Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Physiol Plant ; 176(4): e14453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091124

RESUMO

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Melatonina , Fenóis , Rosmarinus , Raios Ultravioleta , Melatonina/farmacologia , Melatonina/metabolismo , Rosmarinus/metabolismo , Rosmarinus/efeitos dos fármacos , Rosmarinus/efeitos da radiação , Antioxidantes/metabolismo , Fenóis/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Ácido Rosmarínico , Cinamatos/metabolismo , Cinamatos/farmacologia , Depsídeos/metabolismo
2.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363812

RESUMO

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Genoma de Planta/genética , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Depsídeos/metabolismo , Multiômica
3.
Anim Biotechnol ; 34(9): 5067-5074, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878368

RESUMO

The present study aimed to assess the impact of grape seed extract (GSE), onion peel extract (OPE), and rosemary extract (ROE) on Diquat-induced growth restriction and oxidative stress in Lohmann chicks. A total of 200 chicks were randomly assigned to 5 diets: the positive control (PC) group, the negative control (NC) group, GSE group, OPE group, and ROE group. During the first 7 d of trial, compared with NC and PC groups, the GSE group enhanced average daily feed intake (ADFI). From day 8-21, diquat injection resulted in reduced growth performance, increased platelet volume distribution width (PWD), malondialdehyde (MDA) concentration, and activities of alanine aminotransferase (ALT) in chick serum; it also decreased total protein (TP), albumin (ALB), globulin (GLB) concentration, activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) in chick serum; furthermore, it increased MDA concentration while decreasing GST activities in liver. The NC group exhibited lower average daily gain (ADG) than other groups. Compared with NC group, GSE group reduced ALT activities, MDA levels, and red cell distribution width (RDW), and PDW concentration; it also increased SOD, GST activities. The ROE group lowered ALT activities and MDA concentration. The OPE group decreased ALT activities, and MDA levels, RDW, and PDW concentration, and increased SOD activities of chicks. These results suggest that supplementing antioxidants in diets alleviated oxidative stress in chicks challenged by improving antioxidant capacity and liver function.


Assuntos
Extrato de Sementes de Uva , Rosmarinus , Animais , Extrato de Sementes de Uva/farmacologia , Extrato de Sementes de Uva/metabolismo , Diquat/toxicidade , Diquat/metabolismo , Cebolas/metabolismo , Rosmarinus/metabolismo , Antioxidantes/farmacologia , Dieta/veterinária , Estresse Oxidativo , Fígado/metabolismo , Suplementos Nutricionais , Superóxido Dismutase/metabolismo
4.
Physiol Plant ; 175(4): e13956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37327069

RESUMO

Melatonin is a stress-related hormone that plays a critical role in triggering the plant defence system and regulating secondary metabolism when plants are exposed to stress. To explore the potential roles of melatonin in response to Ultraviolet-B (UV-B) radiation, we examined the effects of exogenous melatonin on rosemary in vitro shoots under UV-B stress. The application of melatonin (50 µM) alleviated the adverse effects of UV-B stress on the biomass, photosynthetic pigment contents, and membrane lipids of the rosemary in vitro shoots. Melatonin significantly increased superoxide dismutase (1.15.1.1, SOD), peroxidase (1.11.1.7, POD), and catalase (1.11.1.6, CAT) activities by 62%, 99%, and 53%, respectively. The contents of total phenols, rosmarinic acid, and carnosic acid increased under UV-B stress, and they further increased by the melatonin treatment by 41%, 68%, and 67%, respectively, compared with the control group. Under UV-B stress, the increased total phenol content in melatonin-pretreated plants could be attributed to the activation of phenylalanine ammonia-lyase (4.3.1.5, PAL) and tyrosine aminotransferase (2.6.1.5, TAT). In addition, melatonin enhanced the antioxidant and antibacterial activities of the rosemary in vitro shoots under UV-B stress. These results suggest that melatonin can alleviate the damage caused by UV-B stress and also enhance the secondary metabolism and bioactivity of rosemary in vitro shoots.


Assuntos
Melatonina , Rosmarinus , Melatonina/farmacologia , Rosmarinus/metabolismo , Biomassa , Antioxidantes/metabolismo , Fenóis/metabolismo
5.
Behav Pharmacol ; 34(1): 37-44, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730811

RESUMO

Rosemary essential oil (REO) has been used for several medical purposes. Previous studies have shown the antinociceptive effect of the oil. This study aimed to investigate the role of some well-known receptors in the antinociceptive effect of REO. Male Swiss mice (25-30 g) were used. To assess the antinociceptive activity, the formalin test was used. At first, the antinociceptive effect of three doses of rosemary oil (150, 300 and 450 µL/kg) was tested, and then a dose of 300 µL/kg was selected for the mechanistic study. Animals were pretreated with several antagonists and enzyme inhibitors to evaluate the role of adrenergic, cholinergic, serotoninergic, dopaminergic and opioid receptors as well as the NO/cGMP/K ATP pathway in the antinociceptive effect of rosemary essential oil. Yohimbine (5 mg/kg), prazocin (2 mg/kg), propranolol (2 mg/kg), atropine (2.5 mg/kg) naloxone (5 mg/kg), cyproheptadine (2 mg/kg), ondansetron (2 mg/kg) and haloperidol (1 mg/kg) could not reverse the antinociceptive effect. Sulpiride (20 mg/kg) only showed preventive activity in the early phase of formalin test while methylene blue (5 mg/kg), L-NAME (20 mg/kg) and glibenclamide (10 mg/kg) significantly attenuated the antinociceptive effect of REO in both phases. Tadalafil (2 mg/kg) potentiated the antinociceptive effect of REO in the late phase of formalin test and arginine (100 mg/kg) had no effect on both phases. Therefore the NO/cGMP/K ATP pathway might have an important role in the antinociceptive effect of REO.


Assuntos
Óleos Voláteis , Rosmarinus , Camundongos , Masculino , Animais , Analgésicos/farmacologia , Rosmarinus/metabolismo , GMP Cíclico/metabolismo , Trifosfato de Adenosina
6.
Plant J ; 113(4): 819-832, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579923

RESUMO

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.


Assuntos
Diterpenos , Rosmarinus , Salvia , Rosmarinus/genética , Rosmarinus/metabolismo , Salvia/genética , Salvia/metabolismo , Abietanos/metabolismo , Diterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromossomos
7.
J Cancer Res Ther ; 18(6): 1674-1682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36412429

RESUMO

Background: Non small cell lung cancer (NSCLC) is a global, fatal oncological malady to which conventional and targeted therapies proved less effective with consequent side effects; hence, phytocomponents from herbal sources may provide potent alternative and should be tested for cancer intervention. Activation and overexpression of proto-oncogene tyrosine kinase Src (c-Src) and focal adhesion kinase (FAK) lead to cell proliferation and invasion. Hence, in the present investigation, in silico analysis was carried out to identify molecular intervention of phytocomponents in blocking the active site and thus inhibiting c-Src and FAK activation, which in turn could control progression of NSCLC. Materials and Methods: In silico analysis was carried out using Molegro Virtual Docker, Molegro Molecular Viewer, and ClusPro server for ligand-protein and protein-protein interaction study. Phytochemical analysis and assay for antioxidant activity of hydroalcoholic extract of Rosmarinus officinalis L. were carried out using standard phytochemical tests, high-performance thin-layer chromatography, and 2, 2-diphenyl-1-picrylhydrazyl assay. Effectiveness of extract in arresting cell proliferation was confirmed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay on A549 cell line. Results: In silico analysis indicated effective binding of rosmarinic acid to the active site of target proteins FAK and c-Src, blocking their activity. MTT assay revealed potent antiproliferative activity of hydroalcoholic extract which acted in dose-dependent manner. Phytochemical analysis confirmed that the extract was rich in phytocomponents and had antioxidant activity of 94.9%, which could therefore effectively eliminate free radicals and inhibit cell progression. Conclusion: In silico and in vitro studies confirmed that phytocomponents present in hydroalcoholic extract of R. officinalis L. could effectively block the active site of target proteins and thus controlled cell proliferation on NSCLC cells, suggesting herb as an effective alternative medicine for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Rosmarinus , Humanos , Antioxidantes , Domínio Catalítico , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias Pulmonares/tratamento farmacológico , Rosmarinus/metabolismo , Proteína Tirosina Quinase CSK/metabolismo
8.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364071

RESUMO

Alzheimer's disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aß) aggregation and impaired synaptic transmission, which makes the associated proteins, such as ß-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.


Assuntos
Doença de Alzheimer , Rosmarinus , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Rosmarinus/metabolismo , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/uso terapêutico , Sinapsinas/uso terapêutico , Acetilcolinesterase/metabolismo , Simulação de Dinâmica Molecular
9.
Asian Pac J Cancer Prev ; 23(9): 3071-3081, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36172670

RESUMO

BACKGROUND: FOXD1 expression in oral squamous cell carcinoma remains uncovered. The aim was to detect the anticancer effect of Rosemary Extract RE through the evaluation of FOXD1 gene expression in (OSCC) by quantitative PCR. METHODS: OSCC cell line was served as a control group. Moreover, the OSCC cell line (SCC-15) was treated with RE (OSCC/ RE group) at 24, 48, and 72 hs time intervals. We assessed the antioxidant activity of RE by evaluation of lipid peroxidation (MDA) and superoxide dismutase (SOD) levels. The cytotoxic effects of RE were examined by MTT assay. mTOR and LC3 I/II autophagy protein markers were assessed by western blot. Apoptosis activity was assessed. RESULTS: The study results were statistically assessed. Intergroup comparisons were analyzed, whereas intragroup comparisons were conducted utilizing one-way repeated measures ANOVA, followed by multiple pairwise paired t-tests with Bonferroni correction revealed a significant increase of FOXD1 gene expression in the control OSCC group in comparison to the OSCC/RE group (p-value <0.001). A significant decrease of mTOR/LC3I/II proteins expression in the OSCC/RE group compared to the control OSCC group (p-value <0.001). CONCLUSION: FOXD1 can be considred a diagnostic biomarker for OSCC. RE inhibits autophagy of oral human cancer cells via mTOR/LC3I/II-dependent pathways and decrease caspase -3 apoptotic level.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Rosmarinus , Antioxidantes/farmacologia , Apoptose , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição Forkhead , Humanos , Neoplasias Bucais/metabolismo , Extratos Vegetais/farmacologia , Rosmarinus/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
Braz J Biol ; 84: e258234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830129

RESUMO

The present work was showed to assess the effect of administration of rosemary extract on etoposide-induced toxicity, injury and proliferation in male rats were investigated. Forty male albino rats were arranged into four equal groups. 1st group, control; 2nd group, etoposide; 3rd group, co-treated rosemary & etoposide; 4th group, rosemary alone. In comparison to the control group, etoposide administration resulted in a significant increase in serum ALT, AST, ALP, total bilirubin, total protein, and gamma GT. In contrast; a significant decrease in albumin level in etoposide group as compared to G1. G3 revealed a significant decrease in AST, ALT, ALP, total protein and total bilirubin levels and a significant rise in albumin level when compared with G2. Serum levels of urea, creatinine, potassium ions, and chloride ions significantly increased; while sodium ions were significantly decreased in G2 when compared with G1. Also, there was an increase of MDA level for etoposide treated group with corresponding control rats. However, there was a remarkable significant decrease in SOD, GPX and CAT levels in G2 as compared to G1. There was a significant increase in serum hydrogen peroxide (H2O2) and Nitric oxide (NO) levels in group treated with etoposide when compared to control group. It was noticeable that administrated by rosemary alone either with etoposide had not any effect on the levels of H2O2 and Nitric oxide. Serum level of T3 and T4 was significantly increased in etoposide-administered rats in comparison with G1. The administration of rosemary, either alone or with etoposide, increased the serum levels of T3 and T4 significantly when compared to control rats. The gene expression analysis showed significant downregulation of hepatic SOD and GPx in (G2) when compared with (G1). The treatment with rosemary extract produced significant upregulation of the antioxidant enzymes mRNA SOD and GPx. MDA gene was increased in (G2) when contrasted with (G1). Treatment of the etoposide- induced rats with rosemary extract delivered significant decrease in MDA gene expression when compared with etoposide group. Rats treated with etoposide showed significant decline in hepatic Nrf2 protein expression, when compared with G1. While, supplementation of Etoposide- administered rats with the rosemary produced a significant elevation in hepatic Nrf2 protein levels. Additionally, the liver histological structure displayed noticeable degeneration and cellular infiltration in liver cells. It is possible to infer that rosemary has a potential role and that it should be researched as a natural component for etoposide-induced toxicity protection.


Assuntos
Rosmarinus , Albuminas/metabolismo , Albuminas/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bilirrubina/metabolismo , Bilirrubina/farmacologia , Etoposídeo/metabolismo , Etoposídeo/toxicidade , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Rosmarinus/química , Rosmarinus/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
11.
Hum Mol Genet ; 31(20): 3521-3538, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35708500

RESUMO

Recent research on familial dysautonomia (FD) has focused on the development of therapeutics that facilitate the production of the correctly spliced, exon 20-containing, transcript in cells and individuals bearing the splice-altering, FD-causing mutation in the elongator acetyltransferase complex subunit I (ELP1) gene. We report here the ability of carnosol, a diterpene present in plant species of the Lamiaceae family, including rosemary, to enhance the cellular presence of the correctly spliced ELP1 transcript in FD patient-derived fibroblasts by upregulating transcription of the ELP1 gene and correcting the aberrant splicing of the ELP1 transcript. Carnosol treatment also elevates the level of the RNA binding motif protein 24 (RBM24) and RNA binding motif protein 38 (RBM38) proteins, two multifunctional RNA-binding proteins. Transfection-mediated expression of either of these RNA binding motif (RBMs) facilitates the inclusion of exon 20 sequence into the transcript generated from a minigene-bearing ELP1 genomic sequence containing the FD-causing mutation. Suppression of the carnosol-mediated induction of either of these RBMs, using targeting siRNAs, limited the carnosol-mediated inclusion of the ELP1 exon 20 sequence. Carnosol treatment of FD patient peripheral blood mononuclear cells facilitates the inclusion of exon 20 into the ELP1 transcript. The increased levels of the ELP1 and RBM38 transcripts and the alternative splicing of the sirtuin 2 (SIRT2) transcript, a sentinel for exon 20 inclusion in the FD-derived ELP1 transcript, are observed in RNA isolated from whole blood of healthy adults following the ingestion of carnosol-containing rosemary extract. These findings and the excellent safety profile of rosemary together justify an expedited clinical study of the impact of carnosol on the FD patient population.


Assuntos
Disautonomia Familiar , Rosmarinus , Fatores de Elongação da Transcrição/metabolismo , Abietanos/farmacologia , Acetiltransferases , Adulto , Proteínas de Transporte/genética , Disautonomia Familiar/tratamento farmacológico , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Sirtuína 2/metabolismo , Fatores de Elongação da Transcrição/genética
12.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458697

RESUMO

Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4',7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.


Assuntos
Dibenzodioxinas Policloradas , Rosmarinus , Neoplasias Cutâneas , Animais , Citocromo P-450 CYP1A1/metabolismo , Cobaias , Humanos , Queratinócitos/metabolismo , Ligantes , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Rosmarinus/metabolismo , Neoplasias Cutâneas/metabolismo
13.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641608

RESUMO

The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Rosmarinus/química , Rosmarinus/metabolismo , Abietanos/química , Abietanos/metabolismo , Cromatografia em Camada Fina , Cinamatos/química , Cinamatos/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Fermentação , Humanos , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Rosmarínico
14.
J Trace Elem Med Biol ; 67: 126791, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34022565

RESUMO

BACKGROUND: Chromium hexavalent (CrVI) is known as a toxic contaminant that induced oxidative stress and nephrotoxicity in humans and animals. Rosmarinus officinalis is a perennial herb rich in biologically active constituents that have powerful antioxidant properties. So, the current work evaluated the effectiveness of Rosmarinus officinalis essential oil (REO) against alterations induced by potassium dichromate in the kidney of male rats. METHODS: GC-MS analysis, in vitro total phenol contents, and DPPH scavenging activity of REO were estimated. Thirty-five Wistar male rats were categorized into 5 groups. The first group was the control, the second one was orally administered rosemary essential oil (REO; 0.5 mL/kg BW), the third group was injected intraperitoneally with hexavalent chromium (CrVI; 2 mg/kg BW) for 14 days, the fourth group used as the protective group (REO was administrated 30 min before i.p. injection of CrVI) and the fifth group applied as the therapeutic group (rats injected with CrVI 30 min followed by oral administration of REO), respectively. RESULTS: Twenty-nine components were detected with high total phenolic contents and high DPPH scavenging activity. Results revealed that CrVI- intoxicated rats showed a valuable increase in oxidative stress profile (TBARS and H2O2) and a notable decline in glutathione (GSH), total protein content, and enzymatic antioxidants (SOD, CAT, GPx, and GST). Furthermore, serum kidney functions biomarkers (urea, creatinine, and uric acid) were increased significantly. Also, the administration of CrVI showed histological and immunohistochemical (PCNA-ir) changes in rat kidney tissue. Otherwise, administration of REO pre or post-treatment with CrVI significantly restored most of the biochemical parameters in addition to improvement in kidney tissue architecture. Moreover, individual intake with REO exhibited an amendment in oxidative stress markers. CONCLUSION: Conclusively, REO had a potential antioxidant capacity in ameliorating K2Cr2O7-induced nephrotoxicity, especially in the protection group.


Assuntos
Óleos Voláteis , Dicromato de Potássio/toxicidade , Rosmarinus , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Rim/metabolismo , Peroxidação de Lipídeos , Masculino , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Estresse Oxidativo , Fenóis/metabolismo , Ratos , Ratos Wistar , Rosmarinus/metabolismo
15.
Genes (Basel) ; 13(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052408

RESUMO

To study the effects of Methyl jasmonates (MeJA) on rosemary suspension cells, the antioxidant enzymes' change of activities under different concentrations of MeJA, including 0 (CK), 10 (M10), 50 (M50) and 100 µM MeJA (M100). The results demonstrated that MeJA treatments increased the activities of phenylalanine ammonla-lyase (PAL), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and polyphenol oxidase (PPO) and reduced the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), thus accelerating the ROS scavenging. Comparative transcriptome analysis of different concentrations of MeJA showed that a total of 7836, 6797 and 8310 genes were differentially expressed in the comparisons of CKvsM10, CKvsM50, CKvsM100, respectively. The analysis of differentially expressed genes (DEGs) showed phenylpropanoid biosynthesis, vitamin B6, ascorbate and aldarate metabolism-related genes were significantly enriched. The transcripts of flavonoid and terpenoid metabolism pathways and plant hormone signal transduction, especially the jasmonic acid (JA) signal-related genes, were differentially expressed in CKvsM50 and CKvsM100 comparisons. In addition, the transcription factors (TFs), e.g., MYC2, DELLA, MYB111 played a key role in rosemary suspension cells under MeJA treatments. qRT-PCR of eleven DEGs showed a high correlation between the RNA-seq and the qRT-PCR result. Taken together, MeJA alleviated peroxidative damage of the rosemary suspension cells in a wide concentration range via concentration-dependent differential expression patterns. This study provided a transcriptome sequence resource responding to MeJA and a valuable resource for the genetic and genomic studies of the active compounds engineering in rosemary.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Compostos Fitoquímicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Rosmarinus/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Rosmarinus/genética , Rosmarinus/crescimento & desenvolvimento
16.
Anal Chem ; 92(13): 8793-8801, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479074

RESUMO

Whether chemists or biologists, researchers dealing with metabolomics require tools to decipher complex mixtures. As a part of metabolomics and initially dedicated to identifying bioactive natural products, dereplication aims at reducing the usual time-consuming process of known compounds isolation. Mass spectrometry and nuclear magnetic resonance are the most commonly reported analytical tools during dereplication analysis. Though it has low sensitivity, 13C NMR has many advantages for such a study. Notably, it is nonspecific allowing simultaneous high-resolution analysis of any organic compounds including stereoisomers. Since NMR spectrometers nowadays provide useful data sets in a reasonable time frame, we have embarked upon writing software dedicated to 13C NMR dereplication. The present study describes the development of a freely distributed algorithm, namely MixONat and its ability to help researchers decipher complex mixtures. Based on Python 3.5, MixONat analyses a {1H}-13C NMR spectrum optionally combined with DEPT-135 and 90 data-to distinguish carbon types (i.e., CH3, CH2, CH, and C)-as well as a MW filtering. The software requires predicted or experimental carbon chemical shifts (δc) databases and displays results that can be refined based on user interactions. As a proof of concept, this 13C NMR dereplication strategy was evaluated on mixtures of increasing complexity and exhibiting pharmaceutical (poppy alkaloids), nutritional (rosemary extracts) or cosmetics (mangosteen peel extract) applications. Associated results were compared with other methods commonly used for dereplication. MixONat gave coherent results that rapidly oriented the user toward the correct structural types of secondary metabolites, allowing the user to distinguish between structurally close natural products, including stereoisomers.


Assuntos
Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos , Software , Algoritmos , Alcaloides/química , Isótopos de Carbono/química , Bases de Dados de Compostos Químicos , Garcinia mangostana/química , Garcinia mangostana/metabolismo , Papaver/química , Papaver/metabolismo , Extratos Vegetais/química , Rosmarinus/química , Rosmarinus/metabolismo
17.
Food Chem ; 313: 126094, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31923867

RESUMO

Element contents in different types of spices and aromatic herbs collected from Italy and Tunisia were evaluated. The aim was to evaluate: the possible differences and/or similarities among the analyzed samples; if it is possible related the samples to their geographical origins; the nutritional quality and the potential health risks. Potassium, Ca, Mg and Ni were low in laurel and rosemary; mint and thyme showed the highest Na and the lowest Se contents; arsenic and Cd levels were found highest in verbena which had also the lowest Hg content; lastly, black pepper had the highest Mn and the lowest Pb contents. Instead discrimination between Italian and Tunisian samples for each spices and aromatic herbs under analysis was achieved by PCA. Essential elements intake through samples was small. Levels of Pb in some samples exceed the maximum allowable level, but any safety risk for consumers is excluded.


Assuntos
Espectrometria de Massas , Especiarias/análise , Oligoelementos/análise , Análise Multivariada , Análise de Componente Principal , Rosmarinus/química , Rosmarinus/metabolismo , Sicília , Thymus (Planta)/química , Thymus (Planta)/metabolismo , Tunísia , Verbena/química , Verbena/metabolismo
18.
Appl Biochem Biotechnol ; 191(2): 482-495, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31797151

RESUMO

Biosynthesis of carnosic acid (CA), one of the most industrially valuable medicinal compounds present in rosemary (Rosmarinus officinalis L.) leaves, is affected by various plant stressors. In this study, effects of silver nanoparticle (AgNP) treatment on the secondary metabolism and CA production of rosemary plants were investigated. AgNP of 0, 25, 50, 100, and 200 ppm were utilized on hydroponically grown plants using foliar spray. Efficient absorbance and translocation of AgNPs to the plant roots were confirmed by XRF (X-ray fluorescence) analysis. The fluctuations of important antioxidant compounds such as CA content, phenolics, flavonoids, and acid ascorbic were analyzed and their correlations evaluated. Results revealed that application of 200 ppm AgNPs for 12 days increased CA level more than 11%, as compared to the control plants. Furthermore, significant positive correlations were observed between total flavonoids and CA content under AgNP treatment, suggesting that AgNP acted as an elicitor and triggered the enhancement of CA accumulation effectively. These data suggest that concentration-dependent AgNP may be used to boost antioxidant activity and phytochemical contents of other medicinal plants.


Assuntos
Abietanos/metabolismo , Nanopartículas Metálicas/química , Rosmarinus/efeitos dos fármacos , Rosmarinus/metabolismo , Prata/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico , Flavonoides/análise , Irã (Geográfico) , Fenóis/metabolismo , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Rosmarinus/química
19.
Appl Microbiol Biotechnol ; 103(17): 7029-7039, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31309269

RESUMO

Betulinic acid (BA) and its derivatives possess potent pharmacological activity against cancer and HIV. As with many phytochemicals, access to BA is limited by the requirement for laborious extraction from plant biomass where it is found in low amounts. This might be alleviated by metabolically engineering production of BA into an industrially relevant microbe such as Saccharomyces cerevisiae (yeast), which requires complete elucidation of the corresponding biosynthetic pathway. However, while cytochrome P450 enzymes (CYPs) that can oxidize lupeol into BA have been previously identified from the CYP716A subfamily, these generally do not seem to be specific to such biosynthesis and, in any case, have not been shown to enable high-yielding metabolic engineering. Here RoCYP01 (CYP716A155) was identified from the BA-producing plant Rosmarinus officinalis (rosemary) and demonstrated to effectively convert lupeol into BA, with strong correlation of its expression and BA accumulation. This was further utilized to construct a yeast strain that yields > 1 g/L of BA, providing a viable route for biotechnological production of this valuable triterpenoid.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Rosmarinus/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Bases de Dados Genéticas , Expressão Gênica , Triterpenos Pentacíclicos/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ácido Betulínico
20.
Ecotoxicol Environ Saf ; 180: 333-347, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31102841

RESUMO

Arsenic (As) recognized as a group I human carcinogen additionally poses a threat to plants which limit growth, metabolic activity, and productivity. Melatonin (MEL) is a naturally occurring compound in plants that have been recognized to mediate numerous morphological, physiological and molecular processes. Conversely, the role of MEL in inducing As-tolerance remains inexpressible and the plausible mechanisms in inducing As tolerance have remained largely unknown. The present investigation was designed to understand the protective role of MEL concentrations in rosemary herbs cultivated under As contamination. Arsenic evoked a deleterious decline on herb productivity, photosynthetic pigment, ion concentration, water status, ascorbic acid, essential oil (EO) yield and induced malformation of the chloroplast. Alternatively, increased organic osmolytes, oxidative impairment criteria, additionally antioxidant enzymes, phenol, flavonoid, anthocyanin, and EO%. Exogenous application of MEL with or without As, considerably increased growth, photosynthetic pigment, ion concentration, organic osmolytes as well as EO yield regarding polluted or non-polluted treatment respectively. Moreover, MEL treatment stabilized the cell membrane integrity, suppressed oxidative impairment criteria, and enhanced antioxidant capacity, additionally upregulation antioxidant enzymes. Plant treated with As showed a significant increase in As contamination and a bioconcentration factor in both root and shoot system. MEL supplementation under normal or As concentration, reduced As accumulation and bioconcentration factors, in either shoot or root systems. Additionally As decrease transfer factor, however, supplementation of MEL further decreased it. Application of 50 µM MEL might help the herbs to withstand As stress by strengthening their antioxidant machinery and osmoregulation capacity.


Assuntos
Antioxidantes/metabolismo , Arsênio/toxicidade , Cloroplastos/ultraestrutura , Melatonina/farmacologia , Rosmarinus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Arsênio/metabolismo , Tolerância a Medicamentos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Rosmarinus/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA