RESUMO
PURPOSE: To build a physiologically based pharmacokinetic (PBPK) model of the clinical OATP1B1/OATP1B3/BCRP victim drug rosuvastatin for the investigation and prediction of its transporter-mediated drug-drug interactions (DDIs). METHODS: The Rosuvastatin model was developed using the open-source PBPK software PK-Sim®, following a middle-out approach. 42 clinical studies (dosing range 0.002-80.0 mg), providing rosuvastatin plasma, urine and feces data, positron emission tomography (PET) measurements of tissue concentrations and 7 different rosuvastatin DDI studies with rifampicin, gemfibrozil and probenecid as the perpetrator drugs, were included to build and qualify the model. RESULTS: The carefully developed and thoroughly evaluated model adequately describes the analyzed clinical data, including blood, liver, feces and urine measurements. The processes implemented to describe the rosuvastatin pharmacokinetics and DDIs are active uptake by OATP2B1, OATP1B1/OATP1B3 and OAT3, active efflux by BCRP and Pgp, metabolism by CYP2C9 and passive glomerular filtration. The available clinical rifampicin, gemfibrozil and probenecid DDI studies were modeled using in vitro inhibition constants without adjustments. The good prediction of DDIs was demonstrated by simulated rosuvastatin plasma profiles, DDI AUClast ratios (AUClast during DDI/AUClast without co-administration) and DDI Cmax ratios (Cmax during DDI/Cmax without co-administration), with all simulated DDI ratios within 1.6-fold of the observed values. CONCLUSIONS: A whole-body PBPK model of rosuvastatin was built and qualified for the prediction of rosuvastatin pharmacokinetics and transporter-mediated DDIs. The model is freely available in the Open Systems Pharmacology model repository, to support future investigations of rosuvastatin pharmacokinetics, rosuvastatin therapy and DDI studies during model-informed drug discovery and development (MID3).
Assuntos
Interações Medicamentosas , Modelos Biológicos , Rosuvastatina Cálcica/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Fatores Etários , Área Sob a Curva , Transporte Biológico , Estatura , Peso Corporal , Etnicidade , Fezes/química , Genfibrozila/metabolismo , Humanos , Fígado , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Masculino , Proteínas de Neoplasias/metabolismo , Probenecid/metabolismo , Rifampina/metabolismo , Rosuvastatina Cálcica/sangue , Rosuvastatina Cálcica/urina , Fatores Sexuais , Software , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismoRESUMO
Magnetic nanoparticles (MNPs) modified with organic dendrimers are shown to be a viable sorbent of the microextraction of the drug rosuvastatin (RST; also known as Crestor). The MNPs were prepared from iron(II) chloride and iron(III) chloride and then coated with silicon dioxide. The coated MNPs produced by this method have diameters ranging from 10 to 60 nm according to scanning electron microscopy. The MNPs were further modified with organic dendrimers containing methyl methacrylate and ethylene diamine. The resulting MNPs were characterized by SEM, Fourier transform infra-red and thermal gravimetry analysis. Then, the efficacy of the modified MNPs with respect to the extraction of RST was studied. The adsorption of RST by MNPs can be best described by a Langmuir isotherm. Following elution with buffer, RST was quantified by HPLC. The method was applied to the determination of RST in (spiked) human blood plasma, urine, and in tablets. RST extraction efficiencies are 54.5% in plasma, 86.6% from the drug matrix, and 94.3% in urine. The highest adsorption capacity of the RST by the MNPs adsorbent was 61 mgâ g-1. Graphical abstract Co-precipitation was used to synthesize magnetic nanoparticles (MNPs). They were coated with a layer of SiO2 and then branched by organic dendrimers containing methyl methacrylate (MMA) and ethylene diamine (EDA). Rosuvastatin (RST) drug was trapped between dendrimer branches, therefore adsorption capacity of the drug was strongly increased.