Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 175(1): 14-17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30217358

RESUMO

This year's Lasker-Koshland Special Achievement Award is given to Joan Argetsinger Steitz for her RNA research discoveries and her exemplary international leadership.


Assuntos
RNA/metabolismo , RNA/fisiologia , Distinções e Prêmios , Pesquisa Biomédica , História do Século XXI , Humanos , RNA/história , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/fisiologia
2.
Cell ; 175(1): 30-33, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30217359

RESUMO

Joan Steitz radiates a passion for science. Whether she's teaching an undergraduate course, mentoring a grad student or post-doc, or speaking at a scientific conference, her enthusiasm and curiosity for all things RNA is infectious. Joan, the recipient of the 2018 Lasker-Koshland Special Achievement Award in Medical Science, spoke with Cell editor (and her former post-doc) Lara Szewczak about how she came to be an advocate for women in science and shared advice for young scientists entering the research community today. Annotated excerpts from this conversation are presented below, and the full conversation is available with the article online.


Assuntos
RNA/metabolismo , RNA/fisiologia , Distinções e Prêmios , Pesquisa Biomédica , Feminino , História do Século XXI , Humanos , RNA/história , Pesquisa , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Mulheres
3.
Brain Res ; 1693(Pt A): 92-97, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462610

RESUMO

Spinal muscular atrophy is caused by deletions or mutations in the SMN1 gene that result in reduced expression of the SMN protein. The SMN protein is an essential molecular chaperone that is required for the biogenesis of multiple ribonucleoprotein (RNP) complexes including spliceosomal small nuclear RNPs (snRNPs). Reductions in SMN expression result in a reduced abundance of snRNPs and to downstream RNA splicing alterations. SMN is also present in axons and dendrites and appears to have important roles in the formation of neuronal mRNA-protein complexes during development or neuronal repair. Thus, SMA is an exemplar, selective motor neuron disorder that is caused by defects in fundamental RNA processing events. A detailed molecular understanding of how motor neurons fail, and why other neurons do not, in SMA will yield important principals about motor neuron maintenance and neuronal specificity in neurodegenerative diseases.


Assuntos
Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Ribonucleoproteínas/metabolismo , Animais , Axônios/metabolismo , Humanos , Doença dos Neurônios Motores/genética , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Degeneração Neural/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Splicing de RNA , Proteínas de Ligação a RNA , Ribonucleoproteínas/fisiologia , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
5.
RNA ; 21(4): 564, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25780139
6.
J Microbiol ; 53(2): 111-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25626365

RESUMO

Candida albicans is an opportunistic fungal pathogen whose responses to environmental changes are associated with the virulence attributes. Edc3 is known to be an enhancer of the mRNA decapping reactions and a scaffold protein of cytoplasmic processing bodies (P-bodies). Recent studies of C. albicans Edc3 suggested its critical roles in filamentous growth and stress-induced apoptotic cell death. The edc3/edc3 deletion mutant strain showed increased cell survival and less ROS accumulation upon treatment with hydrogen peroxide. To investigate the diverse involvement of Edc3 in the cellular processes, deletion mutations of LSm, FDF, or YjeF domain of Edc3 were constructed. The edc3-LSmΔ or edc3-YjeFΔ mutation showed the filamentation defect, resistance to oxidative stress, and decreased ROS accumulation. In contrast, the edc3-FDFΔ mutation exhibited a wild-type level of filamentous growth and a mild defect in ROS accumulation. These results suggest that Lsm and YjeF domains of Edc3 are critical in hyphal growth and oxidative stress response.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Estresse Oxidativo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Candida albicans/genética , Candida albicans/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Hifas/crescimento & desenvolvimento , Microscopia de Fluorescência , Fenótipo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Deleção de Sequência
7.
J Cell Biol ; 207(2): 189-99, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25332162

RESUMO

Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidroliases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , RNA de Transferência/genética , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo , Adenosina Trifosfatases/análise , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cromatina/ultraestrutura , Proteínas de Ligação a DNA/análise , Hidroliases/análise , Hidroliases/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/análise , Ribonucleoproteínas Nucleares Pequenas/análise , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/ultraestrutura
8.
Proc Natl Acad Sci U S A ; 111(42): 15166-71, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288739

RESUMO

Growing evidence suggests that core spliceosomal components differentially affect RNA processing of specific genes; however, whether changes in the levels or activities of these factors control specific signaling pathways is largely unknown. Here we show that some SM-like (LSM) genes, which encode core components of the spliceosomal U6 small nuclear ribonucleoprotein complex, regulate circadian rhythms in plants and mammals. We found that the circadian clock regulates the expression of LSM5 in Arabidopsis plants and several LSM genes in mouse suprachiasmatic nucleus. Further, mutations in LSM5 or LSM4 in Arabidopsis, or down-regulation of LSM3, LSM5, or LSM7 expression in human cells, lengthens the circadian period. Although we identified changes in the expression and alternative splicing of some core clock genes in Arabidopsis lsm5 mutants, the precise molecular mechanism causing period lengthening remains to be identified. Genome-wide expression analysis of either a weak lsm5 or a strong lsm4 mutant allele in Arabidopsis revealed larger effects on alternative splicing than on constitutive splicing. Remarkably, large splicing defects were not observed in most of the introns evaluated using RNA-seq in the strong lsm4 mutant allele used in this study. These findings support the idea that some LSM genes play both regulatory and constitutive roles in RNA processing, contributing to the fine-tuning of specific signaling pathways.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Alelos , Processamento Alternativo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica de Plantas , Genômica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de RNA , Transdução de Sinais , Spliceossomos/metabolismo , Núcleo Supraquiasmático/metabolismo
9.
FEBS J ; 281(21): 4841-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25158786

RESUMO

The Edc3 protein is an enhancer of mRNA decapping, and acts as a scaffold protein for the mRNA granules that are known as processing bodies in yeast. In the pathogenic yeast Candida albicans, various stresses, such as glucose depletion, oxidative stress, and filamentation defects, induce the accumulation of processing bodies. Here, we report that the edc3/edc3 deletion strain showed increased resistance to various stresses, including hydrogen peroxide, acetic acid, and high temperature. Oxidative stress is known to induce the intracellular accumulation of reactive oxygen species (ROS) and apoptotic cell death in C. albicans. We found that the ROS level was lower in edc3/edc3 cells than in wild-type cells following oxidative stress. We also observed that expression of the metacaspase gene CaMCA1 was decreased in edc3/edc3 cells. Overexpression of CaMCA1 suppressed the decreased accumulation of ROS and the increased resistance to hydrogen peroxide in edc3/edc3 cells. The catalase Cat1 and the superoxide dismutase Sod1 were upregulated in edc3/edc3 cells as compared with wild-type cells. On the basis of these findings, we suggest that EDC3 plays a critical role in the expression of CaMCA1 and the oxidative stress response in C. albicans.


Assuntos
Candida albicans/metabolismo , Caspases/biossíntese , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Apoptose , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Caspases/genética , Catalase/biossíntese , Catalase/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Genes Reporter , Glucose/farmacologia , Temperatura Alta , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Estresse Oxidativo/genética , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Superóxido Dismutase-1
10.
Biosci Rep ; 32(4): 345-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22762203

RESUMO

RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.


Assuntos
Splicing de RNA , RNA Mensageiro/metabolismo , Spliceossomos/fisiologia , Animais , Sequência de Bases , RNA Helicases DEAD-box/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Spliceossomos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-21441581

RESUMO

Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNP enzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Ribonucleoproteínas/fisiologia , Spliceossomos/fisiologia , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Genéticos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Ribonucleoproteínas/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Spliceossomos/química , Spliceossomos/ultraestrutura
12.
Genes Dev ; 25(4): 373-84, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21325135

RESUMO

Alternative splicing (AS) plays a major role in the generation of proteomic diversity and in gene regulation. However, the role of the basal splicing machinery in regulating AS remains poorly understood. Here we show that the core snRNP (small nuclear ribonucleoprotein) protein SmB/B' self-regulates its expression by promoting the inclusion of a highly conserved alternative exon in its own pre-mRNA that targets the spliced transcript for nonsense-mediated mRNA decay (NMD). Depletion of SmB/B' in human cells results in reduced levels of snRNPs and a striking reduction in the inclusion levels of hundreds of additional alternative exons, with comparatively few effects on constitutive exon splicing levels. The affected alternative exons are enriched in genes encoding RNA processing and other RNA-binding factors, and a subset of these exons also regulate gene expression by activating NMD. Our results thus demonstrate a role for the core spliceosomal machinery in controlling an exon network that appears to modulate the levels of many RNA processing factors.


Assuntos
Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Precursores de RNA/metabolismo , Spliceossomos/metabolismo , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Mutação/fisiologia , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Spliceossomos/fisiologia , Transfecção , Proteínas Centrais de snRNP/genética , Proteínas Centrais de snRNP/metabolismo
13.
J Cell Biol ; 191(1): 75-86, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20921136

RESUMO

Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15-30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Cinética , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Espectrometria de Fluorescência
14.
Biochem Soc Trans ; 38(4): 1105-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659012

RESUMO

RNA helicases are involved in many cellular processes. Pre-mRNA splicing requires eight different DExD/H-box RNA helicases, which facilitate spliceosome assembly and remodelling of the intricate network of RNA rearrangements that are central to the splicing process. Brr2p, one of the spliceosomal RNA helicases, stands out through its unusual domain architecture. In the present review we highlight the advances made by recent structural and biochemical studies that have important implications for the mechanism and regulation of Brr2p activity. We also discuss the involvement of human Brr2 in retinitis pigmentosa, a degenerative eye disease, and how its functions in splicing might connect to the molecular pathology of the disease.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Proteínas do Olho/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos , Modelos Biológicos , Modelos Moleculares , RNA Helicases/química , RNA Helicases/metabolismo , RNA Helicases/fisiologia , Proteínas de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/fisiologia , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Relação Estrutura-Atividade
15.
Nat Struct Mol Biol ; 17(4): 403-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20357773

RESUMO

Spliceosomal small nuclear ribonucleoproteins (snRNPs), comprised of small nuclear RNAs (snRNAs) in complex with snRNP-specific proteins, are essential for pre-mRNA splicing. Coilin is not a snRNP protein but concentrates snRNPs and their assembly intermediates in Cajal bodies (CBs). Here we show that depletion of coilin in zebrafish embryos leads to CB dispersal, deficits in snRNP biogenesis and expression of spliced mRNA, as well as reduced cell proliferation followed by developmental arrest. Notably, injection of purified mature human snRNPs restored mRNA expression and viability. snRNAs were necessary but not sufficient for rescue, showing that only assembled snRNPs can bypass the requirement for coilin. Thus, coilin's essential function in embryos is to promote macromolecular assembly of snRNPs, likely by concentrating snRNP components in CBs to overcome rate-limiting assembly steps.


Assuntos
Proteínas Nucleares/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Peixe-Zebra/embriologia , Animais , Proliferação de Células , Técnicas de Silenciamento de Genes , Genes Letais , Humanos , Proteínas Nucleares/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo
16.
In Silico Biol ; 10(1): 89-123, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22430224

RESUMO

Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier.Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.


Assuntos
Simulação por Computador , Modelos Biológicos , Spliceossomos/fisiologia , Algoritmos , Regulação Alostérica , Análise por Conglomerados , Proteínas Fúngicas/fisiologia , Humanos , Cinética , Substâncias Macromoleculares/metabolismo , Mapas de Interação de Proteínas , Subunidades Proteicas/fisiologia , RNA Nuclear Pequeno/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Transdução de Sinais , Software
17.
RNA ; 15(9): 1661-72, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19620235

RESUMO

Metazoan replication-dependent histone mRNAs are not polyadenylated, and instead terminate in a conserved stem-loop structure generated by an endonucleolytic cleavage of the pre-mRNA involving U7 snRNP. U7 snRNP contains two like-Sm proteins, Lsm10 and Lsm11, which replace SmD1 and SmD2 in the canonical heptameric Sm protein ring that binds spliceosomal snRNAs. Here we show that mutations in either the Drosophila Lsm10 or the Lsm11 gene disrupt normal histone pre-mRNA processing, resulting in production of poly(A)+ histone mRNA as a result of transcriptional read-through to cryptic polyadenylation sites present downstream from each histone gene. This molecular phenotype is indistinguishable from that which we previously described for mutations in U7 snRNA. Lsm10 protein fails to accumulate in Lsm11 mutants, suggesting that a pool of Lsm10-Lsm11 dimers provides precursors for U7 snRNP assembly. Unexpectedly, U7 snRNA was detected in Lsm11 and Lsm1 mutants and could be precipitated with anti-trimethylguanosine antibodies, suggesting that it assembles into a snRNP particle in the absence of Lsm10 and Lsm11. However, this U7 snRNA could not be detected at the histone locus body, suggesting that Lsm10 and Lsm11 are necessary for U7 snRNP localization. In contrast to U7 snRNA null mutants, which are viable, Lsm10 and Lsm11 mutants do not survive to adulthood. Because we cannot detect differences in the histone mRNA phenotype between Lsm10 or Lsm11 and U7 mutants, we propose that the different terminal developmental phenotypes result from the participation of Lsm10 and Lsm11 in an essential function that is distinct from histone pre-mRNA processing and that is independent of U7 snRNA.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Histonas/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U7/fisiologia , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Fertilidade/genética , Genes Controladores do Desenvolvimento/fisiologia , Genes Letais/genética , Histonas/metabolismo , Masculino , Mutação/fisiologia , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Ribonucleoproteína Nuclear Pequena U7/genética , Ribonucleoproteínas Nucleares Pequenas/genética
18.
Nat Struct Mol Biol ; 16(6): 639-46, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19465913

RESUMO

Piwi proteins and their associated Piwi-interacting RNAs (piRNAs) are implicated in transposon silencing in the mouse germ line. There is currently little information on additional proteins in the murine Piwi complex and how they might regulate the entry of transcripts that accumulate as piRNAs in the Piwi ribonucleoprotein (piRNP). We isolated Mili-containing complexes from adult mouse testes and identified Tudor domain-containing protein-1 (Tdrd1) as a factor specifically associated with the Mili piRNP throughout spermatogenesis. Complex formation is promoted by the recognition of symmetrically dimethylated arginines at the N terminus of Mili by the tudor domains of Tdrd1. Similar to a Mili mutant, mice lacking Tdrd1 show derepression of L1 transposons accompanied by a loss of DNA methylation at their regulatory elements and delocalization of Miwi2 from the nucleus to the cytoplasm. Finally, we show that Mili piRNPs devoid of Tdrd1 accept the entry of abundant cellular transcripts into the piRNA pathway and accumulate piRNAs with a profile that is drastically different from that of the wild type. Our data suggest that Tdrd1 ensures the entry of correct transcripts into the normal piRNA pool.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/deficiência , Transporte Ativo do Núcleo Celular , Animais , Proteínas Argonautas , Proteínas de Ciclo Celular , Metilação de DNA , Masculino , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Proteínas/isolamento & purificação , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Espermatogênese , Testículo/química
19.
RNA ; 13(9): 1516-27, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17652137

RESUMO

A family of HEAT-repeat containing ribosome synthesis factors was previously identified in Saccharomyces cerevisiae. We report the detailed characterization of two of these factors, Utp10 and Utp20, which were initially identified as components of the small subunit processome. Coprecipitation analyses confirmed the association of Utp10 and Utp20 with U3 snoRNA and the early pre-rRNA processing intermediates. Particularly strong association was seen with aberrant processing intermediates, which may help target these RNAs for degradation. Genetic depletion of either protein inhibited the early pre-rRNA processing steps in 18S rRNA maturation but had little effect on pre-rRNA transcription or synthesis of the 25S or 5.8S rRNAs. The absence of the poly(A) polymerase Trf5, a component of the TRAMP5 complex and exosome cofactor, led to stabilization of the aberrant 23S RNA in strains depleted of Utp10 or Utp20. In the case of Utp10, 20S pre-rRNA synthesis was also modestly increased by this loss of surveillance activity.


Assuntos
RNA Nucleolar Pequeno/fisiologia , Sequências Repetitivas de Aminoácidos , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Ribonucleoproteínas Nucleolares Pequenas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Modelos Moleculares , Processamento Pós-Transcricional do RNA/fisiologia , RNA Ribossômico 18S/biossíntese , RNA Nucleolar Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
20.
J Mol Biol ; 371(5): 1338-53, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17612558

RESUMO

Naf1 is an essential protein involved in the maturation of box H/ACA ribonucleoproteins, a group of particles required for ribosome biogenesis, modification of spliceosomal small nuclear RNAs and telomere synthesis. Naf1 participates in the assembly of the RNP at transcription sites and in the nuclear trafficking of the complex. The crystal structure of a domain of yeast Naf1p, Naf1Delta1p, reveals a striking structural homology with the core domain of archaeal Gar1, an essential protein component of the mature RNP; it suggests that Naf1p and Gar1p have a common binding site on the enzymatic protein component of the particle, Cbf5p. We propose that Naf1p is a competitive binder for Cbf5p, which is replaced by Gar1p during maturation of the H/ACA particle. The exchange of Naf1p by Gar1p might be prompted by external factors that alter the oligomerisation state of Naf1p and Gar1p. The structural homology with Gar1 suggests that the function of Naf1 involves preventing non-cognate RNAs from being loaded during transport of the particle by inducing a non-productive conformation of Cbf5.


Assuntos
Proteínas Fúngicas/química , Hidroliases/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Dimerização , Proteínas Fúngicas/fisiologia , Hidroliases/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/fisiologia , Estrutura Terciária de Proteína , RNA/química , RNA Nuclear Pequeno/química , Ribonucleoproteínas Nucleares Pequenas/fisiologia , Ribonucleoproteínas Nucleolares Pequenas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Homologia de Sequência de Aminoácidos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA