Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581382

RESUMO

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Assuntos
Encefalite Japonesa , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Microbioma Gastrointestinal/fisiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/microbiologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/imunologia , Encefalite Japonesa/microbiologia , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Análise de Sobrevida , Quimiocinas/imunologia , Quimiocinas/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/prevenção & controle , Humanos , Feminino , Animais , Camundongos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Carga Viral/efeitos dos fármacos , Fatores de Tempo
2.
In Vitro Cell Dev Biol Anim ; 60(2): 195-208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228999

RESUMO

Eunkyo-san is widely used in the treatment of severe respiratory infections. Mast cells not only serve as host cells for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but also they also exacerbate Coronavirus disease in 2019 (COVID-19) by causing a cytokine storm. Here we investigated whether Eunkyo-san and its active compound naringenin regulate the expression of inflammatory cytokines and factors connected to viral infection in activated human mast cell line, HMC-1 cells. Eunkyo-san and naringenin significantly reduced levels of inflammatory cytokines including interleukin (IL)-1ß, IL-6, IL-8, thymic stromal lymphopoietin, and tumor necrosis factor-α without impacting cytotoxicity. Eunkyo-san and naringenin reduced levels of factors connected to SARS-CoV-2 infection such as angiotensin-converting enzyme 2 (ACE2, SARS-CoV-2 receptor), transmembrane protease/serine subfamily member 2, and tryptase in activated HMC-1 cells. Treatment with Eunkyo-san and naringenin considerably reduced expression levels of ACE2 transcription factor, AP-1 (C-JUN and C-FOS) by blocking phosphatidylinositide-3-kinase and c-Jun NH2-terminal kinases signaling pathways. In addition, Eunkyo-san and naringenin effectively suppressed activation of signal transducer and activator of transcription 3, nuclear translocation of nuclear factor-κB, and activation of caspase-1 in activated HMC-1 cells. Furthermore, Eunkyo-san and naringenin reduced expression of ACE2 mRNA in two activated mast cell lines, RBL-2H3 and IC-2 cells. The overall study findings showed that Eunkyo-san diminished the expression levels of inflammatory cytokines and ACE2, and these findings imply that Eunkyo-san is able to effectively mitigating the cytokine storm brought on by SARS-CoV-2 infection.


Assuntos
COVID-19 , Citocinas , Humanos , Animais , Citocinas/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/farmacologia , Síndrome da Liberação de Citocina/metabolismo , Mastócitos , SARS-CoV-2
3.
Microbiol Spectr ; 12(1): e0347523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018982

RESUMO

IMPORTANCE: Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cell's activation via bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by TLR4. For this reason, scientists have aimed to develop antagonists able to block TLR4 and, thereby the cytokine storm. We report here that a mixture of mu-class isoforms from the F. hepatica GST protein family administered intraperitoneally 1 h prior to a lethal LPS injection can modulate the dynamics and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice while significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock. These results suggest that native F. hepatica glutathione S-transferase is a promising candidate for drug development against endotoxemia and other inflammatory diseases.


Assuntos
Fasciola hepatica , Sepse , Animais , Camundongos , Macrófagos Peritoneais/metabolismo , Lipopolissacarídeos/metabolismo , Fasciola hepatica/metabolismo , Escherichia coli/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Receptor 4 Toll-Like/metabolismo , Macrófagos
4.
Nat Mater ; 22(12): 1571-1580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696939

RESUMO

Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.


Assuntos
Neoplasias , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Linfócitos T
5.
Colloids Surf B Biointerfaces ; 229: 113446, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481805

RESUMO

An excessive inflammatory response induced by cytokine storms is the primary reason for the deterioration of patients with acute lung injury (ALI). Though natural polyphenols such as curcumin (CUR) have anti-inflammation activity for ALI treatment, they often have limited efficacy due to their poor solubility in water and oxidising tendency. This study investigates a highly cross-linked polyphosphazene nano-drug (PHCH) developed by copolymerisation of CUR and acid-sensitive units (4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide, D-HBD) with hexachlorotripolyphosphonitrile (HCCP) for improved treatment of ALI. PHCH can prolong the blood circulation time and targeted delivery into lung inflammation sites by enhancing CUR's water dispersion and anti-oxidant properties. PHCH also demonstrates the inflammation-responsive release of CUR in an inflammation environment due to the acid-responsive degradation of hydrazine bonds and triphosphonitrile rings in PHCH. Therefore, PHCH has a substantial anti-inflammation activity for ALI treatment by synergistically improving CUR's water-solubility, bioavailability and biocompatibility. As expected, PHCH attenuates the cytokine storm syndrome and alleviates inflammation in the infected cells and tissues by down-regulating several critical inflammatory cytokines (TNF-α, IL-1ß, and IL-8). PHCH also decreases the expression of p-p65 and C-Caspase-1, inhibiting NLRP3 inflammasomes and suppressing NF-κB signalling pathways. The administrated mice experiments confirmed that PHCH accumulation was enhanced in lung tissue and showed the efficient scavenging ability of reactive oxygen species (ROS), effectively blocking the cytokine storm and alleviating inflammatory damage in ALI. This smart polyphosphazene nano-drug with targeting delivery property and inflammation-responsive release of curcumin has excellent potential for the clinical treatment of various inflammatory diseases, including ALI.


Assuntos
Lesão Pulmonar Aguda , Curcumina , Nanopartículas , Camundongos , Animais , Curcumina/química , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pulmão/metabolismo , NF-kappa B/metabolismo , Nanopartículas/uso terapêutico
6.
Int Immunopharmacol ; 122: 110643, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453155

RESUMO

The mesenchymal Stem Cells (MSCs) is one of the leading contender in therapeutic management of cytokine storm implicated in the COVID-19 and other inflammatory conditions. This study was aimed to investigate the effect of Interferon gamma (IFN-γ) and Ascorbic Acid (AA) preconditioning on the secretome of the human Umbilical Cord Derived MSCs (UCMSCs) and their potential to ameliorate the lipopolysaccharide (LPS) induced cytokine storm in the human peripheral blood mononuclear cells (PBMCs). UCMSCs were preconditioned with IFN-γ, AA and secretome (UCMSCs-S, IFNγ-UCMSCs-S and AA-UCSMCs-S) was analysed for the levels of growth factors and cytokines by flow cytometry. The potential of secretome to ameliorate cytokine storm and augment angiogenesis was assessed in the LPS induced PBMCs and yolk sac membrane (YSM) assay respectively. The mRNA transcript and protein levels of IL-6, IL-1ß and TNF-α was analysed by RT-PCR and flow cytometry respectively. IFNγ-UCMSCs-S and AA-UCSMCs-S ameliorated the LPS induced cytokine storm as revealed by the decreased mRNA and protein expression of IL-6, IL-1ß and TNF-α as compared to the UCMSCs-S. IFNγ-UCMSCs-S and AA-UCSMCs-S augmented angiogenesis in YSM assay. Furthermore, IFNγ and AA preconditioning of UCMSCs exhibited distinct growth factors and cytokine profile in the secretome. Our results unequivocally show that IFNγ and AA preconditioning of MSCs could give better therapeutic outcomes in the cell mediated therapies for COVID-19 and other inflammatory conditions.


Assuntos
COVID-19 , Células-Tronco Mesenquimais , Humanos , Lipopolissacarídeos/farmacologia , Interferon gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Síndrome da Liberação de Citocina/metabolismo , COVID-19/terapia , COVID-19/metabolismo , Fatores Imunológicos/farmacologia , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/metabolismo
7.
Mutagenesis ; 38(4): 201-215, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37326959

RESUMO

Donor cell leukaemia (DCL) is a complication of haematopoietic stem cell transplantation where donated cells become malignant within the patient's bone marrow. As DCL predominates as acute myeloid leukaemia, we hypothesized that the cytokine storm following chemotherapy played a role in promoting and supporting leukaemogenesis. Cytokines have also been implicated in genotoxicity; thus, we explored a cell line model of the human bone marrow (BM) to secrete myeloid cytokines following drug treatment and their potential to induce micronuclei. HS-5 human stromal cells were exposed to mitoxantrone (MTX) and chlorambucil (CHL) and, for the first time, were profiled for 80 cytokines using an array. Fifty-four cytokines were detected in untreated cells, of which 24 were upregulated and 10 were downregulated by both drugs. FGF-7 was the lowest cytokine to be detected in both untreated and treated cells. Eleven cytokines not detected at baseline were detected following drug exposure. TNFα, IL6, GM-CSF, G-CSF, and TGFß1 were selected for micronuclei induction. TK6 cells were exposed to these cytokines in isolation and in paired combinations. Only TNFα and TGFß1 induced micronuclei at healthy concentrations, but all five cytokines induced micronuclei at storm levels, which was further increased when combined in pairs. Of particular concern was that some combinations induced micronuclei at levels above the mitomycin C positive control; however, most combinations were less than the sum of micronuclei induced following exposure to each cytokine in isolation. These data infer a possible role for cytokines through chemotherapy-induced cytokine storm, in the instigation and support of leukaemogenesis in the BM, and implicate the need to evaluate individuals for variability in cytokine secretion as a potential risk factor for complications such as DCL.


Assuntos
Antineoplásicos , Citocinas , Humanos , Citocinas/metabolismo , Medula Óssea , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Células da Medula Óssea/metabolismo , Antineoplásicos/toxicidade
8.
Immunobiology ; 228(4): 152412, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343439

RESUMO

Sepsis is a life-threatening systemic organ dysfunction caused by the host's unregulated response to a widespread bacterial infection. Endothelial injury is a major pathophysiologic symptom of sepsis and is considered a critical factor in promoting the progression of disease severity. ELAV like RNA binding protein 1(ELAVL1) is a ubiquitously expressed RNA-binding protein that may play an important role during sepsis. Nonetheless, the molecular mechanisms of ELAVL1 on endothelial cell damage in sepsis have not been well defined. Here, we aimed to confirm the role of ELAVL1 in sepsis-induced endothelial cell damage using lipopolysaccharide (LPS)-induced zebrafish and endothelial cells (ECs) models. We found that zebrafish larvae treated with LPS exhibited systemic endothelial cell damage, mostly manifested as pericardial edema, curved tail, and impaired angiogenesis. LPS treatments also significantly induced the expression levels of inflammatory cytokines (interleukin-6 (IL-6), IL-8, and tumor necrosis factor (TNF)-α) in vivo. In vitro, we observed the increase of ELAVL1 cytoplasmic translocation with LPS treatment. Mechanistically, targeted disruption of the ELAVL1 gene decreased the expression of TNF-α, IL-6, and IL-8 during induction of sepsis and alleviated LPS-induced blood vessel injury in zebrafish. Taken together, our study indicates that ELAVL1 knockdown may alleviate sepsis-induced endothelial cells injury by suppressing cytokine storm. Our research suggests that inhibition of ELAVL1 could reduce the level of inflammatory cytokine production induced by LPS and protect against endothelial cell injury. ELAVL1 might be a potential therapeutic target to block endothelial cells injury associated with sepsis.


Assuntos
Interleucina-6 , Sepse , Animais , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Células Endoteliais/metabolismo , Peixe-Zebra/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Sepse/tratamento farmacológico
9.
PLoS Pathog ; 19(5): e1011406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200384

RESUMO

Influenza A virus (IAV) H1N1 infection is a constant threat to human health and it remains so due to the lack of an effective treatment. Since melatonin is a potent antioxidant and anti-inflammatory molecule with anti-viral action, in the present study we used melatonin to protect against H1N1 infection under in vitro and in vivo conditions. The death rate of the H1N1-infected mice was negatively associated with the nose and lung tissue local melatonin levels but not with serum melatonin concentrations. The H1N1-infected AANAT-/- melatonin-deficient mice had a significantly higher death rate than that of the WT mice and melatonin administration significantly reduced the death rate. All evidence confirmed the protective effects of melatonin against H1N1 infection. Further study identified that the mast cells were the primary targets of melatonin action, i.e., melatonin suppresses the mast cell activation caused by H1N1 infection. The molecular mechanisms involved melatonin down-regulation of gene expression for the HIF-1 pathway and inhibition of proinflammatory cytokine release from mast cells; this resulted in a reduction in the migration and activation of the macrophages and neutrophils in the lung tissue. This pathway was mediated by melatonin receptor 2 (MT2) since the MT2 specific antagonist 4P-PDOT significantly blocked the effects of melatonin on mast cell activation. Via targeting mast cells, melatonin suppressed apoptosis of alveolar epithelial cells and the lung injury caused by H1N1 infection. The findings provide a novel mechanism to protect against the H1N1-induced pulmonary injury, which may better facilitate the progress of new strategies to fight H1N1 infection or other IAV viral infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Lesão Pulmonar , Melatonina , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Mastócitos/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Pulmão
10.
Int Immunopharmacol ; 120: 110240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182445

RESUMO

Pneumonia is an acute inflammation of the lungs induced by pathogenic microorganisms, immune damage, physical and chemical factors, and other factors, and the latest outbreak of novel coronavirus pneumonia is also an acute lung injury (ALI) induced by viral infection. However, there are currently no effective treatments for inflammatory cytokine storms in patients with ALI/acute respiratory distress syndrome (ARDS). Protein kinase D (PKD) is a highly active kinase that has been shown to be associated with the production of inflammatory cytokines. Therefore, small-molecule compounds that inhibit PKD may be potential drugs for the treatment of ALI/ARDS. In the present study, we evaluated the ability of the small-molecule inhibitor CRT0066101 to attenuate lipopolysaccharide (LPS)-induced inflammatory cytokine production through in vitro cell experiments and a mouse pneumonia model. We found that CRT0066101 significantly reduced the protein and mRNA levels of LPS-induced cytokines (e.g., IL-6, TNF-α, and IL-1ß). CRT0066101 inhibited MyD88 and TLR4 expression and reduced NF-κB, ERK, and JNK phosphorylation. CRT0066101 also reduced NLRP3 activation, inhibited the assembly of the inflammasome complex, and attenuated inflammatory cell infiltration and lung tissue damage. Taken together, our data indicate that CRT0066101 exerts anti-inflammatory effects on LPS-induced inflammation through the TLR4/MyD88 signaling pathway, suggesting that CRT0066101 may have therapeutic value in acute lung injury and other MyD88-dependent inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Pneumonia , Síndrome do Desconforto Respiratório , Camundongos , Animais , Síndrome da Liberação de Citocina/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , COVID-19/metabolismo , Pulmão/patologia , Pneumonia/patologia , Lesão Pulmonar Aguda/induzido quimicamente , NF-kappa B/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Síndrome do Desconforto Respiratório/metabolismo
11.
Adv Healthc Mater ; 12(18): e2203133, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36857411

RESUMO

A cytokine storm may be the last attack of various diseases, such as sepsis, cancer, and coronavirus disease 2019, that can be life threatening. Real-time monitoring of cytokines in vivo is helpful for assessing the immune status of patients and providing an early warning of a cytokine storm. In this study, a functional carbon nanotube biointerface-based wearable microneedle patches for real-time monitoring of a cytokine storm in vivo via electrochemical analysis are reported. This wearable system has sensitivity with a detection limit of 0.54 pg mL-1 , high specificity, and 5 days of stability with a coefficient of variation of 4.0%. The system also has a quick response of several hours (1-4 h) to increasing cytokines. This wearable microneedle patch may offer a promising route for real-time biomolecule wearables construction. The patch is also the first reported integrated capture and monitoring system that is capable of real-time measurement of protein markers in interstitial fluid.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Humanos , Síndrome da Liberação de Citocina/metabolismo , Agulhas , Pele/metabolismo
12.
Front Immunol ; 14: 1133355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776867

RESUMO

Responding to tissue injury, skeletal muscles undergo the tissue destruction and reconstruction accompanied with inflammation. The immune system recognizes the molecules released from or exposed on the damaged tissue. In the local minor tissue damage, tissue-resident macrophages sequester pro-inflammatory debris to prevent initiation of inflammation. In most cases of the skeletal muscle injury, however, a cascade of inflammation will be initiated through activation of local macrophages and mast cells and recruitment of immune cells from blood circulation to the injured site by recongnization of damage-associated molecular patterns (DAMPs) and activated complement system. During the inflammation, macrophages and neutrophils scavenge the tissue debris to release inflammatory cytokines and the latter stimulates myoblast fusion and vascularization to promote injured muscle repair. On the other hand, an abundance of released inflammatory cytokines and chemokines causes the profound hyper-inflammation and mobilization of immune cells to trigger a vicious cycle and lead to the cytokine storm. The cytokine storm results in the elevation of cytolytic and cytotoxic molecules and reactive oxygen species (ROS) in the damaged muscle to aggravates the tissue injury, including the healthy bystander tissue. Severe inflammation in the skeletal muscle can lead to rhabdomyolysis and cause sepsis-like systemic inflammation response syndrome (SIRS) and remote organ damage. Therefore, understanding more details on the involvement of inflammatory factors and immune cells in the skeletal muscle damage and repair can provide the new precise therapeutic strategies, including attenuation of the muscle damage and promotion of the muscle repair.


Assuntos
Síndrome da Liberação de Citocina , Inflamação , Humanos , Síndrome da Liberação de Citocina/metabolismo , Músculo Esquelético/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Citocinas/metabolismo
13.
Respir Res ; 24(1): 12, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631871

RESUMO

BACKGROUND: Pulmonary hypoperfusion is common in children with congenital heart diseases (CHDs) or pulmonary hypertension (PH) and causes adult pulmonary dysplasia. Systematic reviews have shown that some children with CHDs or PH have mitigated clinical outcomes with COVID-19. Understanding the effects of pulmonary hypoperfusion on postnatal alveolar development may aid in the development of methods to improve the pulmonary function of children with CHDs or PH and improve their care during the COVID-19 pandemic, which is characterized by cytokine storm and persistent inflammation. METHODS AND RESULTS: We created a neonatal pulmonary hypoperfusion model through pulmonary artery banding (PAB) surgery at postnatal day 1 (P1). Alveolar dysplasia was confirmed by gross and histological examination at P21. Transcriptomic analysis of pulmonary tissues at P7(alveolar stage 2) and P14(alveolar stage 4) revealed that the postnatal alveolar development track had been changed due to pulmonary hypoperfusion. Under the condition of pulmonary hypoperfusion, the cell-cell communication and axon guidance, which both determine the final number of alveoli, were lost; instead, there was hyperactive cell cycle activity. The transcriptomic results were further confirmed by the examination of axon guidance and cell cycle markers. Because axon guidance controls inflammation and immune cell activation, the loss of axon guidance may explain the lack of severe COVID-19 cases among children with CHDs or PH accompanied by pulmonary hypoperfusion. CONCLUSIONS: This study suggested that promoting cell-cell communication or supplementation with guidance molecules may treat pulmonary hypoperfusion-induced alveolar dysplasia, and that COVID-19 is less likely to cause a cytokine storm in children with CHD or PH accompanied by pulmonary hypoperfusion.


Assuntos
COVID-19 , Hipertensão Pulmonar , Criança , Recém-Nascido , Humanos , Orientação de Axônios , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/patologia , Pandemias , COVID-19/metabolismo , Alvéolos Pulmonares/patologia , Hipertensão Pulmonar/metabolismo , Comunicação Celular
14.
Biol Reprod ; 108(2): 172-182, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36173920

RESUMO

Coronavirus disease 2019 (COVID-19) is a multi-system disease that has led to a pandemic with unprecedented ramifications. The pandemic has challenged scientists for the past 2 years and brought back previously abandoned research topics. COVID-19 infection causes a myriad of symptoms ranging from mild flu-like symptoms to severe illness requiring hospitalization. Case reports showed multiple systemic effects of COVID-19 infection, including acute respiratory distress syndrome, fibrosis, colitis, thyroiditis, demyelinating syndromes, and mania, indicating that COVID-19 can affect most human body systems. Unsurprisingly, a major concern for women all over the globe is whether a COVID-19 infection has any long-term effects on their menstrual cycle, fertility, or pregnancy. Published data have suggested an effect on the reproductive health, and we hypothesize that the reported reproductive adverse effects are due to the robust immune reaction against COVID-19 and the associated cytokine storm. While the COVID-19 receptor (angiotensin converting enzyme, ACE2) is expressed in the ovaries, uterus, vagina, and placenta, we hypothesize that it plays a less important role in the adverse effects on the reproductive system. Cytokines and glucocorticoids act on the hypothalamo-pituitary gonadal axis, arachidonic acid pathways, and the uterus, which leads to menstrual disturbances and pregnancy-related adverse events such as preterm labor and miscarriages. This hypothesis is further supported by the apparent lack of long-term effects on the reproductive health in females, indicating that when the cytokine storm and its effects are dampened, the reproductive health of women is no longer affected.


Assuntos
COVID-19 , Genitália Feminina , Feminino , Humanos , Recém-Nascido , Gravidez , COVID-19/complicações , COVID-19/imunologia , Síndrome da Liberação de Citocina/metabolismo , Genitália Feminina/patologia , Imunidade , SARS-CoV-2
15.
Sci Rep ; 12(1): 8108, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577892

RESUMO

A cytokine storm induces acute respiratory distress syndrome, the main cause of death in coronavirus disease 2019 (COVID-19) patients. However, the detailed mechanisms of cytokine induction due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unclear. To examine the cytokine production in COVID-19, we mimicked the disease in SARS-CoV-2-infected alveoli by adding the lysate of SARS-CoV-2-infected cells to cultured macrophages or induced pluripotent stem cell-derived myeloid cells. The cells secreted interleukin (IL)-6 after the addition of SARS-CoV-2-infected cell lysate. Screening of 25 SARS-CoV-2 protein-expressing plasmids revealed that the N protein-coding plasmid alone induced IL-6 production. The addition of anti-N antibody further enhanced IL-6 production, but the F(ab')2 fragment did not. Sera from COVID-19 patients also enhanced IL-6 production, and sera from patients with severer disease induced higher levels of IL-6. These results suggest that anti-N antibody promotes IL-6 production in SARS-CoV-2-infected alveoli, leading to the cytokine storm of COVID-19.


Assuntos
Anticorpos Antivirais , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Interleucina-6 , SARS-CoV-2 , Anticorpos Antivirais/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/metabolismo , Citocinas , Humanos , Interleucina-6/metabolismo , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
16.
Front Immunol ; 13: 820350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251002

RESUMO

Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-ß superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.


Assuntos
Adaptação Psicológica/fisiologia , Biomarcadores/metabolismo , COVID-19/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , COVID-19/virologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Humanos
19.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163833

RESUMO

Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1ß, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.


Assuntos
Aldo-Ceto Redutases/fisiologia , COVID-19/genética , Síndrome da Liberação de Citocina/genética , Síndrome do Desconforto Respiratório/genética , Aldo-Ceto Redutases/antagonistas & inibidores , Aldo-Ceto Redutases/genética , Animais , COVID-19/complicações , COVID-19/metabolismo , COVID-19/patologia , Estudos de Casos e Controles , Células Cultivadas , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Gravidade do Paciente , Células RAW 264.7 , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/fisiologia , Transcriptoma
20.
Cells ; 11(2)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053424

RESUMO

Acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection continues to be a worldwide public health crisis. Among the several severe manifestations of this disease, thrombotic processes drive the catastrophic organ failure and mortality in these patients. In addition to a well-established cytokine storm associated with the disease, perturbations in platelets, endothelial cells, and the coagulation system are key in triggering systemic coagulopathy, involving both the macro- and microvasculatures of different organs. Of the several mechanisms that might contribute to dysregulation of these cells following SARS-CoV-2 infection, the current review focuses on the role of activated Janus kinase (JAK) signaling in augmenting thrombotic processes and organ dysfunction. The review concludes with presenting the current understanding and emerging controversies concerning the potential therapeutic applications of JAK inhibitors for ameliorating the inflammation-thrombosis phenotype in COVID-19 patients.


Assuntos
COVID-19/metabolismo , Células Endoteliais/metabolismo , Janus Quinases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Trombose/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/virologia , Células Endoteliais/virologia , Humanos , Trombose/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA