Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Clin Neuropharmacol ; 46(6): 205-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962306

RESUMO

OBJECTIVE: In this case report, we discuss the rare manifestation of prolonged neuromuscular blockade in a patient with history of small cell lung cancer and undiagnosed Lambert-Eaton myasthenic syndrome (LEMS) who had previously received succinylcholine for general anesthesia without incident but subsequently exhibited prolonged neuromuscular blockade during a laparoscopic procedure. We aimed to emphasize the importance of reversal agent safety and precision as well as vigilant perioperative and postoperative care. METHODS: We used the patient's electronic medical record, direct patient care experiences, and comprehensive literature review for this case report. RESULTS: Sugammadex was administered with mild improvement. Suspecting undiagnosed LEMS, neostigmine was administered, yielding satisfactory muscle strength and successful extubation. In retrospect, the patient reported history of weakness when lifting weights that improved upon exertion. CONCLUSIONS: Sugammadex is an efficient and effective agent for reversal of neuromuscular blockade. However, proper monitoring of the depth and recovery of blockade is imperative to when using sugammadex with optimal safety and precision in all patients. Perioperative care teams must remain vigilant with a high index of suspicion for neuromuscular junction pathology to properly plan perioperative care for patients at risk, especially those with small cell lung cancer who may have undiagnosed LEMS.


Assuntos
Síndrome Miastênica de Lambert-Eaton , Neoplasias Pulmonares , Bloqueio Neuromuscular , Carcinoma de Pequenas Células do Pulmão , Humanos , Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndrome Miastênica de Lambert-Eaton/tratamento farmacológico , Síndrome Miastênica de Lambert-Eaton/patologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/cirurgia , Bloqueio Neuromuscular/métodos , Carcinoma de Pequenas Células do Pulmão/complicações , Carcinoma de Pequenas Células do Pulmão/cirurgia , Sugammadex
2.
J Neurophysiol ; 129(5): 1259-1277, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37073966

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by autoantibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness. However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seronegative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical, voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin, and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model). Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the NMJ, rather than by a simple loss of VGCCs.NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium channels, play an important role in LEMS pathophysiology.


Assuntos
Síndrome Miastênica de Lambert-Eaton , Animais , Humanos , Síndrome Miastênica de Lambert-Eaton/patologia , Canais de Cálcio/metabolismo , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Canais de Cálcio Tipo Q , Sinaptotagminas , Mamíferos/metabolismo
3.
J Neurol ; 269(10): 5272-5282, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35779086

RESUMO

Paraneoplastic syndrome is a group of clinical symptoms that occur in the state of systemic malignant tumors. Paraneoplastic syndrome of the nervous system can affect any part of the central and peripheral nervous system and may also affect the eyes. In neuroophthalmology, paraneoplastic syndrome has a variety of manifestations that can affect both the afferent and efferent visual systems. The afferent system may involve the optic nerve, retina and uvea; the efferent system may involve eye movement, neuromuscular joints or involuntary eye movements and pupil abnormalities and may also have other neurological symptoms outside the visual system. This article discusses the clinical manifestations, pathological mechanisms, detection methods and treatment methods of paraneoplastic syndrome in neuroophthalmology. The performance of paraneoplastic syndrome is diverse, the diagnosis is difficult, and the treatment should be considered systematically. Differential diagnosis, optimal evaluation and management of these manifestations is not only the key to treatment but also a challenge.


Assuntos
Síndrome Miastênica de Lambert-Eaton , Neoplasias , Síndromes Paraneoplásicas , Humanos , Imunoterapia , Síndrome Miastênica de Lambert-Eaton/patologia , Síndromes Paraneoplásicas/complicações , Síndromes Paraneoplásicas/diagnóstico
4.
Biomolecules ; 12(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740866

RESUMO

The mouse neuromuscular junction (NMJ) has long been used as a model synapse for the study of neurotransmission in both healthy and disease states of the NMJ. Neurotransmission from these neuromuscular nerve terminals occurs at highly organized structures called active zones (AZs). Within AZs, the relationships between the voltage-gated calcium channels and docked synaptic vesicles govern the probability of acetylcholine release during single action potentials, and the short-term plasticity characteristics during short, high frequency trains of action potentials. Understanding these relationships is important not only for healthy synapses, but also to better understand the pathophysiology of neuromuscular diseases. In particular, we are interested in Lambert-Eaton myasthenic syndrome (LEMS), an autoimmune disorder in which neurotransmitter release from the NMJ decreases, leading to severe muscle weakness. In LEMS, the reduced neurotransmission is traditionally thought to be caused by the antibody-mediated removal of presynaptic voltage-gated calcium channels. However, recent experimental data and AZ computer simulations have predicted that a disruption in the normally highly organized active zone structure, and perhaps autoantibodies to other presynaptic proteins, contribute significantly to pathological effects in the active zone and the characteristics of chemical transmitters.


Assuntos
Doenças Autoimunes , Síndrome Miastênica de Lambert-Eaton , Animais , Autoanticorpos , Doenças Autoimunes/patologia , Canais de Cálcio , Síndrome Miastênica de Lambert-Eaton/patologia , Camundongos , Junção Neuromuscular/patologia
5.
Thorac Cancer ; 11(5): 1334-1338, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32154996

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is a rare disease characterized by involvement of the neuromuscular junction. Most cases have an underlying malignancy, especially small-cell lung cancer (SCLC), while adenocarcinoma is less common. Here, we report a rare case of metastatic lung adenocarcinoma complicated with LEMS. In this case, L858R mutation was detected in the 21st exon of the EGFR gene. First-line treatment with gefitinib was given, and the patient has survived for more than six years. Early diagnosis of LEMS and timely and effective treatment can result in a good prognosis. We also searched for "lung cancer", or "carcinoma of lung", or "adenocarcinoma of lung", or "Lambert-Eaton myasthenic syndrome" in PubMed until 1 December 2019. Seven cases of lung adenocarcinoma complicated with LEMS were found, most of which had a poor prognosis. KEY POINTS: This article reports a rare case of metastatic lung adenocarcinoma with EGFR mutation, complicated with LEMS. Gefitinib was given as first-line treatment, and resulted in a good prognosis.


Assuntos
Adenocarcinoma de Pulmão/secundário , Antineoplásicos/uso terapêutico , Gefitinibe/uso terapêutico , Síndrome Miastênica de Lambert-Eaton/tratamento farmacológico , Neoplasias Pulmonares/patologia , Humanos , Síndrome Miastênica de Lambert-Eaton/etiologia , Síndrome Miastênica de Lambert-Eaton/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico
6.
Ann Thorac Surg ; 109(5): e347-e348, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31586614

RESUMO

Thymic small cell cancer is a very rare type of thymic epithelial tumor. Lambert-Eaton myasthenic syndrome is a rare paraneoplastic syndrome associated with thymic epithelial tumors. We report an extremely rare case of Lambert-Eaton myasthenic syndrome associated with thymic small cell carcinoma. A 71-year-old man was referred to our institution for a mediastinal tumor and a 2-month history of ptosis, fatigue, and gait disorder. Based on radiologic findings thymoma associated with Lambert-Eaton myasthenic syndrome was diagnosed, and extended thymectomy was performed. After surgery the patient's symptoms had not improved. Anticholinesterase treatment alleviated his symptoms.


Assuntos
Carcinoma de Células Pequenas/diagnóstico , Síndrome Miastênica de Lambert-Eaton/diagnóstico , Neoplasias do Timo/diagnóstico , Idoso , Carcinoma de Células Pequenas/patologia , Carcinoma de Células Pequenas/cirurgia , Inibidores da Colinesterase/uso terapêutico , Terapia Combinada , Eletromiografia , Humanos , Síndrome Miastênica de Lambert-Eaton/patologia , Síndrome Miastênica de Lambert-Eaton/cirurgia , Imageamento por Ressonância Magnética , Masculino , Exame Neurológico , Cuidados Pós-Operatórios , Doenças Raras , Timectomia , Timo/patologia , Neoplasias do Timo/patologia , Neoplasias do Timo/cirurgia , Tomografia Computadorizada por Raios X
7.
Brain ; 142(8): 2253-2264, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31236596

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease of the neuromuscular junction caused by autoantibodies binding to P/Q-type voltage-gated calcium channels. Breakdown of the blood-brain barrier and diffusion of cerebellar granule/Purkinje cell-reactive autoantibodies into the CNS are critical for the pathogenesis of paraneoplastic cerebellar degeneration (PCD) with Lambert-Eaton myasthenic syndrome. We recently found evidence that glucose-regulated protein 78 (GRP78) autoantibodies in the plasma of patients with neuromyelitis optica promote the CNS access of AQP4 autoantibodies. In the present study, we investigated whether the GRP78 autoantibodies in PCD-LEMS IgG boost the brain uptake of cerebellar cell-reactive antibodies across the blood-brain barrier and facilitate cerebellar dysfunction. We first evaluated the effects of purified IgG from PCD-LEMS or PCD patients on the blood-brain barrier function in human brain microvascular endothelial cells using a high content imaging system with nuclear factor κB p65 and intracellular adhesion molecule 1 (ICAM1) immunostaining. Next, we identified GRP78 autoantibodies causing blood-brain barrier permeability in PCD-LEMS IgG by co-immunoprecipitation and the living cell-based antibody binding assays. Exposure of brain microvascular endothelial cells to IgG from PCD-LEMS patients induced nuclear factor κB p65 nuclear translocation, ICAM1 upregulation, reduced claudin-5 expression, increased permeability and increased autocrine IL-1ß and IL-8 secretion; the IgG from patients with Lambert-Eaton myasthenic syndrome did not have these effects. We detected GRP78 autoantibodies in the IgG of LEMS-PCD (83.3%, n = 18), but observed fewer in patients with LEMS (6.6%, n = 15) and none were observed in the control subjects (n = 8). The depletion of GRP78 autoantibodies reduced the biological effect of LEMS-PCD IgG on brain microvascular endothelial cells. These findings suggest that GRP78 autoantibodies play a role beyond neuromyelitis optica and that they have direct implications in the phenotypic differences between PCD-LEMS and LEMS.


Assuntos
Autoanticorpos/imunologia , Barreira Hematoencefálica/patologia , Proteínas de Choque Térmico/imunologia , Síndrome Miastênica de Lambert-Eaton/imunologia , Degeneração Paraneoplásica Cerebelar/imunologia , Idoso , Idoso de 80 Anos ou mais , Autoantígenos/imunologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Síndrome Miastênica de Lambert-Eaton/patologia , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Degeneração Paraneoplásica Cerebelar/patologia , Carcinoma de Pequenas Células do Pulmão/imunologia
8.
Radiology ; 290(1): 264-269, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571477

RESUMO

History A 29-year-old woman presented with a 6-month history of progressive general fatigue, fluctuating limb weakness, and difficulty climbing stairs. She initially experienced occasional episodes of transient diplopia that developed while reading in the evening. She subsequently started to experience dry eyes and mouth, difficulty chewing, and mild dysphagia that worsened throughout the day. Her medical history included hypothyroidism from Hashimoto thyroiditis and pneumonia with left pleural effusion. She had no smoking history, and her body mass index was normal (23.8 kg/m2). No medication use was reported at admission. Physical examination revealed mild bilateral ptosis, reduced muscle tone and strength that worsened in proximal leg muscles, and decreased deep tendon reflexes. An edrophonium test revealed improvement in muscle strength and eyelid ptosis. Repetitive nerve stimulation revealed low amplitude of compound muscle action potential at rest (0.21 mV), with a marked increase (700%; normal increase, <60%) at high-rate stimulation (50 Hz). Laboratory work-up was unremarkable except for detection of acetylcholine receptor antibodies in the serum (21.30 nmol/L) and P/Q-type voltage-gated calcium channel antibodies (220 pmol/L). Recent MRI of the brain and spine at an outside hospital showed no abnormal findings. At admission, the patient underwent CT of the chest, abdomen, and pelvis followed by thoracic MRI to further evaluate CT findings.


Assuntos
Síndrome Miastênica de Lambert-Eaton , Miastenia Gravis , Timoma , Timo , Neoplasias do Timo , Adulto , Feminino , Humanos , Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndrome Miastênica de Lambert-Eaton/patologia , Imageamento por Ressonância Magnética , Miastenia Gravis/diagnóstico , Miastenia Gravis/patologia , Fotomicrografia , Timoma/diagnóstico , Timoma/patologia , Timo/diagnóstico por imagem , Timo/patologia , Neoplasias do Timo/diagnóstico , Neoplasias do Timo/patologia , Tomografia Computadorizada por Raios X
9.
Semin Neurol ; 38(3): 344-354, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30011414

RESUMO

Autoimmune myasthenic syndromes are antibody-mediated disorders of the neuromuscular junction. Common antigenic targets are the acetylcholine receptor or muscle specific kinase (MuSK) in myasthenia gravis (MG) and the voltage-gated calcium channel in Lambert-Eaton myasthenic syndrome. There is evidence that antibodies directed against other antigens such as low-density lipoprotein receptor-related protein 4 (LRP4) are also involved in MG. The mechanisms by which various antibodies exert their pathogenic effect depend on the IgG subclass and also the epitope location on the antigens. These mechanisms are partly heterogeneous and include antigen degradation, complement activation, direct functional blocking, or disruption of protein-protein interactions. The neuromuscular junction is characterized by a structural and functional plasticity that is able to compensate for some of the neuromuscular junction defects. Here, we discuss the underlying pathogenic mechanisms of the different autoantibodies and correlate them with phenotypic features. The understanding of these elements should help guide the clinical management of patients with autoimmune myasthenic syndromes.


Assuntos
Autoanticorpos/imunologia , Síndrome Miastênica de Lambert-Eaton/imunologia , Síndrome Miastênica de Lambert-Eaton/patologia , Junção Neuromuscular/imunologia , Humanos , Imunoglobulina G/imunologia , Debilidade Muscular/imunologia , Debilidade Muscular/patologia , Miastenia Gravis/imunologia , Miastenia Gravis/patologia
10.
Cir Cir ; 86(1): 79-83, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-29681644

RESUMO

Background: Neurological paraneoplastic syndromes are rare, occur in 0.01% of all cancer patients; like part of them, the Lambert-Eaton syndrome is an autoimmune presynaptic disorder of neuromuscular transmission characterized by muscle weakness and neurovegetative dysfunction, and often associated with small cell lung cancer. Case report: A 72 years old female with a family history of lung cancer and leukemia, with 7 months of dry cough and 3 months with waist and pelvic muscle weakness, oropharyngeal dysphagia, dry mouth, chronic constipation and weight loss of 10 kg. Physical examination: patient prostrated; clinical muscle examination: pelvic muscles waist -3/5 and -4/5 the rest; diminished reflexes. Laboratory normal parathormone and hypercalcemia. With electrophysiological study and positive anti-voltage-gated calcium channel antibodies, confirming Lambert-Eaton syndrome and imaging studies with neoplastic condition in brain, liver and kidney, with unspecified primary origin.


Antecedentes: Los síndromes paraneoplásicos neurológicos son poco frecuentes; se presentan en el 0.01% de todos los pacientes con cáncer. Uno de ellos es el síndrome de Lambert-Eaton, correspondiendo a un trastorno presináptico autoinmunitario de transmisión neuromuscular caracterizado por debilidad muscular y disfunción neurovegetativa, y asociado con frecuencia al carcinoma microcítico de pulmón. Caso clínico: Mujer de 72 años, con antecedentes heredofamiliares de cáncer de pulmón y leucemia, con tos seca de 7 meses, 3 meses con debilidad de los músculos de cintura pélvica, disfagia al inicio de la deglución, xerostomía, estreñimiento crónico y pérdida de peso de 10 kg. A la exploración física: paciente postrada; examen clínico muscular: músculos de cintura pélvica en −3/5, resto en −4/5; reflejos disminuidos. Pruebas de laboratorio indicando hipercalcemia y paratohormona normal. Estudio electrofisiológico y anticuerpos anticanales de calcio positivos, demostrando síndrome de Lamber-Eaton, y estudios de imagen con afectación neoplásica en cerebro, hígado y riñón, sin lograr especificar el origen primario.


Assuntos
Síndrome Miastênica de Lambert-Eaton/etiologia , Neoplasias Primárias Desconhecidas/complicações , Idoso , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoantígenos/imunologia , Encéfalo/patologia , Canais de Cálcio/imunologia , Neoplasias do Sistema Nervoso Central/secundário , Eletromiografia , Feminino , Gliose/patologia , Humanos , Neoplasias Renais/secundário , Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndrome Miastênica de Lambert-Eaton/patologia , Síndrome Miastênica de Lambert-Eaton/fisiopatologia , Neoplasias Hepáticas/secundário , Imageamento por Ressonância Magnética , Atrofia Muscular/etiologia , Tomografia Computadorizada por Raios X , Substância Branca/patologia
11.
Ann N Y Acad Sci ; 1413(1): 119-125, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29377152

RESUMO

We report a severe defect of neuromuscular transmission in a consanguineous patient with a homozygous variant in the laminin α5 subunit gene (LAMA5). The variant c.8046C > T (p.Arg2659Trp) is rare and has a predicted deleterious effect. The affected individual, who also carries a rare homozygous sequence variant in LAMA1, had normal cognitive function, but magnetic resonance brain imaging showed mild volume loss and periventricular T2 prolongation. Repetitive nerve stimulation at 2 Hz showed 50% decrement of compound muscle action potential amplitudes but 250% facilitation immediately after exercise, similar to that seen in Lambert-Eaton myasthenic syndrome. Endplate studies demonstrated a profound reduction of the endplate potential quantal content but normal amplitudes of miniature endplate potentials. Electron microscopy showed endplates with increased postsynaptic folding that were denuded or only partially occupied by small nerve terminals. Expression studies revealed that p.Arg2659Trp caused decreased binding of laminin α5 to SV2A and impaired laminin-521 cell adhesion and cell projection support in primary neuronal cultures. In summary, this report describing severe neuromuscular transmission failure in a patient with a LAMA5 mutation expands the list of phenotypes associated with defects in genes encoding α-laminins.


Assuntos
Síndrome Miastênica de Lambert-Eaton/genética , Síndrome Miastênica de Lambert-Eaton/patologia , Laminina/genética , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Transmissão Sináptica/fisiologia , Adulto , Feminino , Humanos , Placa Motora/fisiologia
12.
Ann N Y Acad Sci ; 1412(1): 73-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29125190

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder caused by antibodies directed against the voltage-gated calcium channels that provide the calcium ion flux that triggers acetylcholine release at the neuromuscular junction. To study the pathophysiology of LEMS and test candidate therapeutic strategies, a passive-transfer animal model has been developed in mice, which can be created by daily intraperitoneal injections of LEMS patient serum or IgG into mice for 2-4 weeks. Results from studies of the mouse neuromuscular junction have revealed that each synapse has hundreds of transmitter release sites but that the probability for release at each one is likely to be low. LEMS further reduces this low probability such that transmission is no longer effective at triggering a muscle contraction. The LEMS-mediated attack reduces the number of presynaptic calcium channels, disorganizes transmitter release sites, and results in the homeostatic upregulation of other calcium channel types. Symptomatic treatment is focused on increasing the probability of release from dysfunctional release sites. Current treatment uses the potassium channel blocker 3,4-diaminopyridine (DAP) to broaden the presynaptic action potential, providing more time for calcium channels to open. Current research is focused on testing new calcium channel gating modifiers that work synergistically with DAP.


Assuntos
Síndrome Miastênica de Lambert-Eaton/etiologia , Animais , Autoantígenos , Carcinoma de Células Pequenas/etiologia , Modelos Animais de Doenças , Humanos , Imunização Passiva , Síndrome Miastênica de Lambert-Eaton/patologia , Síndrome Miastênica de Lambert-Eaton/terapia , Neoplasias Pulmonares/etiologia , Camundongos , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Neurotransmissores/fisiologia
13.
J Neurol ; 264(9): 1854-1863, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28608304

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is a rare autoimmune neuromuscular junction disorder that is related to the loss of functional P/Q-type voltage-gated calcium channels (VGCCs) on presynaptic nerve terminals. Up to 60% of cases occur as a paraneoplastic disorder (SCLC-LEMS), most commonly in association with small cell lung cancer. The remaining cases have an idiopathic non-tumor etiology but are associated with underlying autoimmune disease (NT-LEMS). Patients with LEMS invariably experience progressive proximal muscle weakness, often accompanied by general fatigue and autonomic symptoms. Some LEMS clinical symptoms overlap with those of other myasthenic syndromes, most commonly myasthenia gravis, which can contribute to misdiagnosis or delayed diagnosis. Prognosis is related to the presence of cancer or autoimmune disease and the severity/distribution of muscle weakness. Cause of death in patients with SCLC-LEMS is typically tumor progression, whereas NT-LEMS does not reduce life expectancy. LEMS diagnosis is supported by a threefold approach: clinical features, electromyography, and anti-VGCC antibody serology. LEMS is a clinically important early indicator of possible cancer; therefore, a LEMS diagnosis should immediately prompt rigorous oncological screening and surveillance. Symptomatic treatment of LEMS typically involves medications that improve neurotransmission (e.g., the potassium channel blocker amifampridine [3,4-diaminopyridine]), with addition of immunosuppressants/modulators (e.g., prednisone plus azathioprine) in individuals with persistent symptoms. Where a tumor is identified, oncological treatment should take priority. It should be remembered, however, that LEMS has a significant impact on a patient's quality of life and ability to perform daily activities, and therefore warrants timely diagnosis and appropriate treatment in and of itself.


Assuntos
Síndrome Miastênica de Lambert-Eaton/complicações , Neoplasias Pulmonares/complicações , Carcinoma de Pequenas Células do Pulmão/complicações , Canais de Cálcio/genética , Humanos , Síndrome Miastênica de Lambert-Eaton/epidemiologia , Síndrome Miastênica de Lambert-Eaton/genética , Síndrome Miastênica de Lambert-Eaton/patologia , Neoplasias Pulmonares/epidemiologia , Qualidade de Vida , Fatores de Risco , Carcinoma de Pequenas Células do Pulmão/epidemiologia
14.
Matrix Biol ; 57-58: 86-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614294

RESUMO

The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and ß2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades do Olho/genética , Síndrome Miastênica de Lambert-Eaton/genética , Laminina/genética , Síndrome Nefrótica/genética , Distúrbios Pupilares/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Membrana Basal/metabolismo , Membrana Basal/patologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Distroglicanas/genética , Distroglicanas/metabolismo , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Expressão Gênica , Humanos , Integrinas/genética , Integrinas/metabolismo , Síndrome Miastênica de Lambert-Eaton/metabolismo , Síndrome Miastênica de Lambert-Eaton/patologia , Laminina/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Síndromes Miastênicas Congênitas , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Ligação Proteica , Distúrbios Pupilares/metabolismo , Distúrbios Pupilares/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia
15.
Muscle Nerve ; 56(2): 253-257, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27935068

RESUMO

INTRODUCTION: We analyzed jitter recordings made with concentric needle electrode (CNE) single-fiber electromyography (SFEMG) in Lambert-Eaton myasthenia (LEM). METHODS: Fifteen subjects diagnosed with LEM were studied using CNE-SFEMG in the extensor digitorum (ED) and tibialis anterior (TA) muscles. CNE-SFEMG in the ED and TA was also used to evaluate 12 and 10 healthy controls (HCs), respectively. RESULTS: Ten men and 5 women were diagnosed with LEM based on an increase of 100% in compound muscle action potential amplitude during 50 Hz repetitive nerve stimulation. All patients exhibited markedly greater jitter in the ED (88.8 ± 23.2 µs) and TA (92.2 ± 30.2 µs) than HCs (28.3 ± 3.4 µs and 30.9 ± 5.1 µs, respectively). CONCLUSIONS: CNE-SFEMG is sensitive for discovering abnormalities in neuromuscular transmission in LEM. Muscle Nerve 56: 253-257, 2017.


Assuntos
Síndrome Miastênica de Lambert-Eaton/patologia , Fibras Musculares Esqueléticas/fisiologia , Potenciais de Ação/fisiologia , Adulto , Idoso , Estimulação Elétrica , Eletrodos , Eletromiografia , Fadiga/etiologia , Feminino , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Síndrome Miastênica de Lambert-Eaton/complicações , Síndrome Miastênica de Lambert-Eaton/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Condução Nervosa/fisiologia , Reflexo/fisiologia , Estudos Retrospectivos , Estatísticas não Paramétricas
16.
Neuromuscul Disord ; 26(12): 880-884, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816328

RESUMO

Tubular aggregates are accumulations of densely packed tubules in muscle fibers, occurring in distinct hereditary and acquired disorders. We present a patient with tubular aggregates and autoimmune Lambert-Eaton myasthenic syndrome. Initially, he showed mild proximal weakness, borderline decrement on 3 Hz stimulation, and slightly elevated creatine kinase. Muscle biopsy revealed tubular aggregates in type II fibers. Due to a good response to pyridostigmine, a limb-girdle myasthenia with tubular aggregates was suspected, but genetic analyses of GFPT1, DPGAT1, and ALG2 were normal. Two years later, the patient presented with progressive weakness and autonomic dysfunction. 17% decrement on 3 Hz stimulation and 100% increment after brief exercise were revealed. Autoantibodies to voltage-gated calcium-channels confirmed the diagnosis of Lambert-Eaton myasthenic syndrome. Steroids, azathioprine, and 3,4-diaminopyridine significantly improved symptoms. No tumor was found during follow-up. This is the first report about tubular aggregates associated with an acquired myasthenic syndrome. Our findings are important because of the therapeutic implications.


Assuntos
Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndrome Miastênica de Lambert-Eaton/patologia , Músculo Esquelético/patologia , Adulto , Diagnóstico Diferencial , Exercício Físico/fisiologia , Humanos , Síndrome Miastênica de Lambert-Eaton/tratamento farmacológico , Síndrome Miastênica de Lambert-Eaton/genética , Masculino , Músculo Esquelético/fisiopatologia
18.
Semin Neurol ; 35(4): 340-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26502758

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) and botulism are acquired presynaptic nerve terminal disorders of the neuromuscular junction. Lambert-Eaton myasthenic syndrome is an idiopathic or paraneoplastic autoimmune syndrome in which autoantibodies of the P/Q-type voltage-gated calcium channel play a role in decreasing the release of acetylcholine, resulting in clinical symptoms of skeletal muscle weakness, diminished reflexes, and autonomic symptoms. Paraneoplastic LEMS is most often associated with small cell lung cancer. Diagnosis is confirmed by positive serologic testing and electrophysiological studies, which display characteristic features of low compound muscle action potentials, a decrement at 3Hz repetitive nerve stimulation, and facilitation with exercise or high-frequency repetitive stimulation. Treatment involves cancer monitoring and treatment, 3,4-diaminopyridine, immunosuppressive medications, and acetylcholinesterase inhibitors. Botulism is another presynaptic disorder of neuromuscular transmission. Clinical features classically involve cranial and bulbar palsies followed by descending weakness of the limbs, respiratory failure, and autonomic dysfunction. Electrodiagnostic testing is important in the evaluation and diagnosis. Treatment is supportive, and administration of antitoxin is beneficial in selected cases.


Assuntos
Botulismo , Gerenciamento Clínico , Síndrome Miastênica de Lambert-Eaton , Terminações Pré-Sinápticas/patologia , Autoanticorpos/imunologia , Botulismo/diagnóstico , Botulismo/patologia , Botulismo/terapia , Feminino , Humanos , Lactente , Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndrome Miastênica de Lambert-Eaton/patologia , Síndrome Miastênica de Lambert-Eaton/terapia , Masculino , Pessoa de Meia-Idade
19.
Biochim Biophys Acta ; 1852(4): 651-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25486268

RESUMO

Disorders affecting the presynaptic, synaptic, and postsynaptic portions of the neuromuscular junction arise from various mechanisms in children and adults, including acquired autoimmune or toxic processes as well as genetic mutations. Disorders include autoimmune myasthenia gravis associated with acetylcholine receptor, muscle specific kinase or Lrp4 antibodies, Lambert-Eaton myasthenic syndrome, nerve terminal hyperexcitability syndromes, Guillain Barré syndrome, botulism, organophosphate poisoning and a number of congenital myasthenic syndromes. This review focuses on the various molecular and pathophysiological mechanisms of these disorders, characterization of which has been crucial to the development of treatment strategies specific for each pathogenic mechanism. In the future, further understanding of the underlying processes may lead to more effective and targeted therapies of these disorders. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.


Assuntos
Botulismo , Síndrome de Guillain-Barré , Síndrome Miastênica de Lambert-Eaton , Miastenia Gravis , Intoxicação por Organofosfatos , Adolescente , Adulto , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Botulismo/genética , Botulismo/imunologia , Botulismo/metabolismo , Botulismo/patologia , Criança , Pré-Escolar , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patologia , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/imunologia , Proteínas Relacionadas a Receptor de LDL/metabolismo , Síndrome Miastênica de Lambert-Eaton/genética , Síndrome Miastênica de Lambert-Eaton/imunologia , Síndrome Miastênica de Lambert-Eaton/metabolismo , Síndrome Miastênica de Lambert-Eaton/patologia , Miastenia Gravis/genética , Miastenia Gravis/imunologia , Miastenia Gravis/metabolismo , Miastenia Gravis/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/imunologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Intoxicação por Organofosfatos/genética , Intoxicação por Organofosfatos/imunologia , Intoxicação por Organofosfatos/metabolismo , Intoxicação por Organofosfatos/patologia , Receptores Colinérgicos/genética , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA