Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Nat Commun ; 15(1): 6950, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138159

RESUMO

Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations. Specifically, conflicting studies regarding GPR stoichiometry reported pentamer and hexamer mixtures without providing possible assembly mechanisms. We report the pentameric and hexameric cryo-EM structures of a GPR mutant, uncovering the role of the unprocessed N-terminal signal peptide in the assembly of hexameric GPR. Furthermore, certain proteorhodopsin-expressing bacteria lack retinal biosynthesis pathways, suggesting that they scavenge the cofactor from their environment. We shed light on this hypothesis by solving the cryo-EM structure of retinal-free proteoopsin, which together with mass spectrometry and MD simulations suggests that decanoate serves as a temporary placeholder for retinal in the chromophore binding pocket. Further MD simulations elucidate possible pathways for the exchange of decanoate and retinal, offering a mechanism for retinal scavenging. Collectively, our findings provide insights into the biogenesis of MRs, including their oligomeric assembly, variations in protomer stoichiometry and retinal incorporation through a potential cofactor scavenging mechanism.


Assuntos
Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Retinaldeído , Rodopsinas Microbianas , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Retinaldeído/metabolismo , Retinaldeído/química , Multimerização Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conformação Proteica
2.
J Photochem Photobiol B ; 258: 112976, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002191

RESUMO

Xanthorhodopsin (XR), a retinal-binding 7-transmembrane protein isolated from the eubacterium Salinibacter ruber, utilizes two chromophores (retinal and salinixanthin (SAL)) as an outward proton pump and energy-donating carotenoid. However, research on XR has been impeded owing to limitations in achieving heterogeneous expression of stable forms and high production levels of both wild-type and mutants. We successfully expressed wild-type and mutant XRs in Escherichia coli in the presence of K+. Achieving XR expression requires significant K+ and a low inducer concentration. In particular, we highlight the significance of Ser-159 in helix E located near Gly-156 (a carotenoid-binding position) as a critical site for XR expression. Our findings indicate that replacing Ser-159 with a smaller amino acid, alanine, can enhance XR expression in a manner comparable to K+, implying that Ser-159 poses a steric hindrance for pigment formation in XR. In the presence of K+, the proton pumping and photocycle of the wild-type and mutants were characterized and compared; the wild-type result suggests similar properties to the first reported XR isolation from the S. ruber membrane fraction. We propose that the K+ gradient across the cell membrane of S. ruber serves to uphold the membrane potential of the organism and plays a role in the expression of proteins, such as XR, as demonstrated in our study. Our findings deepen the understanding of adaptive protein expression, particularly in halophilic organisms. We highlight salt selection as a promising strategy for improving protein yield and functionality.


Assuntos
Escherichia coli , Potássio , Rodopsinas Microbianas , Escherichia coli/genética , Escherichia coli/metabolismo , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/química , Potássio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Mutação , Carotenoides/metabolismo , Carotenoides/química , Bacteroidetes/metabolismo , Bacteroidetes/genética , Bombas de Próton/metabolismo , Bombas de Próton/genética
3.
Commun Biol ; 7(1): 789, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951607

RESUMO

Light is a significant factor for living organisms with photosystems, like microbial rhodopsin-a retinal protein that functions as an ion pump, channel, and sensory transduction. Gloeobacter violaceus PCC7421, has a proton-pumping rhodopsin gene, the Gloeobacter rhodopsin (GR). The helix-turn-helix family of transcriptional regulators has various motifs, and they regulate gene expression in the presence of various metal ions. Here, we report that active proton outward pumping rhodopsin interacted with the helix-turn-helix transcription regulator and regulated gene expression. This interaction is confirmed using ITC analysis (KD of 8 µM) and determined the charged residues required. During in vitro experiments using fluorescent and luciferase reporter systems, ATP-binding cassette (ABC) transporters and the self-regulation of G. violaceus transcriptional regulator (GvTcR) are regulated by light, and gene regulation is observed in G. violaceus using the real-time polymerase chain reaction. These results expand our understanding of the natural potential and limitations of microbial rhodopsin function.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Regulação Bacteriana da Expressão Gênica , Luz , Fatores de Transcrição , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cianobactérias/metabolismo , Cianobactérias/genética , Bombas de Próton/metabolismo , Bombas de Próton/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Rodopsina/metabolismo , Rodopsina/genética
4.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985767

RESUMO

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Assuntos
Grafite , Hidrogênio , Shewanella , Hidrogênio/metabolismo , Shewanella/metabolismo , Shewanella/genética , Grafite/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Transporte de Elétrons , Reatores Biológicos , Biologia Sintética/métodos , Eletrodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Periplasma/metabolismo , Fontes de Energia Bioelétrica/microbiologia
5.
J Phys Chem B ; 128(30): 7407-7426, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024507

RESUMO

Microbial pump rhodopsins are highly versatile light-driven membrane proteins that couple protein conformational dynamics with ion translocation across the cell membranes. Understanding how microbial pump rhodopsins use specific amino acid residues at key functional sites to control ion selectivity and ion pumping direction is of general interest for membrane transporters, and could guide site-directed mutagenesis for optogenetics applications. To enable direct comparisons between proteins with different sequences we implement, for the first time, a unique numbering scheme for the microbial pump rhodopsin residues, NS-mrho. We use NS-mrho to show that distinct microbial pump rhodopsins typically have hydrogen-bond networks that are less conserved than anticipated from the amino acid residue conservation, whereas their hydrophobic interaction networks are largely conserved. To illustrate the role of the hydrogen-bond networks as structural elements that determine the functionality of microbial pump rhodopsins, we performed experiments, atomic-level simulations, and hydrogen bond network analyses on GR, the outward proton pump from Gloeobacter violaceus, and KR2, the outward sodium pump from Krokinobacter eikastus. The experiments indicate that multiple mutations that recover KR2 amino acid residues in GR not only fail to convert it into a sodium pump, but completely inactivate GR by abolishing photoisomerization of the retinal chromophore. This observation could be attributed to the drastically altered hydrogen-bond interaction network identified with simulations and network analyses. Taken together, our findings suggest that functional specificity could be encoded in the collective hydrogen-bond network of microbial pump rhodopsins.


Assuntos
Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Rodopsinas Microbianas , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Simulação de Dinâmica Molecular , Flavobacteriaceae/metabolismo , Flavobacteriaceae/química , Bombas de Próton/metabolismo , Bombas de Próton/química , Cianobactérias/metabolismo
6.
J Mol Biol ; 436(16): 168666, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880378

RESUMO

Heliorhodopsin (HeR) is a new rhodopsin family discovered in 2018 through functional metagenomic analysis. Similar to microbial rhodopsins, HeR has an all-trans retinal chromophore, and its photoisomerization to the 13-cis form triggers a relatively slow photocycle with sequential intermediate states (K, M, and O intermediates). The O intermediate has a relatively long lifetime and is a putative active state for transferring signals or regulating enzymatic reactions. Although the first discovered HeR, 48C12, was found in bacteria and the second HeR (TaHeR) was found in archaea, their key amino acid residues and molecular architectures have been recognized to be well conserved. Nevertheless, the rise and decay kinetics of the O intermediate are faster in 48C12 than in TaHeR. Here, using a new infrared spectroscopic technique with quantum cascade lasers, we clarified that the hydrogen bond between transmembrane helices (TM) 3 and 4 is essential for the altered O kinetics (Ser112 and Asn138 in 48C12). Interconverting mutants of 48C12 and TaHeR clearly revealed that the hydrogen bond is important for regulating the dynamics of the O intermediate. Overall, our study sheds light on the importance of the hydrogen bond between TM3 and TM4 in heliorhodopsins, similar to the DC gate in channelrhodopsins.


Assuntos
Ligação de Hidrogênio , Cinética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Serina/química , Serina/metabolismo , Asparagina/química , Asparagina/metabolismo , Modelos Moleculares , Conformação Proteica
7.
Nat Commun ; 15(1): 4306, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773114

RESUMO

Heliorhodopsins (HeRs) have been hypothesized to have widespread functions. Recently, the functions for few HeRs have been revealed; however, the hypothetical functions remain largely unknown. Herein, we investigate light-modulation of heterodimeric multidrug resistance ATP-binding cassette transporters (OmrDE) mediated by Omithinimicrobium cerasi HeR. In this study, we classifiy genes flanking the HeR-encoding genes and identify highly conservative residues for protein-protein interactions. Our results reveal that the interaction between OcHeR and OmrDE shows positive cooperatively sequential binding through thermodynamic parameters. Moreover, light-induced OcHeR upregulates OmrDE drug transportation. Hence, the binding may be crucial to drug resistance in O. cerasi as it survives in a drug-containing habitat. Overall, we unveil a function of HeR as regulatory rhodopsin for multidrug resistance. Our findings suggest potential applications in optogenetic technology.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Luz , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ligação Proteica , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/química , Optogenética/métodos
8.
Biochemistry ; 63(11): 1505-1512, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38745402

RESUMO

Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.


Assuntos
Exiguobacterium , Ligação de Hidrogênio , Exiguobacterium/metabolismo , Exiguobacterium/química , Prótons , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bombas de Próton/metabolismo , Bombas de Próton/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
9.
J Microbiol ; 62(4): 297-314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662311

RESUMO

To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.


Assuntos
Escuridão , Regulação Bacteriana da Expressão Gênica , Luz , Rodopsinas Microbianas , Transcriptoma , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica
10.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391026

RESUMO

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Assuntos
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transdução de Sinais
11.
J Mol Biol ; 436(5): 168331, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898385

RESUMO

TAT rhodopsin, a microbial rhodopsin found in the marine SAR11 bacterium HIMB114, uniquely possesses a Thr-Ala-Thr (TAT) motif in the third transmembrane helix. Because of a low pKa value of the retinal Schiff base (RSB), TAT rhodopsin exhibits both a visible light-absorbing state with the protonated RSB and a UV-absorbing state with the deprotonated RSB at a neutral pH. The UV-absorbing state, in contrast to the visible light-absorbing one, converts to a long-lived photointermediate upon light absorption, implying that TAT rhodopsin functions as a pH-dependent light sensor. Despite detailed biophysical characterization and mechanistic studies on the TAT rhodopsin, it has been unknown whether other proteins with similarly unusual features exist. Here, we identified several new rhodopsin genes homologous to the TAT rhodopsin of HIMB114 (TATHIMB) from metagenomic data. Based on the absorption spectra of expressed proteins from these genes with visible and UV peaks similar to that of TATHIMB, they were classified as Twin-peaked Rhodopsin (TwR) family. TwR genes form a gene cluster with a set of 13 ORFs conserved in subclade IIIa of SAR11 bacteria. A glutamic acid in the second transmembrane helix, Glu54, is conserved in all of the TwRs. We investigated E54Q mutants of two TwRs and revealed that Glu54 plays critical roles in regulating the RSB pKa, oligomer formation, and the efficient photoreaction of the UV-absorbing state. The discovery of novel TwRs enables us to study the universality and individuality of the characteristics revealed so far in the original TATHIMB and contributes to further studies on mechanisms of unique properties of TwRs.


Assuntos
Alphaproteobacteria , Ácido Glutâmico , Rodopsinas Microbianas , Ácido Glutâmico/química , Ácido Glutâmico/genética , Concentração de Íons de Hidrogênio , Luz , Rodopsinas Microbianas/química , Rodopsinas Microbianas/classificação , Rodopsinas Microbianas/genética , Sequência Conservada , Filogenia
12.
J Mol Biol ; 436(5): 168273, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709010

RESUMO

Heliorhodopsin (HeR), a recently discovered new rhodopsin family, contains a single counterion of the protonated Schiff base, E108 in HeR from Thermoplasmatales archaeon SG8-52-1 (TaHeR). Upon light absorption, the M and O intermediates form in HeRs, as well as type-1 microbial rhodopsins, indicating that the proton transfer from the Schiff base leads to the activation of HeRs. The present flash photolysis study of TaHeR in the presence of a pH-sensitive dye showed that TaHeR contains a proton-accepting group (PAG) inside protein. Comprehensive mutation study of TaHeR found the E108D mutant abolishing the M formation, which is not only at pH 8, but also at pH 9 and 10. The lack of M observation does not originate from the short lifetime of the M intermediate in E108D, as FTIR spectroscopy revealed that a red-shifted K-like intermediate is long lived in E108D. It is likely that the K-like intermediate returns to the unphotolyzed state without internal proton transfer in E108D. E108 and D108 are the Schiff base counterions of the wild-type and E108D mutant TaHeR, respectively, whereas small difference in length of side chains determine internal proton transfer reaction from the Schiff base. Based on the present finding, we propose that the internal water cluster (four water molecules) constitutes PAG in the M intermediate of TaHeR. In the wild type TaHeR, a protonated water cluster is stabilized by forming a salt bridge with E108. In contrast, slightly shortened counterion (D108) cannot stabilize the protonated water cluster in E108D, and thus impairs internal proton transfer from the Schiff base.


Assuntos
Prótons , Rodopsinas Microbianas , Thermoplasmales , Concentração de Íons de Hidrogênio , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Thermoplasmales/genética , Thermoplasmales/metabolismo , Mutação , Cristalografia por Raios X , Conformação Proteica
13.
Q Rev Biophys ; 57: e1, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831008

RESUMO

Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.


Assuntos
Neurociências , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Optogenética , Neurônios , Biofísica
14.
J Phys Chem B ; 127(37): 7872-7886, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37694950

RESUMO

Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.


Assuntos
Bacteriorodopsinas , Rodopsinas Sensoriais , Rodopsinas Sensoriais/genética , Bases de Schiff , Rodopsinas Microbianas/genética
15.
Biochemistry ; 62(12): 1849-1857, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243673

RESUMO

Microbial rhodopsins are light-receptive proteins with various functions triggered by the photoisomerization of the retinal chromophore from the all-trans to 13-cis configuration. A retinal chromophore is covalently bound to a lysine residue in the middle of the seventh transmembrane helix via a protonated Schiff base. Bacteriorhodopsin (BR) variants lacking a covalent bond between the side chain of Lys-216 and the main chain formed purple pigments and exhibited a proton-pumping function. Therefore, the covalent bond linking the lysine residue and the protein backbone is not considered a prerequisite for microbial rhodopsin function. To further examine this hypothesis regarding the role of the covalent bond at the lysine side chain for rhodopsin functions, we investigated K255G and K255A variants of sodium-pumping rhodopsin, Krokinobacter rhodopsin 2 (KR2), with an alkylamine retinal Schiff base (prepared by mixing ethyl- or n-propylamine and retinal (EtSB or nPrSB)). The KR2 K255G variant incorporated nPrSB and EtSB as similarly to the BR variants, whereas the K255A variant did not incorporate these alkylamine Schiff bases. The absorption maximum of K255G + nPrSB was 524-516 nm, which was close to the 526 nm absorption maximum of the wild-type + all-trans retinal (ATR). However, the K255G + nPrSB did not exhibit any ion transport activity. Since the KR2 K255G variant easily released nPrSB during light illumination and did not form an O intermediate, we concluded that a covalent bond at Lys-255 is important for the stable binding of the retinal chromophore and formation of an O intermediate to achieve light-driven Na+ pump function in KR2.


Assuntos
Flavobacteriaceae , Rodopsina , Rodopsina/química , Bases de Schiff/química , Lisina/metabolismo , Flavobacteriaceae/metabolismo , Transporte de Íons , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Sódio/metabolismo , Luz
16.
mSystems ; 8(3): e0000823, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37222519

RESUMO

Microbial rhodopsins are found more than once in a single genome (paralogs) often have different functions. We screened a large dataset of open ocean single-amplified genomes (SAGs) for co-occurrences of multiple rhodopsin genes. Many such cases were found among Pelagibacterales (SAR11), HIMB59, and the Gammaproteobacteria Pseudothioglobus SAGs. These genomes always had a bona fide proteorhodopsin and a separate cluster of genes containing a second rhodopsin associated with a predicted flotillin coding gene and have thus been named flotillin-associated rhodopsins (FArhodopsins). Although they are members of the proteorhodopsin protein family, they form a separate clade within that family and are quite divergent from known proton-pumping proteorhodopsins. They contain either DTT, DTL, or DNI motifs in their key functional amino acids. FArhodopsins are mainly associated with the lower layers of the epipelagic zone. All marine FArhodopsins had the retinal binding lysine, but we found relatives in freshwater metagenomes lacking this key amino acid. AlphaFold predictions of marine FArhodopsins indicate that their retinal pocket might be very reduced or absent, hinting that they are retinal-less. Freshwater FArhodopsins were more diverse than marine ones, but we could not determine if there were other rhodopsins in the genome due to the lack of SAGs or isolates. Although the function of FArhodopsins could not be established, their conserved genomic context indicated involvement in the formation of membrane microdomains. The conservation of FArhodopsins in diverse and globally abundant microorganisms suggests that they may be important in the adaptation to the twilight zone of aquatic environments. IMPORTANCE Rhodopsins have been shown to play a key role in the ecology of aquatic microbes. Here, we describe a group of widespread rhodopsins in aquatic microbes associated with dim light conditions. Their characteristic genomic context found in both marine and freshwater environments indicates a novel potential involvement in membrane microstructure that could be important for the function of the coexisting proteorhodopsin proton pumps. The absence or reduction of the retinal binding pocket points to a drastically different physiological role.


Assuntos
Rodopsina , Rodopsinas Microbianas , Rodopsina/química , Rodopsinas Microbianas/genética , Bactérias/metabolismo
17.
Photochem Photobiol Sci ; 22(8): 1809-1823, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37036621

RESUMO

A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.


Assuntos
Bacteriorodopsinas , Bases de Schiff , Bases de Schiff/química , Carotenoides/metabolismo , Retinaldeído/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Concentração de Íons de Hidrogênio
18.
ISME J ; 17(7): 1063-1073, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120702

RESUMO

Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.


Assuntos
Bactérias , Rodopsina , Rodopsina/genética , Rodopsina/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias/genética , Processos Fototróficos , Transporte Biológico , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Filogenia
19.
Nat Commun ; 13(1): 5501, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127376

RESUMO

Rhodopsins had long been considered non-fluorescent until a peculiar voltage-sensitive fluorescence was reported for archaerhodopsin-3 (Arch3) derivatives. These proteins named QuasArs have been used for imaging membrane voltage changes in cell cultures and small animals, but they could not be applied in living rodents. To develop the next generation of sensors, it is indispensable to first understand the molecular basis of the fluorescence and its modulation by the membrane voltage. Based on spectroscopic studies of fluorescent Arch3 derivatives, we propose a unique photo-reaction scheme with extended excited-state lifetimes and inefficient photoisomerization. Molecular dynamics simulations of Arch3, of the Arch3 fluorescent derivative Archon1, and of several its mutants have revealed different voltage-dependent changes of the hydrogen-bonding networks including the protonated retinal Schiff-base and adjacent residues. Experimental observations suggest that under negative voltage, these changes modulate retinal Schiff base deprotonation and promote a decrease in the populations of fluorescent species. Finally, we identified molecular constraints that further improve fluorescence quantum yield and voltage sensitivity.


Assuntos
Rodopsinas Microbianas , Bases de Schiff , Animais , Hidrogênio , Ligação de Hidrogênio , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Bases de Schiff/química , Análise Espectral
20.
mSystems ; 7(5): e0040522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121162

RESUMO

Rhodopsins are widely distributed across all domains of life where they perform a plethora of functions through the conversion of electromagnetic radiation into physicochemical signals. As a result of an extensive survey of available genomic and metagenomic sequencing data, we reported the existence of novel clades and exotic sequence motifs scattered throughout the evolutionary radiations of both Type-1 and Type-3 rhodopsins that will likely enlarge the optogenetics toolbox. We expanded the typical rhodopsin blueprint by showing that a highly conserved and functionally important arginine residue (i.e., Arg82) was substituted multiple times during evolution by an extensive amino acid spectrum. We proposed the umbrella term Alt-rhodopsins (AltRs) for all such proteins that departed Arg82 orthodoxy. Some AltRs formed novel clades in the rhodopsin phylogeny and were found in giant viruses. Some newly uncovered AltRs were phylogenetically close to heliorhodopsins, which allowed a closer examination of the phylogenetic border between Type-1 rhodopsins and heliorhodopsins. Comprehensive phylogenetic trees and ancestral sequence reconstructions allowed us to advance the hypothesis that proto-heliorhodopsins were a eukaryotic innovation before their subsequent diversification into the extant Type-3 rhodopsins. IMPORTANCE The rhodopsin scaffold is remarkably versatile and widespread, coupling light availability to energy production and other light-dependent cellular responses with minor alterations to critical residues. We described an unprecedented spectrum of substitutions at one of the most conserved amino acids in the rhodopsin fold, Arg82. We denoted such phylogenetically diverse rhodopsins with the umbrella name Alt-rhodopsins (AltR) and described a distinct branch of AltRs in giant viruses. Intriguingly, some AltRs were the closest phylogenetic neighbors to Heliorhodopsins (HeRs) whose origins have remained enigmatic. Our analyses of HeR origins in the light of AltRs led us to posit a most unusual evolutionary trajectory that suggested a eukaryotic origin for HeRs before their diversification in prokaryotes.


Assuntos
Rodopsina , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Rodopsina/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA