is stabilized in the opposite state compared with the more widely studied variant. To test AF-Cluster's sensitivity to point mutations, we designed and experimentally verified a set of three mutations predicted to flip KaiB from Rhodobacter sphaeroides from the ground to the fold-switched state. Finally, screening for alternative states in protein families without known fold switching identified a putative alternative state for the oxidoreductase Mpt53 in Mycobacterium tuberculosis. Further development of such bioinformatic methods in tandem with experiments will probably have a considerable impact on predicting protein energy landscapes, essential for illuminating biological function.
Assuntos
Análise por Conglomerados , Aprendizado de Máquina , Conformação Proteica , Dobramento de Proteína , Proteínas , Alinhamento de Sequência , Mutação , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Rhodobacter sphaeroides , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismoRESUMO
Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.
Assuntos
Nanopartículas , Neoplasias , Rhodobacter sphaeroides , Humanos , Adjuvantes Imunológicos , Lipossomos , Imiquimode , Neoplasias/patologia , Imunoterapia , Linhagem Celular Tumoral , FototerapiaRESUMO
Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.