RESUMO
The rotenone-induced animal model of Parkinson's disease (PD) has been used to investigate the pathogenesis of PD. Oxidative stress is one of the main contributors of neurodegeneration in PD. Flavonoids have the potential to modulate neuronal function and combat various neurodegenerative diseases. The pre- and post-supplementation of quercetin (50 mg/kg, p.o) was done in rats injected with rotenone (1.5 mg/kg, s.c). After the treatment, behavioral activities were monitored for motor activity, depression-like behavior, and cognitive changes. Rats were decapitated after behavioral analysis and the brain samples were dissected out for neurochemical and biochemical estimation. Results showed that supplementation of quercetin significantly (p<0.01) restored rotenone-induced motor and non-motor deficits (depression and cognitive impairments), enhanced antioxidant enzyme activities (p<0.01), and attenuated neurotransmitter alterations (p<0.01). It is suggested that quercetin supplementation improves neurotransmitter levels by mitigating oxidative stress via increasing antioxidant enzyme activity and hence improves motor activity, cognitive functions, and reduces depressive behavior. The results of the present study showed that quercetin pre-supplementation produced more significant results as compared to post-supplementation. These findings show that quercetin can be a potential therapeutic agent to reduce the risk and progression of PD.
Assuntos
Antioxidantes/administração & dosagem , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Quercetina/administração & dosagem , Rotenona/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Masculino , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/metabolismo , Ratos , Ratos Wistar , Rotenona/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Resultado do TratamentoRESUMO
Clinical diagnosis of Parkinson's disease (PD) occurs typically when a substantial proportion of dopaminergic neurons in the substantia nigra (SN) already died, and the first motor symptoms appear. Therefore, tools enabling the early diagnosis of PD are essential to identify early-stage PD patients in which neuroprotective treatments could have a significant impact. Here, we test the utility and sensitivity of the diffusion kurtosis imaging (DKI) in detecting progressive microstructural changes in several brain regions of mice exposed to chronic intragastric administration of rotenone, a mouse model that mimics the spatiotemporal progression of PD-like pathology from the ENS to the SN as described by Braak's staging. Our results show that DKI, especially kurtosis, can detect the progression of pathology-associated changes throughout the CNS. Increases in mean kurtosis were first observed in the dorsal motor nucleus of the vagus (DMV) after 2 months of exposure to rotenone and before the loss of dopaminergic neurons in the SN occurred. Remarkably, we also show that limited exposure to rotenone for 2 months is enough to trigger the progression of the disease in the absence of the environmental toxin, thus suggesting that once the first pathological changes in one region appear, they can self-perpetuate and progress within the CNS. Overall, our results show that DKI can be a useful radiological marker for the early detection and monitoring of PD pathology progression in patients with the potential to improve the clinical diagnosis and the development of neuroprotective treatments.
Assuntos
Imagem de Tensor de Difusão/métodos , Progressão da Doença , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Transtornos Parkinsonianos/diagnóstico por imagem , Rotenona/toxicidade , Administração Oral , Animais , Inseticidas/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Rotenona/administração & dosagem , Fatores de TempoRESUMO
Rasagiline mesylate (RSM) is a selective and irreversible monoamine oxidase B inhibitor used for the treatment of Parkinson's disease (PD). However, its unfavorable biopharmaceutical properties, such as extensive degradation in the gastrointestinal tract and first-pass metabolism are responsible for its low oral bioavailability and suboptimal therapeutic efficacy. Here, we report the feasibility of delivering RSM via the transdermal route using RSM containing microemulsion-based gel (RSM-MEG) to achieve effective management of PD. Our in vitro skin permeation studies of RSM-MEG showed significantly higher (at least ~1.5-fold) permeation across rat skin compared to the conventional RSM hydrogel. Our skin irritation studies in rabbits showed that RSM-MEG is safe for transdermal application. Finally, using the rat model of rotenone-induced Parkinsonism, we demonstrated that the topical application of RSM-MEG was equally effective in reversing PD symptoms when compared to oral RSM therapy. Thus, our study confirmed the feasibility and potential of transdermal delivery of RSM via simple topical application of RSM-MEG, and this approach could be an alternative therapeutic intervention for the treatment of Parkinson's disease.
Assuntos
Indanos/administração & dosagem , Inibidores da Monoaminoxidase/administração & dosagem , Doença de Parkinson Secundária/tratamento farmacológico , Pele/metabolismo , Administração Cutânea , Administração Oral , Animais , Disponibilidade Biológica , Modelos Animais de Doenças , Emulsões , Estudos de Viabilidade , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/farmacocinética , Indanos/farmacocinética , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Inibidores da Monoaminoxidase/farmacocinética , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Coelhos , Ratos , Rotenona/administração & dosagem , Rotenona/toxicidade , Testes CutâneosRESUMO
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.
Assuntos
Encefalopatias/prevenção & controle , Sucos de Frutas e Vegetais , Nefropatias/prevenção & controle , Hepatopatias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Rotenona/administração & dosagem , Vaccinium macrocarpon/metabolismo , Animais , Antioxidantes/farmacologia , Encefalopatias/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Nefropatias/induzido quimicamente , Hepatopatias/etiologia , Masculino , Ratos , Ratos Wistar , Desacopladores/administração & dosagemRESUMO
Repeated methamphetamine use leads to long lasting brain and behavioral changes in humans and laboratory rats. These changes have high energy requirements, implicating a role for mitochondria. We explored whether mitochondrial function underpins behaviors that occur in rats months after stopping methamphetamine self-administration. Accordingly, rats self-administered intravenous methamphetamine for 3 h/day for 14 days. The mitochondrial toxin rotenone was administered as (1 mg/kg/day for 6 days) via an osmotic minipump starting at 0, 14 or 28 days of abstinence abstinence. On abstinence day 61, expression of methamphetamine-induced behavioral sensitization was obtained with an acute methamphetamine challenge in rotenone-free rats. Rotenone impeded the expression of sensitization, with the most robust effects obtained with later abstinence exposure. These findings verified that self-titration of moderate methamphetamine doses results in behavioral (and thus brain) changes that can be revealed months after exposure termination, and that the meth-initiated processes progressed during abstinence so that longer abstinence periods were more susceptible to the consequences of exposure to a mitochondrial toxin.
Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Metanfetamina/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Locomoção/efeitos dos fármacos , Masculino , Metanfetamina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Ratos , Rotenona/administração & dosagem , Rotenona/efeitos adversos , Rotenona/análogos & derivados , Autoadministração , Fatores de TempoRESUMO
In this study, we determined whether the 201Tl (thallium-201)-based olfactory imaging is affected if olfactory sensory neurons received reduced pre-synaptic inhibition signals from dopaminergic interneurons in the olfactory bulb in vivo. The thallium-201 migration rate to the olfactory bulb and the number of action potentials of olfactory sensory neurons were assessed 3 h following left side nasal administration of rotenone, a mitochondrial respiratory chain complex I inhibitor that decreases the number of dopaminergic interneurons without damaging the olfactory sensory neurons in the olfactory bulb, in mice (6-7 animals per group). The migration rate of thallium-201 to the olfactory bulb was significantly increased following intranasal administration of thallium-201 and rotenone (10 µg rotenone, p = 0.0012; 20 µg rotenone, p = 0.0012), compared with that in control mice. The number of action potentials was significantly reduced in the olfactory sensory neurons in the rotenone treated side of 20 µg rotenone-treated mice, compared with that in control mice (p = 0.0029). The migration rate of thallium-201 to the olfactory bulb assessed with SPECT-CT was significantly increased in rats 24 h after the left intranasal administration of thallium-201 and 100 µg rotenone, compared with that in control rats (p = 0.008, 5 rats per group). Our results suggest that thallium-201 migration to the olfactory bulb is increased in intact olfactory sensory neurons with reduced pre-synaptic inhibition from dopaminergic interneurons in olfactory bulb glomeruli.
Assuntos
Inibição Neural/fisiologia , Neuroimagem , Neurônios Receptores Olfatórios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Radioisótopos de Tálio/química , Administração Intranasal , Animais , Neurônios Dopaminérgicos/metabolismo , Fenômenos Eletrofisiológicos , Masculino , Camundongos Endogâmicos ICR , Neurônios Receptores Olfatórios/metabolismo , Ratos Wistar , Rotenona/administração & dosagem , Radioisótopos de Tálio/administração & dosagem , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
The asymptomatic and clinical stages of Parkinson's disease (PD) are associated with comorbid non-motor symptoms including gastrointestinal (GI) dysfunction. Although the neuroprotective and gastroprotective roles of kolaviron (KV) have been reported independently, whether KV-mediated GI-protective capacity could be beneficial in PD is unknown. We therefore investigated the modulatory effects of KV on the loss of dopaminergic neurons, locomotor abnormalities, and ileal oxidative damage when rats are lesioned in the nigrostriatal pathway. KV treatment markedly suppressed the behavioral deficit and apomorphine-induced rotations associated with rotenone lesioning. KV attenuated the loss of nigrostriatal dopaminergic neurons and perturbations in the striatal glucose-regulated protein (GRP78) and X-box binding protein 1 (XBP1) levels. Ileal epithelial injury following stereotaxic rotenone infusion was associated with oxidative stress and marked inhibition of acetylcholine esterase activity and reduced expression of occludin in the crypt and villi. While KV treatment attenuated the redox imbalance in the gut and enhanced occludin immunoreactivity, acetylcholinesterase activity was not affected. Our data demonstrate ileal oxidative damage as a characteristic non-motor gut dysfunction in PD while showing the potential dual efficacy of KV in the attenuation of both neural defects and gut abnormalities associated with PD.
Assuntos
Corpo Estriado/efeitos dos fármacos , Flavonoides/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Rotenona/toxicidade , Substância Negra/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Flavonoides/isolamento & purificação , Microbioma Gastrointestinal/fisiologia , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Ratos , Rotenona/administração & dosagem , Técnicas Estereotáxicas , Substância Negra/metabolismoRESUMO
The conserved Blm10/PA200 activators bind to the proteasome core and facilitate peptide and protein turnover. Blm10/PA200 proteins enhance proteasome peptidase activity and accelerate the degradation of unstructured proteasome substrates. Our knowledge about the exact role of PA200 in diseased cells, however, is still limited. Here, we show that stable knockdown of PA200 leads to a significantly elevated number of cells in S phase after treatment with the ATP synthase inhibitor, oligomycin. However, following exposure to the complex I inhibitor rotenone, more PA200-depleted cells were in sub-G1 and G2/M phases indicative of apoptosis. Chromatin immunoprecipitation (ChIP) and ChIP-seq data analysis of collected reads indicate PA200-enriched regions in the genome of SH-SY5Y. We found that PA200 protein peaks were in the vicinity of transcription start sites. Gene ontology annotation revealed that genes whose promoters were enriched upon anti-PA200 ChIP contribute to the regulation of crucial intracellular processes, including proliferation, protein modifications and metabolism. Selective mitochondrial inhibitors induced PA200 redistribution in the genome, leading to protein withdrawal from some gene promoters and binding to others. Collectively, the results support a model in which PA200 potentially regulates cellular homeostasis at the transcriptional level, in addition to its described role as an alternative activator of the proteasome.
Assuntos
Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Oligomicinas/farmacologia , Reprodutibilidade dos Testes , Rotenona/administração & dosagem , Rotenona/farmacologiaRESUMO
Increasing evidence verified that oxidative stress and neuroinflammatory response exacerbates motor deficits and increases neuronal loss in several rodent models of Parkinson's disease. In the present study, we explore the neuroprotective effects of monascin in a rotenone-induced Parkinson's disease model as well as the underlying mechanisms. Our results showed that monascin remarkedly attenuated behavioral impairments and the depletion of dopaminergic neurons induced by rotenone in the rats. Besides, monascin decreased the levels of pro-inflammatory factors such as interleukin-1ß, interleukin-6, tumor necrosis factor-α and oxidative stress marker malondialdehyde while promoted the expression of superoxide dismutase, glutathione peroxidase and other antioxidant factors. Further detection of the expression of related proteins showed that monascin significantly promoted the expression of proliferator-activated receptor-gamma, F-E2-related factor 2 and heme oxygenase-1, but inhibited the expression of NF-κB. What's more, levels of growth factors that are essential for neuronal and synaptic function were increased under the effects of monascin. All in all, our results revealed that monascin exerted neuroprotective effects in rotenone model of Parkinson's disease via antioxidation and anti-neuroinflammation.
Assuntos
Encefalite/metabolismo , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos Sprague-Dawley , Rotenona/administração & dosagemRESUMO
Rotenone, an environmental toxin, triggers Parkinson's disease (PD)-like pathology through microglia-mediated neuronal death. The effects and molecular mechanisms of flavonoid luteolin against rotenone-induced toxicity was assessed in microglial BV2 cells. Cells were pretreated with luteolin (1-50 µM) for 12 h and then was co-treated with 20 µM of rotenone for an additional 12 h in the presence of luteolin. The viability (MTT), IL-1ß and TNF-α levels and lactate dehydrogenase (LDH) release (ELISA), and Park2, Lrrk2, Pink1, Nrf2 and Trx1 mRNA levels (qRT-PCR) were measured. In rotenone exposed microglia, luteolin increased viability significantly at lower concentrations (1-5 µM) compared to higher concentrations (25-50 µM). Rotenone increased LDH release and IL-1ß levels in a dose-dependent manner (1-20 µM). Luteolin inhibited rotenone-induced LDH release, however the activity decreased in concentration-dependent manner Neither rotenone nor luteolin altered TNF-α levels, but luteolin reduced IL-1ß levels in a concentration dependent manner in rotenone exposed cells. The mRNA levels of Nrf2 and Trx1, which are the master regulators of redox state, were increased by rotenone, as well as by luteolin, which exhibited an inverse relationship between its concentration and effect (1-20 µM). Park2 mRNA levels increased by luteolin, but decreased by rotenone. Pink1 mRNA levels was not altered by rotenone or luteolin. Lrrk2 mRNA levels reduced by luteolin, while it was increased by rotenone. Results suggest that luteolin have favorable effects on regulation of oxidative stress response, genes associated with PD and inflammatory pathways, hence protects microglia against rotenone toxicity in a hormetic manner.
Assuntos
Luteolina/farmacologia , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Hormese/efeitos dos fármacos , Inflamação/patologia , Inflamação/prevenção & controle , L-Lactato Desidrogenase/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Luteolina/administração & dosagem , Camundongos , Microglia/patologia , Oxirredução/efeitos dos fármacos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/fisiopatologia , Rotenona/administração & dosagem , Rotenona/toxicidadeRESUMO
Aim: The aim of this study is to investigate the possible protective effects of mitoquinone and oleandrin on rotenone induced Parkinson's disease in zebrafish. Materials and methods: Adult zebrafish were exposed to rotenone and mitoquinone for 30 days. Biochemical parameters were determined by spectrophotometric method and Parkinson's disease-related gene expressions were determined by reverse transcription polymerase chain reaction method. Measurement of neurotransmitters was performed by liquid chromatography tandem-mass spectrometry instrument. The accumulation of synuclein was demonstrated by immunohistochemical staining. In vitro thiazolyl blue tetrazolium bromide method was applied to determine the mitochondrial function of synaptosomal brain fractions using rotenone as a neurotoxic agent and mitoquinone and oleandrin as neuroprotective agents. Results: Mitoquinone improved the oxidant-antioxidant balance and neurotransmitter levels that were disrupted by rotenone. Mitoquinone also ameliorated the expressions of Parkinson's disease-related gene expressions that were disrupted by rotenone. According to thiazolyl blue tetrazolium bromide assay results, mitoquinone and oleandrin increased mitochondrial function which was decreased due to rotenone exposure. Conclusion: Based on the results of our study, positive effects of mitoquinone were observed in Parkinson's disease model induced by rotenone in zebrafish.
Assuntos
Cardenolídeos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Compostos Organofosforados/administração & dosagem , Doença de Parkinson/metabolismo , Ubiquinona/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Peixes/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Rotenona/administração & dosagem , Sinucleínas/metabolismo , Ubiquinona/administração & dosagem , Peixe-ZebraRESUMO
Parkinson's disease (PD) is the second common age-related neurodegenerative disease. It is characterized by control loss of voluntary movements control, resting tremor, postural instability, bradykinesia, and rigidity. The aim of the present work is to evaluate curcumin, niacin, dopaminergic and non-dopaminergic drugs in mice model of Parkinson's disease through behavioral, biochemical, genetic and histopathological observations. Mice treated with rotenone rerecorded significant increase in adenosine A2A receptor (A2AR) gene expression, α synuclein, acetylcholinesterase (AchE), malondialdehyde (MDA), angiotensin-II (Ang-II), c-reactive protein (CRP), interleukin-6 (IL-6), caspase-3 (Cas-3) and DNA fragmentation levels as compared with the control group. While, significant decrease in dopamine (DA), norepinephrine (NE), serotonin (5-HT), superoxide dismutase (SOD), reduced glutathione (GSH), ATP, succinate and lactate dehydrogenases (SDH &LDH) levels were detected. Treatment with curcumin, niacin, adenosine A2AR antagonist; ZM241385 and their combination enhanced the animals' behavior and restored all the selected parameters with variable degrees of improvement. The brain histopathological features of hippocampal and substantia nigra regions confirmed our results. In conclusion, the combination of curcumin, niacin and ZM241385 recorded the most potent treatment effect in Parkinsonism mice followed by ZM241385, as a single treatment. ZM241385 succeeded to antagonize adenosine A2A receptor by diminishing its gene expression and ameliorating all biochemical parameters under investigation. The newly investigated agent; ZM241385 has almost the same pattern of improvement as the classical drug; Sinemet®. This could shed the light to the need of detailed studies on ZM241385 for its possible role as a promising treatment against PD. Additionally, food supplements such as curcumin and niacin were effective in Parkinson's disease eradication.
Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Curcumina/farmacologia , Niacina/farmacologia , Doença de Parkinson Secundária , Receptor A2A de Adenosina/metabolismo , Rotenona/administração & dosagem , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Rotenona/farmacologia , Substância Negra/metabolismo , Substância Negra/patologiaRESUMO
Disturbances of cognitive functions occur rapidly during acute metabolic stress. However, the underlying mechanisms are not fully understood. Cortical gamma oscillations (30-100 Hz) emerging from precise synaptic transmission between excitatory principal neurons and inhibitory interneurons, such as fast-spiking GABAergic basket cells, are associated with higher brain functions, like sensory perception, selective attention and memory formation. We investigated the alterations of cholinergic gamma oscillations at the level of neuronal ensembles in the CA3 region of rat hippocampal slice cultures. We combined electrophysiology, calcium imaging (CamKII.GCaMP6f) and mild metabolic stress that was induced by rotenone, a lipophilic and highly selective inhibitor of complex I in the respiratory chain of mitochondria. The detected pyramidal cell ensembles showing repetitive patterns of activity were highly sensitive to mild metabolic stress. Whereas such synchronised multicellular activity diminished, the overall activity of individual pyramidal cells was unaffected. Additionally, mild metabolic stress had no effect on the rate of action potential generation in fast-spiking neural units. However, the partial disinhibition of slow-spiking neural units suggests that disturbances of ensemble formation likely result from alterations in synaptic inhibition. Our study bridges disturbances on the (multi-)cellular and network level to putative cognitive impairment on the system level.
Assuntos
Disfunção Cognitiva/metabolismo , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Células Piramidais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Disfunção Cognitiva/fisiopatologia , Eletrofisiologia/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ritmo Gama/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Interneurônios/classificação , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Rotenona/administração & dosagem , Rotenona/farmacologia , Estresse Fisiológico/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Desacopladores/administração & dosagem , Desacopladores/farmacologiaRESUMO
The pesticide rotenone inhibits mitochondrial complex I and is thought to cause neurological disorders such as Parkinson's disease and cognitive disorders. However, little is known about the effects of rotenone on conditioned taste aversion memory. In the present study, we investigated whether intranasal administration of rotenone affects conditioned taste aversion memory in mice. We also examined how the intranasal administration of rotenone modulates synaptic transmission and plasticity in layer V pyramidal neurons of the mouse insular cortex that is critical for conditioned taste aversion memory. We found that the intranasal administration of rotenone impaired conditioned taste aversion memory to bitter taste. Regarding its cellular mechanisms, long-term depression (LTD) but not long-term potentiation (LTP) was impaired in rotenone-treated mice. Furthermore, spontaneous inhibitory synaptic currents and tonic GABA currents were decreased in layer V pyramidal neurons of rotenone-treated mice compared to the control mice. The impaired LTD observed in pyramidal neurons of rotenone-treated mice was restored by a GABAA receptor agonist muscimol. These results suggest that intranasal administration of rotenone decreases GABAergic synaptic transmission in layer V pyramidal neurons of the mouse insular cortex, the result of which leads to impairment of LTD and conditioned taste aversion memory.
Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Memória , Rotenona/administração & dosagem , Percepção Gustatória/efeitos dos fármacos , Administração Intranasal , Animais , Córtex Cerebral/citologia , Camundongos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Percepção Gustatória/genéticaRESUMO
Rotenone has recently been widely used to establish Parkinson's disease (PD) models to replicate the features of PD. However, the mechanisms involved in rotenone neurotoxicity have not been elucidated. The aim of the present study was to identify the neurotoxicity of rotenone through intraperitoneal injection in mice and to investigate the global changes of phosphorylation proteomic profiles in rotenone-injured SH-SY5Y cells through a label-free proteomic analysis using a PTMScan with LC-MS/MS. ICR (Institute of Cancer Research) mice were intraperitoneally injected with different dosages of rotenone (1 mg/kg/d or 3 mg/kg/d) daily for 21 consecutive days. Rotenone caused a dose-dependent decrease in locomotor activities and a decrease in the number of Nissl-positive and tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra pars compacta (SNpc). Here, 194 phosphopeptides on 174 proteins were detected in SH-SY5Y cells, and 37 phosphosites on 33 proteins displayed statistically significant changes in expression after rotenone injury. The downregulation of phosphorylated Akt and mTOR was further confirmed by western blot analysis. A specific Akt activator, SC79, could protect cell viability and induce autophagy in rotenone-injured SH-SY5Y cells. This study indicates the involvement of the Akt/mTOR (mammalian target of rapamycin) signaling pathway in rotenone-injured SH-SY5Y cells and provides molecular information for the neurotoxicity of rotenone.
Assuntos
Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotenona/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Rotenona/administração & dosagemRESUMO
The aim of this study was to investigate the effect of minocycline in rats with rotenone-induced Parkinson's disease (PD). The open field test was performed to determine the motor ability of the rats. Double immunofluorescence staining was used to detect the expression of tyrosine hydroxylase (TH) and Nurr1 in the substantia nigra (SN) of rats. The relative protein levels of TH, Nurr1, and the total- and phosphorylated-cAMP-response element binding protein (CREB) were determined by western blot analysis. The production of reactive oxygen species (ROS) and nitric oxide (NO) was detected by commercial kits. After exposure to rotenone for 28 days, rats exhibited decreased ambulation and rearing frequency and prolonged immobility time with loss of TH positive neurons in the SN. The phosphorylation levels of CREB and Nurr1 expression decreased significantly accompanied with the release of ROS and NO. Minocycline alleviated the motor deficits of rats lesioned by rotenone and elevated the expression of TH, as well as suppressing the release of ROS and NO in the SN. That was in line with the elevated phosphorylation levels of CREB and Nurr1 expression. In conclusion, our present study showed minocycline protected against neurotoxicity in a rotenone-induced rat model of PD, which was correlated with upregulation of Nurr1.
Assuntos
Minociclina/farmacologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Transtornos Parkinsonianos , Rotenona/administração & dosagem , Substância Negra/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Masculino , Óxido Nítrico/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/prevenção & controle , Ratos , Ratos Wistar , Rotenona/farmacologia , Substância Negra/patologiaRESUMO
AIM OF THE STUDY: Rotenone is a commonly used pesticide that inhibits complex I of the mitochondrial electron transport system. Rotenone exposed rats demonstrate many characteristics of Parkinson Disease (PD). Oxidative stress is one of the hallmarks of PD, being the major sources of ROS in the DA neurons. In recent years the strong connection between the intestinal environment and the function of the central nervous system (CNS) has gained widespread popularity. In order to explain the mechanism underlying the GI dysfunction in PD, we aimed to investigate oxidant-antioxidant status in the brain and intestine, as well as locomotor activity, in rotenone exposed zebrafish. MATERIALS AND METHODS: Adult zebrafish were exposed to 2 mg/L rotenone for 30 days. At the end of the experiment, locomotor activity was determined by simple observation. Lipid peroxidation (LPO), nitric oxide (NO) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) activities were determined in the homogenates. RESULTS: Locomotor activity decreased in the rotenone exposed zebrafish. LPO increased in both brain and intestines whereas NO increased only in the brain. Decreased GST and CAT activities were found in both tissues whereas SOD activity decreased only in the intestines. CONCLUSION: As a conclusion, the results of our study support the connection between gut and brain axis in rotenone exposed zebrafish by means of oxidative stress and NO for the first time in literature.
Assuntos
Encéfalo/efeitos dos fármacos , Catalase/efeitos dos fármacos , Glutationa Transferase/efeitos dos fármacos , Inseticidas/efeitos adversos , Intestinos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Óxido Nítrico/metabolismo , Rotenona/efeitos adversos , Superóxido Dismutase/efeitos dos fármacos , Proteínas de Peixe-Zebra/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Feminino , Inseticidas/administração & dosagem , Intestinos/enzimologia , Masculino , Rotenona/administração & dosagemRESUMO
Inflammation causes nociceptive sensory neuron activation, evoking debilitating symptoms and reflexes. Inflammatory signaling pathways are capable of modulating mitochondrial function, resulting in reactive oxygen species (ROS) production, mitochondrial depolarization and calcium release. Previously we showed that mitochondrial modulation with antimycin A, a complex III inhibitor, selectively stimulated nociceptive bronchopulmonary C-fibers via the activation of transient receptor potential (TRP) ankyrin 1 (A1) and vanilloid 1 (V1) cation channels. TRPA1 is ROS-sensitive, but there is little evidence that TRPV1 is activated by ROS. Here, we used dual imaging of dissociated vagal neurons to investigate the correlation of mitochondrial superoxide production (mitoSOX) or mitochondrial depolarization (JC-1) with cytosolic calcium (Fura-2AM), following mitochondrial modulation by antimycin A, rotenone (complex I inhibitor) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP, mitochondrial uncoupling agent). Mitochondrial modulation by all agents selectively increased cytosolic calcium in a subset of TRPA1/TRPV1-expressing (A1/V1+) neurons. There was a significant correlation between antimycin A-induced calcium responses and mitochondrial superoxide in wild-type 'responding' A1/V1+ neurons, which was eliminated in TRPA1-/- neurons, but not TRPV1-/- neurons. Nevertheless, antimycin A-induced superoxide production did not always increase calcium in A1/V1+ neurons, suggesting a critical role of an unknown factor. CCCP caused both superoxide production and mitochondrial depolarization but neither correlated with calcium fluxes in A1/V1+ neurons. Rotenone-induced calcium responses in 'responding' A1/V1+ neurons correlated with mitochondrial depolarization but not superoxide production. Our data are consistent with the hypothesis that mitochondrial dysfunction causes calcium fluxes in a subset of A1/V1+ neurons via ROS-dependent and ROS-independent mechanisms.
Assuntos
Inflamação/metabolismo , Nociceptores/metabolismo , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética , Potenciais de Ação , Antimicina A/administração & dosagem , Cálcio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona , Humanos , Inflamação/genética , Inflamação/patologia , Mitocôndrias/patologia , Nociceptores/patologia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/administração & dosagem , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Superóxidos/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Nervo Vago/metabolismo , Nervo Vago/fisiopatologiaRESUMO
Acute lung injury (ALI), a devastating form of respiratory infections, is characterized by increased edema, release of cytokines, weakened arterial oxygenation and infiltration of neutrophils and lymphocytes. The objective of the research envisaged was to reveal protective effects of tephrosin (TP) in ALI. In the present investigation, sepsis was triggered in rats by cecal ligation and puncture (CLP) method, and TP was administered intraperitonially. Five groups - Group A (control), Group B (Sham group) Group C (infected and untreated), and Group D and E (infected and treated with 25 and 50â¯mg/kg TP respectively) - of ten rats each, were used for the investigation. Evaluation parameters included measurement of arterial oxygenation, lung water content, protein determination, cytokine determination, neutrophil and lymphocyte count in the bronchoalveolar lavage fluid (BALF). As indicated by histopathological examination, the lung injury score was maximum in group C, but indicated reduction in group D and E. Intracellular adhesion molecule (ICAM)-1 and macrophage inflammatory protein-2 (MIP-2) are known to be important mediators responsible for ALI. Reduction in the ICAM-1 and MIP-2 expression was found to reduce after treatment with TP. In comparison to group D, group E reflected higher magnitude of ICAM-1 and MIP-2 suppression due to administration of higher TP dose. Compared to Group A and B, Group E indicated slightly higher expression of ICAM-1 and MIP-2. The research envisaged thus supports that TP attenuates ICAM-1 and MIP-2 expression in sepsis induced ALI rat model.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Quimiocina CXCL2/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Rotenona/análogos & derivados , Sepse/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Ceco/lesões , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/patologia , Contagem de Linfócitos , Masculino , Neutrófilos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Sprague-Dawley , Rotenona/administração & dosagem , Rotenona/farmacologia , Rotenona/uso terapêutico , Sepse/metabolismoRESUMO
Aurora B kinase has emerged as a key regulator of mitosis and deregulation of Aurora B activity is closely related to the development and progression of human cancers. In the present study, we found that Aurora B is overexpressed in human esophageal squamous cell carcinoma (ESCC), high levels of Aurora B protein were associated with a worse overall survival rate in ESCC patients. Depleting of Aurora B blunted the malignant phenotypes in ESCC cells. Importantly, we demonstrated that a natural compound, deguelin, has a profound anti-tumor effect on ESCC via inhibiting Aurora B activity. Deguelin potently inhibited in vitro Aurora B kinase activity. The in silico docking study further indicated that deguelin was docked into the ATP-binding pocket of Aurora B. Inhibition of Aurora B activity attenuated growth of ESCC cells, resulted in G2/M cell cycle arrest, polyploidy cells formation, and apoptosis induction. Knocking down of Aurora B decreased the sensitivity of ESCC cells to deguelin. The in vivo results showed that deguelin blocked the phosphorylation of histone H3 and inhibited the growth of ESCC tumor xenografts. Overall, we identified deguelin as an effective Aurora B inhibitor, which deserves further studies in other animal models and ESCC treatment.