Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.787
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732037

RESUMO

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Assuntos
Imageamento Tridimensional , Microscopia Confocal , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Carbocianinas/química , Rodaminas/química
2.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691183

RESUMO

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Assuntos
Chumbo , Nanocompostos , Rodaminas , Poluentes Químicos da Água , Óxido de Zinco , Chumbo/química , Óxido de Zinco/química , Rodaminas/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Cetrimônio/química , Recuperação e Remediação Ambiental/métodos , Química Verde , Nanoestruturas/química
3.
Water Sci Technol ; 89(9): 2209-2224, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747945

RESUMO

The research presented in this paper is to determine the best tracer studies that will give acceptable estimates of longitudinal dispersion coefficient for Orashi river using rhodamine WT dye and sodium chloride as water tracer. Estimated results obtained for longitudinal dispersion coefficient for the case of rhodamine WT experiment ranges between 71 and 104.4 m2s-1 while that of sodium chloride experiment ranges between 20.1 and 34.71 m2s-1. These results revealed lower dispersion coefficient using sodium chloride as water tracer (WT) indicating that for larger rivers, sodium chloride should not be used as water tracer. The usage of sodium chloride as water tracer in the estimation of longitudinal dispersion coefficient is recommended in smaller streams as NaCl is relatively conservative. The established equations for both cases of investigation are proving satisfactory upon validation as degree of accuracy of 100.0% was obtained using discrepancy ratio (Dr). Standard error (SE), normal mean error (NME) and mean multiplication error (MME) of the developed equations is better when compared with other existing equations. However, Equation (17) is satisfactorily recommended.


Assuntos
Cloreto de Sódio , Cloreto de Sódio/química , Movimentos da Água , Rodaminas/química , Rios/química , Poluentes Químicos da Água/análise
4.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732166

RESUMO

This current study assessed the impacts of morphology adjustment of perovskite BiFeO3 (BFO) on the construction and photocatalytic activity of P-infused g-C3N4/U-BiFeO3 (U-BFO/PCN) heterostructured composite photocatalysts. Favorable formation of U-BFO/PCN composites was attained via urea-aided morphology-controlled hydrothermal synthesis of BFO followed by solvosonication-mediated fusion with already synthesized P-g-C3N4 to form U-BFO/PCN composites. The prepared bare and composite photocatalysts' morphological, textural, structural, optical, and photocatalytic performance were meticulously examined through various analytical characterization techniques and photodegradation of aqueous rhodamine B (RhB). Ellipsoids and flakes morphological structures were obtained for U-BFO and BFO, and their effects on the successful fabrication of the heterojunctions were also established. The U-BFO/PCN composite exhibits 99.2% efficiency within 20 min of visible-light irradiation, surpassing BFO/PCN (88.5%), PCN (66.8%), and U-BFO (26.1%). The pseudo-first-order kinetics of U-BFO/PCN composites is 2.41 × 10-1 min-1, equivalent to 2.2 times, 57 times, and 4.3 times of BFO/PCN (1.08 × 10-1 min-1), U-BFO, (4.20 × 10-3 min-1), and PCN, (5.60 × 10-2 min-1), respectively. The recyclability test demonstrates an outstanding photostability for U-BFO/PCN after four cyclic runs. This improved photocatalytic activity exhibited by the composites can be attributed to enhanced visible-light utilization and additional accessible active sites due to surface and electronic band modification of CN via P-doping and effective charge separation achieved via successful composites formation.


Assuntos
Bismuto , Fotólise , Rodaminas , Catálise , Bismuto/química , Rodaminas/química , Luz , Compostos Férricos/química , Compostos de Nitrogênio/química , Titânio/química , Processos Fotoquímicos , Nitrilas/química , Cinética , Grafite , Óxidos , Compostos de Cálcio
5.
Chemosphere ; 357: 141934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615957

RESUMO

In this study, the BiOBr/rGO nanocomposite photocatalysts are fabricated by a facile solvothermal method. The BiOBr growth on reduced graphene oxide (rGO) sheet could improve BiOBr's photocatalytic activity by increasing its adsorption ability, surface area, and charge carriers' separation efficiency. The prepared nanocomposites were characterized by XRD, Raman, FESEM, EDS, XPS, and UV-visible DRS. The BiOBr/rGO (BRG) nanocomposites showed improved photocatalytic activity for the photodegradation of Rhodamine B (RhB) dye and Tetracycline (TC) under visible light irradiation. Rhodamine B and tetracycline degradation efficiency were about 96% and 73% within 120 min under visible light irradiation. The PL analysis indicates that BiOBr/rGO nanocomposite exhibited maximum separation efficiency of photoinduced charge carriers. The trapping test confirmed that O2- and h+ are significant active photodegradation species. The GC-MS spectra detected the two plausible transformation routes of tetracycline degradation. The current work presented a low-cost and facile approach for fabricating Bi-based composites.


Assuntos
Antibacterianos , Bismuto , Grafite , Luz , Nanocompostos , Fotólise , Rodaminas , Tetraciclina , Grafite/química , Tetraciclina/química , Rodaminas/química , Bismuto/química , Catálise , Antibacterianos/química , Cinética , Nanocompostos/química , Poluentes Químicos da Água/química
6.
Chemosphere ; 356: 141947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599332

RESUMO

Covalent organic frameworks (COFs) have recently emerged as a kind of promising photocatalytic platform in addressing the growing threat of trace pollutants in aquatic environments. Along this, we propose a strategy of constructing internal electric field (IEF) in COFs through the dipole moment regulation, which intrinsically facilitates the separation and transfer of photogenerated excitons. Two COFs of BTT-TZ-COF and BTT-TB-COF are developed by linking the electron-donor of benzotrithiophene (BTT) block and the electron-acceptor of triazine (TZ) or tribenzene (TB) block, respectively. DFT calculations demonstrate TZ block with larger dipole moment can achieve more efficient IEF due to the stronger electron-attractive force and hence narrower bandgap. Moreover, featuring the highly-order crystalline structure for accelerating photo-excitons transfer and rich porosity for facilitating the adsorption, BTT-TZ-COF exhibited an excellent universal performance of photocatalytic degradations of various dyes. Specifically, a superior photodegradation efficiency of 99% Rhodamine B (RhB) is achieved within 20 min under the simulated sunlight. Therefore, this convenient construction approach of enhanced IEF in COFs through rational regulation of the dipole moment can be a promising way to realize high photocatalytic activity.


Assuntos
Estruturas Metalorgânicas , Rodaminas , Catálise , Rodaminas/química , Estruturas Metalorgânicas/química , Fotólise , Processos Fotoquímicos , Adsorção , Poluentes Químicos da Água/química , Eletricidade
7.
J Hazard Mater ; 470: 134269, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613952

RESUMO

Mercury (Hg) is one of the most widespread pollutants that pose serious threats to public health and the environment. People are inevitably exposed to Hg via different routes, such as respiration, dermal contact, drinking or diet. Hg poisoning could cause gingivitis, inflammation, vomiting and diarrhea, respiratory distress or even death. Especially during the developmental stage, there is considerable harm to the brain development of young children, causing serious symptoms such as intellectual disability and motor impairments, and delayed neural development. Therefore, it's of great significance to develop a specific, quick, practical and labor-saving assay for monitoring Hg2+. Herein, a mitochondria-targeted dual (excitation 700 nm and emission 728 nm) near-infrared (NIR) fluorescent probe JZ-1 was synthesized to detect Hg2+, which is a turn-on fluorescent probe designed based on the rhodamine fluorophore thiolactone, with advantages of swift response, great selectivity, and robust anti-interference capability. Cell fluorescence imaging results showed that JZ-1 could selectively target mitochondria in HeLa cells and monitor exogenous Hg2+. More importantly, JZ-1 has been successfully used to monitor gastrointestinal damage of acute mercury poisoning in a drug-induced mouse model, which provided a great method for sensing Hg species in living subjects, as well as for prenatal diagnosis.


Assuntos
Corantes Fluorescentes , Intoxicação por Mercúrio , Mercúrio , Mitocôndrias , Corantes Fluorescentes/química , Mitocôndrias/efeitos dos fármacos , Humanos , Animais , Células HeLa , Intoxicação por Mercúrio/diagnóstico por imagem , Mercúrio/toxicidade , Imagem Óptica , Camundongos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/diagnóstico por imagem , Trato Gastrointestinal/metabolismo , Feminino , Gastroenteropatias/diagnóstico por imagem , Gastroenteropatias/induzido quimicamente , Rodaminas/química , Rodaminas/toxicidade
8.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675624

RESUMO

We prepared network polysaccharide nanoscopic hydrogels by crosslinking water-soluble chitosan (WSCS) with a carboxylate-terminated maltooligosaccharide crosslinker via condensation. In this study, the enzymatic elongation of amylose chains on chitosan-based network polysaccharides by glucan phosphorylase (GP) catalysis was performed to obtain assembly materials. Maltoheptaose (Glc7) primers for GP-catalyzed enzymatic polymerization were first introduced into WSCS by reductive amination. Crosslinking of the product with the above-mentioned crosslinker by condensation was then performed to produce Glc7-modified network polysaccharides. The GP-catalyzed enzymatic polymerization of the α-d-glucose 1-phosphate monomer from the Glc7 primers on the network polysaccharides was conducted, where the elongated amylose chains formed double helices. Enzymatic disintegration of the resulting network polysaccharide assembly successfully occurred by α-amylase-catalyzed hydrolysis of the double helical amyloses. The encapsulation and release of a fluorescent dye, Rhodamine B, using the CS-based network polysaccharides were also achieved by means of the above two enzymatic approaches.


Assuntos
Quitosana , Corantes Fluorescentes , Glucanos , Polissacarídeos , Quitosana/química , Corantes Fluorescentes/química , Polissacarídeos/química , Rodaminas/química , Hidrogéis/química , alfa-Amilases/química , alfa-Amilases/metabolismo , Hidrólise , Amilose/química , Polimerização , Oligossacarídeos/química , Glucofosfatos/química , Glucofosfatos/metabolismo
9.
Chemosphere ; 357: 142069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648986

RESUMO

Focusing on the uncontrolled discharge of organic dyes, a known threat to human health and aquatic ecosystems, this work employs a dual-functional catalyst approach, by immobilizing a synthesized bismuth sulfur iodide (BiSI) into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymeric matrix for multifunctional water remediation. The resulting BiSI@PVDF nanocomposite membrane (NCM), with 20 wt% filler content, maintains a highly porous structure without compromising morphology or thermal properties. Demonstrating efficiency in natural pH conditions, the NCM removes nearly all Rhodamine B (RhB) within 1 h, using a combined sonophotocatalytic process. Langmuir and pseudo-second-order models describe the remediation process, achieving a maximum removal capacity (Qmax) of 72.2 mg/g. In addition, the combined sonophotocatalysis achieved a degradation rate ten and five times higher (0.026 min-1) than photocatalysis (0.002 min-1) and sonocatalysis (0.010 min-1). Furthermore, the NCM exhibits notable reusability over five cycles without efficiency losses and efficiencies always higher than 90%, highlighting its potential for real water matrices. The study underscores the suitability of BiSI@PVDF as a dual-functional catalyst for organic dye degradation, showcasing synergistic adsorption, photocatalysis, and sonocatalysis for water remediation.


Assuntos
Bismuto , Corantes , Nanocompostos , Polivinil , Rodaminas , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Nanocompostos/química , Catálise , Rodaminas/química , Bismuto/química , Corantes/química , Purificação da Água/métodos , Polivinil/química , Polímeros de Fluorcarboneto
10.
Chemosphere ; 357: 142114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663679

RESUMO

The designed synthesis of an S-scheme heterojunction has possessed a great potential for improving photocatalytic wastewater treatment by demonstrating increased the photoredox capacity and improved the charge separation efficiency. Here, we introduce the fabrication of a heterojunction-based photocatalyst comprising bismuth oxychloride (BiOCl) and bismuth-based halide perovskite (BHP) nanosheets, derived from metal-organic frameworks (MOFs). Our composite photocatalyst is synthesized through a one-pot solvothermal strategy, where a halogenation process is applied to a bismuth-based metal-organic framework (CAU-17) as the precursor for bismuth sourcing. As a result, the rod-like structure of CAU-17 transforms into well-defined plate and nanosheet architectures after 4 and 8 h of solvothermal treatment, respectively. The modulation of the solvothermal reaction time facilitates the establishment of an S-scheme heterojunction, resulting in an increase in the photocatalytic degradation efficiency of rhodamine B (RhB) and sulfamethoxazole (SMX). The optimized BiOCl/BHP composite exhibits superior RhB and SMX degradation rates, achieving 99.8% degradation of RhB in 60 min and 75.1% degradation of SMX in 300 min. Also, the optimized BiOCl/BHP composite (CAU-17-st-8h sample) exhibited the highest rate constant (k = 3.48 × 10-3 min-1), nearly 6 times higher than that of the bare BHP in the photocatalytic degradation process of SMX. The enhanced photocatalytic efficiency can be endorsed to various factors: (i) the in-situ formation of two-components BiOCl/BHP photocatalyst, derived from CAU-17, effectively suppresses the aggregation of pristine BHP and BiOCl particles; (ii) the S-scheme heterostructure establishes a closely-knit interfacial connection, thereby facilitating efficient pathways for charge separation/transfer; and (iii) the BiOCl/BHP heterostructure enhances its capacity to absorb visible light. Our investigation establishes an effective strategy for constructing heterostructured photocatalysts, offering significant potential for application in photocatalytic wastewater treatment.


Assuntos
Bismuto , Compostos de Cálcio , Estruturas Metalorgânicas , Óxidos , Rodaminas , Titânio , Poluentes Químicos da Água , Bismuto/química , Titânio/química , Compostos de Cálcio/química , Óxidos/química , Catálise , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Rodaminas/química , Fotólise , Águas Residuárias/química , Processos Fotoquímicos
11.
Int J Biol Macromol ; 267(Pt 2): 131416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582486

RESUMO

Heavy metal ions have extremely high toxicity. As the top of food chain, human beings certainly will accumulate them by ingesting food and participating other activities, which eventually result in the damage to our health. Therefore, it is very meaningful and necessary to design a simple, portable, stable and efficient material for heavy metal ions detection. Based on the spirolactam Rhodamine 6G (SRh6G) fluorescent probe, we prepared two types of nanocomposite materials (membrane and aerogel) by vacuum filtration and freeze-drying methods with lignocellulose nanofiber (CNF) as a carrier, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the cross-linkers. Then the microstructure, chemical composition, wetting property, fluorescence intensity and selectivity of as-prepared SRh6G/PVA/CNF would be characterized and analyzed. Results showed that SRh6G/PVA/CNF nanocomposites would turn red in color under strong acidic environment and produced orange fluorescence under ultraviolet light. Besides, they were also to detect Al3+, Cu2+, Hg2+, Fe3+ and Ag+ through color and fluorescence variations. We had further tested its sensitivity, selectivity, adsorption, fluorescence limits of detection (LOD) to Fe3+ and Cu2+. The test towards real water samples (hospital wastewater, Songhua River and tap water) proved that SRh6G/PVA/CNF nanocomposites could detect the polluted water with low concentrations of Fe3+ and Cu2+. In addition, SRh6G/PVA/CNF nanocomposites have excellent mechanical property, repeatability, superhydrophilicity and underwater superoleophobicity, which may offer a theoretical reference for the assembly strategy and detection application of cellulose-based fluorescent probe.


Assuntos
Corantes Fluorescentes , Lignina , Nanofibras , Rodaminas , Águas Residuárias , Poluentes Químicos da Água , Rodaminas/química , Lignina/química , Lignina/análise , Águas Residuárias/química , Águas Residuárias/análise , Nanofibras/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Colorimetria/métodos , Metais Pesados/análise , Metais Pesados/química , Nanocompostos/química , Íons/análise , Limite de Detecção , Álcool de Polivinil/química
12.
Anal Chem ; 96(18): 7257-7264, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38664861

RESUMO

Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.


Assuntos
Membrana Celular , Corantes Fluorescentes , Rodaminas , Corantes Fluorescentes/química , Rodaminas/química , Humanos , Membrana Celular/química , Imagem Óptica , Microscopia Confocal/métodos , Tensoativos/química
13.
Talanta ; 274: 126004, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564824

RESUMO

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.


Assuntos
Corantes Fluorescentes , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Rodaminas , Corantes Fluorescentes/química , Rodaminas/química , Espécies Reativas de Nitrogênio/análise , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Imagem Óptica , Animais , Enxofre/química , Enxofre/análise
14.
Talanta ; 274: 126002, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613948

RESUMO

Developing probes for simultaneous diagnosis and killing of cancer cells is crucial, yet challenging. This article presents the design and synthesis of a novel Rhodamine B fluorescence probe. The design strategy involves utilizing an anticancer drug (Melphalan) to bind with a fluorescent group (HRhod-OH), forming HRhod-MeL, which is non-fluorescent. However, when exposed to the high levels of reactive oxygen species (ROS) of cancer cells, HRhod-MeL transforms into a red-emitting Photocage (Rhod-MeL), and selectively accumulates in the mitochondria of cancer cells, where, when activated with green light (556 nm), anti-cancer drugs released. The Photocage improve the efficacy of anti-cancer drugs and enables the precise diagnosis and killing of cancer cells. Therefore, the prepared Photocage can detect cancer cells and release anticancer drugs in situ, which provides a new method for the development of prodrugs.


Assuntos
Antineoplásicos , Liberação Controlada de Fármacos , Corantes Fluorescentes , Pró-Fármacos , Rodaminas , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Rodaminas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Desenho de Fármacos , Luz , Linhagem Celular Tumoral
15.
Phys Chem Chem Phys ; 26(17): 13078-13086, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38628110

RESUMO

Fluorescence labeling of cells is a versatile tool used to study cell behavior, which is of significant importance in biomedical sciences. Fluorescent photoconvertible markers based on polymer microcapsules have been recently considered as efficient and perspective ones for long-term tracking of individual cells. However, the dependence of photoconversion conditions on the polymeric capsule structure is still not sufficiently clear. Here, we have studied the structural and spectral properties of fluorescent photoconvertible polymeric microcapsules doped with Rhodamine B and irradiated using a pulsed laser in various regimes, and shown the dependence between the photoconversion degree and laser irradiation intensity. The effect of microcapsule composition on the photoconversion process was studied by monitoring structural changes in the initial and photoconverted microcapsules using X-ray diffraction analysis with synchrotron radiation source, and Fourier transform infrared, Raman and fluorescence spectroscopy. We demonstrated good biocompatibility of free-administered initial and photoconverted microcapsules through long-term monitoring of the RAW 264.7 monocyte/macrophage cells with unchanged viability. These data open new perspectives for using the developed markers as safe and precise cell labels with switchable fluorescent properties.


Assuntos
Corantes Fluorescentes , Polímeros , Rodaminas , Camundongos , Animais , Polímeros/química , Rodaminas/química , Corantes Fluorescentes/química , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Cápsulas/química , Espectrometria de Fluorescência , Processos Fotoquímicos , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Environ Sci Pollut Res Int ; 31(19): 28658-28670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561532

RESUMO

Recently, visible-light-driven photocatalysis attracts much concerns in the remediation of environmental organic pollutants. In this study, the cerium doped biochar was fabricated through the hydrothermal method, and served as an efficient photocatalyst towards rhodamine B degradation under visible light irradiation. Almost 100% of rhodamine B was removed by 2.0 g·L-1 cerium doped biochar after 60 min of visible light irradiation at pH 3, but only about 25.50% and 29.60% of rhodamine B was removed by cerium dioxide and biochar under identical conditions. The degradation process coincided well with the pseudo-first-order kinetic model, and the photodegradation rate constant of cerium doped biochar was 0.0485·min-1, which was respectively 97 and 44 times that of biochar (0.0005·min-1) and cerium dioxide (0.0011·min-1). According to the trapping experiments and electron spin resonance spectroscopy analysis, h+, O2-∙ and ∙OH all participated in the degradation of rhodamine B in the cerium doped biochar photocatalytic systems, and the function of h+ and ∙OH was dominated. Consequently, the biochar could not only be an excellent carrier for supporting cerium dioxide, but also greatly improved its photocatalytic activity. The band gap of cerium doped biochar was narrower than cerium dioxide, which could improve the separation and migration of photogenerated electron-hole pairs under visible-light excitation, thus ultimately enhanced the degradation of rhodamine B. This work provided a deeper understanding of the preparation of biochar-based photocatalyst and its application in the remediation of environmental organic pollution.


Assuntos
Cério , Carvão Vegetal , Rodaminas , Cério/química , Carvão Vegetal/química , Catálise , Rodaminas/química , Corantes/química , Fotólise , Cinética , Luz
17.
Environ Sci Pollut Res Int ; 31(18): 26942-26960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503954

RESUMO

This study investigated the single and multicomponent adsorption of three emerging pollutants, the basic dyes Rhodamine 6G (R6G), Auramine-O (AO), and Brilliant Green (BG) by using hydroxyapatite synthesized from Pirarucu scales as adsorbent (HAP). The adsorption process was studied using seven different systems: AO-single, R6G-single, BG-single, R6G + AO, BG + AO, BG + R6G, and R6G + AO + BG. For kinetics, the initial concentration of each adsorbate per system was 50 mg/L, the results showed that the singular adsorption of these dyes was best-represented by the pseudo-second-order model (qAO = 62.54 mg/g, qR6G = 7.91 mg/g, qBG = 62.40 mg/g), however, the multicomponent adsorption was well-fitted by a pseudo-first-order model (ternary system: qAO = 56.21 mg/g, qR6G = 14.95 mg/g, qBG = 60.62 mg/g). For equilibrium, the initial concentration of each adsorbate per system was 10-300 mg/L, and the single adsorption systems were best represented by the Langmuir model. Nonetheless, the results displayed in the multicomponent mixture showed the presence of inflection points of AO and R6G whenever BG was present in solution with C0 > 150 mg/L, thus indicating that BG has greater affinity with HAP. The presence of inflection points in the curves represented a limitation for applying traditional equilibrium models, thus, an artificial neural network (ANN) was applied to non-linear curve fit this process and satisfactorily predicted the kinetics and equilibrium data. Finally, the analysis of thermodynamics for the ternary mixture revealed that the adsorption process is spontaneous (ΔG < 0), endothermic (ΔH > 0), and increases to a disorganized state as the temperature rises (ΔS > 0).


Assuntos
Corantes , Durapatita , Compostos de Amônio Quaternário , Poluentes Químicos da Água , Adsorção , Cinética , Durapatita/química , Corantes/química , Poluentes Químicos da Água/química , Rodaminas/química
18.
ACS Sens ; 9(3): 1419-1427, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38449354

RESUMO

Fluorescent probes are widely studied for metal ion detection because of their multiple favorable properties such as high sensitivity and selectivity, quick response, naked eye detection, and in situ monitoring. However, optical probes that can effectively detect the Cu(I) level in cell interiors are rare due to the difficulty associated with selectively and sensitively detecting this metal ion in a cell environment. Therefore, we designed and synthesized three water-soluble probes (1-3) with a 1,3,5-triazine core decorated by three substituents: a hydrophobic alkyl chain, a hydrophilic maltose, and a rhodamine B hydrazine fluorophore. Among the probes, probe 1, which has an octyl chain and a branched maltose group, was the most effective at sensing Cu+ in aqueous solution. Upon addition of Cu+, this probe showed a dramatic color change from colorless to pink in daylight and displayed an intense yellow fluorescence emission under 365 nm light. The limit of detection and dissociation constant (Kd) of this probe were 20 nM and 1.1 × 10-12 M, respectively, which are the lowest values reported to date. The two metal ion-binding sites and the aggregation-induced emission enhancement effect, endowed by the branched maltose group and the octyl chain, respectively, are responsible for the high sensitivity and selectivity of this probe for Cu+ detection, as demonstrated by 1H NMR, dynamic light scattering, and transmission electron microscopy studies. Furthermore, the probe successfully differentiated the Cu(I) level of cancer cells from that of the normal cells. Thus, the probe holds potential for real-time monitoring of Cu(I) level in biological samples and bioimaging of cancer cells.


Assuntos
Corantes Fluorescentes , Maltose , Rodaminas/química , Corantes Fluorescentes/química , Água/química , Espectroscopia de Ressonância Magnética
19.
Org Biomol Chem ; 22(16): 3099-3108, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38444309

RESUMO

Fluorescence imaging is a powerful technique for visualizing biological events in living samples with high temporal and spatial resolution. Fluorescent probes emitting far-red to near infrared (NIR) fluorescence are particularly advantageous for in vivo imaging due to their high tissue permeability and low autofluorescence, as well as their suitability for multicolor imaging. Among the far-red to NIR fluorophores, Si-rhodamine is one of the most practical fluorophores for the development of tailor-made NIR fluorescent probes because of the relative ease of synthesis of various derivatives, the unique intramolecular spirocyclization behavior, and the relatively high water solubility and high photostability of the probes. This review summarizes these features of Si-rhodamines and presents recent advances in the synthesis and applications of far-red to NIR fluorescent probes based on Si-rhodamines, focusing on live-cell imaging applications such as fluorogenic probes, super-resolution imaging and dye-protein hybrid-based indicators.


Assuntos
Corantes Fluorescentes , Rodaminas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Rodaminas/química , Rodaminas/síntese química , Humanos , Imagem Óptica , Animais , Estrutura Molecular , Sobrevivência Celular
20.
Environ Sci Pollut Res Int ; 31(18): 26773-26789, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456975

RESUMO

In this study, CoCr layered double hydroxide material (CoCr-LDH) was prepared and used as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organics in water. The prepared CoCr-LDH material had a crystalline structure and relatively porous structure, as determined by various surface analyses. In Rhodamine B (RhB) removal, the most outstanding PMS activation ability belongs to the material with a Co:Cr molar ratio of 2:1. The removal of RhB follows pseudo-first-order kinetics (R2 > 0.99) with an activation energy of 38.23 kJ/mol and efficiency of 98% after 7 min of treatment, and the total organic carbon of the solution reduced 47.2% after 10 min. The activation and oxidation mechanisms were proposed and the RhB degradation pathways were suggested with the key contribution of O2•- and 1O2. Notably, CoCr-LDH can activate PMS over a wide pH range of 4 - 9, and apply to a wide range of organic pollutants and aqueous environments. The material has high stability and good recovery, which can be reused for 5 cycles with a stable efficiency of above 88%, suggesting a high potential for practical recalcitrant water treatment via PMS activation by heterogeneous catalysts.


Assuntos
Peróxidos , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Peróxidos/química , Purificação da Água/métodos , Rodaminas/química , Cinética , Oxirredução , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA