Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biotechnol ; 63(11): 1016-1029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34185248

RESUMO

Plants are promising drug-production platforms with high economic efficiency, stability, and convenience in mass production. However, studies comparing the equivalency between the original antibodies and those produced in plants are limited. Amino acid sequences that constitute the Fab region of an antibody are diverse, and the post-transcriptional modifications that occur according to these sequences in animals and plants are also highly variable. In this study, rituximab, a blockbuster antibody drug used in the treatment of non-Hodgkin's lymphoma, was produced in Nicotiana benthamiana leaves and Arabidopsis thaliana callus, and was compared to the original rituximab produced in CHO cells. Interestingly, the epitope recognition and antigen-binding abilities of rituximab from N. benthamiana leaves were almost lost. In the case of rituximab produced in A. thaliana callus, the specific binding ability and CD20 capping activity were maintained, but the binding affinity was less than 50% of that of original rituximab from CHO cells. These results suggest that different plant species exhibit different binding affinities. Accordingly, in addition to the differences in PTMs between mammals and plants, the differences between the species must also be considered in the process of producing antibodies in plants.


Assuntos
Antígenos CD20/metabolismo , Arabidopsis/metabolismo , Nicotiana/metabolismo , Folhas de Planta/química , Rituximab/metabolismo , Animais , Afinidade de Anticorpos , Antígenos CD20/química , Antineoplásicos Imunológicos/isolamento & purificação , Antineoplásicos Imunológicos/metabolismo , Arabidopsis/genética , Cricetinae , Humanos , Folhas de Planta/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rituximab/biossíntese , Rituximab/genética , Rituximab/isolamento & purificação , Nicotiana/genética
2.
Biotechnol Bioeng ; 118(6): 2220-2233, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629358

RESUMO

In this study, we designed and built a gene switch that employs metabolically inert l-glucose to regulate transgene expression in mammalian cells via d-idonate-mediated control of the bacterial regulator LgnR. To this end, we engineered a metabolic cascade in mammalian cells to produce the inducer molecule d-idonate from its precursor l-glucose by ectopically expressing the Paracoccus species 43P-derived catabolic enzymes LgdA, LgnH, and LgnI. To obtain ON- and OFF-switches, we fused LgnR to the human transcriptional silencer domain Krüppel associated box (KRAB) and the viral trans-activator domain VP16, respectively. Thus, these artificial transcription factors KRAB-LgnR or VP16-LgnR modulated cognate promoters containing LgnR-specific binding sites in a d-idonate-dependent manner as a direct result of l-glucose metabolism. In a proof-of-concept experiment, we show that the switches can control production of the model biopharmaceutical rituximab in both transiently and stably transfected HEK-293T cells, as well as CHO-K1 cells. Rituximab production reached 5.9 µg/ml in stably transfected HEK-293T cells and 3.3 µg/ml in stably transfected CHO-K1 cells.


Assuntos
Redes Reguladoras de Genes , Glucose , Rituximab/biossíntese , Animais , Células CHO , Cricetulus , Genes Reporter , Glicosilação , Células HEK293 , Humanos , Paracoccus/enzimologia , Plasmídeos , Açúcares Ácidos , Fatores de Transcrição/genética , Transfecção
3.
Bioprocess Biosyst Eng ; 43(5): 863-875, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31980903

RESUMO

O-Glycosylation occurs in recombinant proteins produced by CHO cells, but this phenomenon has not been studied extensively. Here, we report that rituximab is an O-linked N-acetyl-glucosaminylated (O-GlcNAcylated) protein and the production of rituximab is increased by thiamet G, an inhibitor of O-GlcNAcase. The production of rituximab doubled with OGA inhibition and decreased with O-GlcNAc transferase inhibition. O-GlcNAc-specific antibody and metabolic labelling with azidO-GlcNAc confirmed the increased O-GlcNAcylation with thiamet G. Protein mass analysis revealed that serine 7, 12, and 14 of the rituximab light chain were O-GlcNAcylated. S12A mutation of the light chain decreased rituximab stability and failed to increase the production with thiamet G without any significant changes of mRNA level. Cytotoxicity and thermal stability assays confirmed that there were no differences in the biological and physical properties of rituximab produced by thiamet G treatment. Therefore, thiamet G treatment improves the production of rituximab without significantly altering its function.


Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Piranos/farmacologia , Rituximab , Tiazóis/farmacologia , Substituição de Aminoácidos , Animais , Células CHO , Cricetulus , Glicosilação/efeitos dos fármacos , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Rituximab/biossíntese , Rituximab/genética
4.
J Biotechnol ; 298: 45-56, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30959136

RESUMO

In order to maximize cell growth and productivity for an inducible CHO cell line expressing rituximab, various fed-batch culture strategies were investigated. In each case, the performance was evaluated for cultures induced at moderate and high cell density conditions (4 × 106 and 10 × 106 cells/mL) to assess the impact of the timing of induction. We first demonstrate the importance of starting the feeding process during the growth phase, as this translated into significantly improved integral of viable cells and antibody concentration, when compared to post-induction feeding only. Secondly, we investigated the impact of the feed rate by maintaining different levels of glucose (25, 35 and 50 mM) via a dynamic feeding strategy. The highest antibody concentrations were achieved under a moderate feeding regime for both cell densities at induction, highlighting the risks of under- or over-feeding the cultures. We then evaluated the impact of performing a temperature shift at induction by testing different mild hypothermia conditions. At small-scale, the highest production yields (1.2 g/L) were achieved when the temperature was reduced from 37 to 30 °C during the production phase of a culture induced at high cell density. When the strategy was applied in bioreactor, the better controlled conditions led to even greater product concentrations (1.8 g/L). Furthermore, this production protocol was shown to promote a more galactosylated glycan profile than a bioreactor culture initiated at 34 °C during growth and downshifted to 30 °C during the production phase.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células/genética , Rituximab/biossíntese , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Células CHO , Sobrevivência Celular/genética , Cricetulus , Glucose/metabolismo , Humanos , Rituximab/química , Rituximab/genética
5.
Bioprocess Biosyst Eng ; 42(5): 711-725, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30673843

RESUMO

Mammalian-inducible expression systems are increasingly available and offer an attractive platform for the production of recombinant proteins. In this work, we have conducted process development for a cumate-inducible GS-CHO cell-line-expressing rituximab. To cope with the limitations encountered in batch when inducing at high cell densities, we have explored the use of fed-batch, sequential medium replacements, and continuous perfusion strategies applied during the pre-induction (growth) phase to enhance process performance in terms of product yield and quality. In shake flask, a fed-batch mode and a complete medium exchange at the time of induction were shown to significantly increase the integral of viable cell concentration and antibody titer compared to batch culture. Further enhancement of product yield was achieved by combining bolus concentrated feed additions with sequential medium replacement, but product galactosylation was reduced compared to fed-batch mode, as a result of the extended culture duration. In bioreactor, combining continuous perfusion of the basal medium with bolus daily feeding during the pre-induction period and harvesting earlier during the production phase is shown to provide a good trade-off between antibody titer and product galactosylation. Overall, our results demonstrate the importance of selecting a suitable operating mode and harvest time when carrying out high-cell-density induction to balance between culture productivity and product quality.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Rituximab/biossíntese , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Rituximab/isolamento & purificação
6.
Metab Eng ; 52: 110-123, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30468874

RESUMO

Capitalizing on the ability of mammalian cells to conduct complex post-translational modifications, most protein therapeutics are currently produced in cell culture systems. Addition of a signal peptide to the product protein enables its accumulation in the cell culture supernatant, but separation of the product from endogenously secreted proteins remains costly and labor-intensive. We considered that global downregulation of translation of non-product proteins would be an efficient strategy to minimize downstream processing requirements. Therefore, taking advantage of the ability of mammalian protein kinase R (PKR) to switch off most cellular translation processes in response to infection by viruses, we fused a caffeine-inducible dimerization domain to the catalytic domain of PKR. Addition of caffeine to this construct results in homodimerization and activation of PKR, effectively rewiring rapid global translational downregulation to the addition of the stimulus in a dose-dependent manner. Then, to protect translation of the target therapeutic, we screened viral and cellular internal ribosomal entry sites (IRESes) known or suspected to be resistant to PKR-induced translational stress. After choosing the best-in-class Seneca valley virus (SVV) IRES, we additionally screened for IRES transactivation factors (ITAFs) as well as for supplementary small molecules to further boost the production titer of the product protein under conditions of global translational downregulation. Importantly, the residual global translation activity of roughly 10% under maximal downregulation is sufficient to maintain cellular viability during a production timeframe of at least five days. Standard industrially used adherent as well as suspension-adapted cell lines transfected with this synthetic biology-inspired Protein Kinase R-Enhanced Protein Production (PREPP) system could produce several medicinally relevant protein therapeutics, such as the blockbuster drug rituximab, in substantial quantities and with significantly higher purity than previous culture technologies. We believe incorporation of such purity-by-design technology in the production process will alleviate downstream processing bottlenecks in future biopharmaceutical manufacturing.


Assuntos
Engenharia Metabólica/métodos , Biossíntese de Proteínas/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Cafeína/farmacologia , Catálise , Ciclo Celular , Linhagem Celular , Regulação para Baixo , Genes Reporter/genética , Humanos , Metabolômica , Processamento de Proteína Pós-Traducional , Ribossomos/genética , Ribossomos/metabolismo , Rituximab/biossíntese , Rituximab/isolamento & purificação , Transfecção , Vírus/genética
7.
Appl Microbiol Biotechnol ; 102(14): 6081-6093, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29766242

RESUMO

Chinese hamster ovary (CHO) cells are promising host engineering cells for industry manufacturing of therapeutic antibodies. However, cell death due to apoptosis remains a huge challenge to augment antibody production, and developing CHO cells with enhanced anti-apoptosis and proliferation ability is fundamental for cell line development and high-yielding bioprocesses. Deubiquitinase cylindromatosis (CYLD) has been proved to be a tumor suppressor by negatively regulating NF-κB and Wnt/ß-catenin signaling pathways. Its mutation or deletion is a common chromosome variation in several types of cancers. Here, we engineered CHO CYLD-/- cells by CRISPR-Cas9 editing technology. These cells displayed stronger cell proliferation and anti-apoptosis ability compared to parental cells. Three antibody expression plasmid kits were transiently transfected into these cells. Our data showed that inactivation of CYLD increased the highest titers of rituximab, Herceptin, and one bispecific antibody by 105, 63, and 228%, respectively. Reversely, overexpression of CYLD could promote cell apoptosis, whereas inhibiting cell proliferation and antibody production. Furthermore, inhibition of CYLD in CHO cells stably expressing an IgG antibody (CHO-IgG) achieved about 50% increase in product titer compared to parental cells. Meanwhile, inhibition of CYLD did not affect the quality of antibody. Thus, our data demonstrated that inactivation of CYLD could promote CHO cell proliferation, anti-apoptosis ability, and subsequent antibody production, suggesting that CYLD is a potential functional target for CHO cell engineering.


Assuntos
Apoptose/genética , Engenharia Celular , Proliferação de Células/genética , Enzima Desubiquitinante CYLD/genética , Inativação Gênica , Imunoglobulina G/biossíntese , Animais , Anticorpos Biespecíficos/biossíntese , Células CHO , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Deleção de Genes , Genes Supressores de Tumor , Humanos , Rituximab/biossíntese , Trastuzumab/biossíntese
8.
Biotechnol Bioeng ; 115(3): 705-718, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29150961

RESUMO

Cross-linking of the Fcγ receptors expressed on the surface of hematopoietic cells by IgG immune complexes triggers the activation of key immune effector mechanisms, including antibody-dependent cell mediated cytotoxicity (ADCC). A conserved N-glycan positioned at the N-terminal region of the IgG CH 2 domain is critical in maintaining the quaternary structure of the molecule for Fcγ receptor engagement. The removal of a single core fucose residue from the N-glycan results in a considerable increase in affinity for FcγRIIIa leading to an enhanced receptor-mediated immunoeffector function. The enhanced potency of the molecule translates into a number of distinct advantages in the development of IgG antibodies for cancer therapy. In an effort to significantly increase the potency of an anti-CD20, IgG1 molecule, we selectively targeted the de novo GDP-fucose biosynthesis pathway of the host CHO cell line to generate >80% afucosylated IgG1 resulting in enhanced FcγRIIIa binding (13-fold) and in vitro ADCC cell-based activity (11-fold). In addition, this effective glycoengineering strategy also allowed for the utilization of the alternate GDP-fucose salvage pathway to provide a fast and efficient mechanism to manipulate the N-glycan fucosylation level to modulate IgG immune effector function.


Assuntos
Cricetulus/metabolismo , Imunoglobulina G/biossíntese , Engenharia de Proteínas , Rituximab/biossíntese , Animais , Cricetulus/genética , Glicosilação , Imunoglobulina G/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Rituximab/genética
9.
MAbs ; 8(8): 1498-1511, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594301

RESUMO

Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Reatores Biológicos/microbiologia , Rituximab/biossíntese , Rituximab/química , Rituximab/imunologia , Tetrahymena thermophila , Animais , Glicosilação , Humanos , Camundongos
10.
Plant Biotechnol J ; 14(2): 533-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26011187

RESUMO

Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and ß(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two ß(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked ß(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and ß(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.


Assuntos
Anticorpos Monoclonais/biossíntese , Edição de Genes/métodos , Engenharia Genética/métodos , Nicotiana/genética , Polissacarídeos/metabolismo , Sequência de Bases , Fucose/metabolismo , Glicosilação , Mutação/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeos/química , Protoplastos/metabolismo , Rituximab/biossíntese , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transformação Genética , Xilose/metabolismo
11.
Appl Microbiol Biotechnol ; 99(16): 6753-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957150

RESUMO

Seed-based expression system is an attractive platform for the production of recombinant proteins in molecular farming. Despite the many advantages of molecular farming, little is known about the effect of the different subcellular accumulation of recombinant proteins on the endoplasmic reticulum (ER) quality control system in host plants. In this study, we analyzed the expression of anti-CD20 antibody fragments in seeds of Arabidopsis thaliana (ecotype Columbia) and corresponding glycosylation mutants, and evaluated the influence of three different signal sequences on the expression levels of scFv-Fc of C2B8. The highest protein accumulation level, with a maximum of 6.12 % total soluble proteins, was observed upon fusing proteins to the signal peptide of Arabidopsis seed storage albumin 2. The ER stress responses in developing seeds at 13 days post-anthesis were also compared across different transgenic lines under normal and heat shock conditions. Based on the gene expression profiles of ER stress transducers, our results suggest that accumulation of antibody fragments in the ER exerts more stress on ER homeostasis. In addition, quantitative PCR results also implicate enhanced activation of ER-associated degradation in transgenic lines. Last but not the least, we also demonstrate the anti-tumor potency of plant-derived proteins by showing the anti-tumor activity of purified scFv-Fc proteins against Daudi cells. Together, our data implies that better understanding of the interaction between exogenous protein production and the cellular quality control system of the host plant is necessary for the development of an optimal expression strategy that will be especially beneficial to commercial protein manufacturing.


Assuntos
Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático , Expressão Gênica , Fragmentos de Imunoglobulinas/biossíntese , Rituximab/biossíntese , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/toxicidade , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/toxicidade , Rituximab/genética , Rituximab/toxicidade , Sementes/genética , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA