Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Andrology ; 12(3): 487-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37674303

RESUMO

Testing for AZoospermia Factor (AZF) deletions of the Y chromosome is a key component of the diagnostic workup of azoospermic and severely oligozoospermic men. This revision of the 2013 European Academy of Andrology (EAA) and EMQN CIC (previously known as the European Molecular Genetics Quality Network) laboratory guidelines summarizes recent clinically relevant advances and provides an update on the results of the external quality assessment program jointly offered by both organizations. A basic multiplex PCR reaction followed by a deletion extension analysis remains the gold-standard methodology to detect and correctly interpret AZF deletions. Recent data have led to an update of the sY84 reverse primer sequence, as well as to a refinement of what were previously considered as interchangeable border markers for AZFa and AZFb deletion breakpoints. More specifically, sY83 and sY143 are no longer recommended for the deletion extension analysis, leaving sY1064 and sY1192, respectively, as first-choice markers. Despite the transition, currently underway in several countries, toward a diagnosis based on certified kits, it should be noted that many of these commercial products are not recommended due to an unnecessarily high number of tested markers, and none of those currently available are, to the best of our knowledge, in accordance with the new first-choice markers for the deletion extension analysis. The gr/gr partial AZFc deletion remains a population-specific risk factor for impaired sperm production and a predisposing factor for testicular germ cell tumors. Testing for this deletion type is, as before, left at the discretion of the diagnostic labs and referring clinicians. Annual participation in an external quality control program is strongly encouraged, as the 22-year experience of the EMQN/EAA scheme clearly demonstrates a steep decline in diagnostic errors and an improvement in reporting practice.


Assuntos
Andrologia , Azoospermia , Infertilidade Masculina , Oligospermia , Síndrome de Células de Sertoli , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Humanos , Masculino , Sêmen , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Azoospermia/diagnóstico , Azoospermia/genética , Azoospermia/patologia , Deleção Cromossômica , Oligospermia/diagnóstico , Oligospermia/genética , Cromossomos Humanos Y/genética , Reação em Cadeia da Polimerase Multiplex , Síndrome de Células de Sertoli/genética
2.
Fertil Steril ; 121(1): 63-71, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923163

RESUMO

OBJECTIVE: To investigate whether Azoospermia Factor c (AZFc) microdeletions affect Assisted Reproductive Technology (ART) outcomes. DESIGN: Systematic review and meta-analysis. SETTING: Not applicable. PATIENTS: Infertile men with and without AZFc microdeletions. INTERVENTION(S): Electronic databases were searched for case-control studies reporting sperm retrieval rates and outcomes of ART in infertile men with and without AZFc microdeletions from inception to April 2023. Study quality was assessed using the Newcastle-Ottawa Scale. Summary effect sizes (odds ratio [OR] with 95% confidence interval [CI]) were calculated for both categories of infertile men. MAIN OUTCOME MEASURES: The primary outcome was successful sperm retrieval and the secondary outcomes were outcomes of ART. RESULTS: Case-control studies reporting sperm retrieval rates and ART outcomes in men with AZFa and AZFb deletions were unavailable. On the basis of the data from 3,807 men, sperm retrieval rates were found to be higher in men with AZFc microdeletions compared to their non-deleted counterparts [OR = 1.82, 95% CI 0.97, 3.41], but the difference was not statistically significant. A significantly lower fertilization rate (OR = 0.61, 95% CI [0.50, 0.74]), clinical pregnancy rate (OR = 0.61, 95% CI [0.42, 0.89]), and live birth rate (OR = 0.54, 95% CI [0.40, 0.72]) were observed in men with AZFc deletions compared with men without deletions. There was no statistically significant difference in rates of embryo cleavage, blastocyst formation, good-quality embryos, implantation, and miscarriage between the two groups. On correcting for female factors, the fertilization rate (OR = 0.76, 95% CI [0.71, 0.82]), cleavage rate (OR = 0.54, 95% CI [0.41, 0.72]), clinical pregnancy rate (OR = 0.39, 95% CI [0.30, 0.52]), and live birth rate (OR = 0.48, 95% CI [0.35, 0.65]) were significantly lower in men with AZFc deletions compared with controls. CONCLUSIONS: Presence of AZFc microdeletions adversely affects outcomes of ART in infertile men. Further in-depth studies delineating the role of the AZF genes in embryonic development are necessary to understand the full-impact of this finding. CLINICAL TRIAL REGISTRATION NUMBER: CRD42022311738.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Síndrome de Células de Sertoli , Gravidez , Humanos , Masculino , Feminino , Azoospermia/diagnóstico , Azoospermia/genética , Azoospermia/terapia , Oligospermia/genética , Estudos Retrospectivos , Deleção Cromossômica , Cromossomos Humanos Y , Sêmen , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/terapia , Síndrome de Células de Sertoli/genética
3.
Sci Rep ; 13(1): 12164, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500704

RESUMO

Sertoli cell-only syndrome (SCOS), a severe testicular spermatogenic failure, is characterized by total absence of male germ cells. To better expand the understanding of the potential molecular mechanisms of SCOS, we used microarray datasets from the Gene Expression Omnibus (GEO) and ArrayExpress databases to determine the differentially expressed genes (DEGs). In addition, functional enrichment analysis including the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. Protein-protein interaction (PPI) networks, modules, and miRNA-mRNA regulatory networks were constructed and analyzed and the validation of hub genes was performed. A total of 601 shared DEGs were identified, including 416 down-regulated and 185 up-regulated genes. The findings of the enrichment analysis indicated that the shared DEGs were mostly enriched in sexual reproduction, reproductive process, male gamete generation, immune response, and immunity-related pathways. In addition, six hub genes (CCNA2, CCNB2, TOP2A, CDC20, BUB1, and BUB1B) were selected from the PPI network by using the cytoHubba and MCODE plug-ins. The expression levels of the hub genes were significantly decreased in patients with SCOS compared to that in normal spermatogenesis controls as indicated by the microarray data, single-cell transcriptomic data, and clinical sample levels. Furthermore, the potential miRNAs were predicted via the miRNA-mRNA network construction. These hub genes and miRNAs can be used as potential biomarkers that may be related to SCOS. However, it has not been proven that the differential expression of these biomarkers is the molecular pathogenesis mechanisms of SCOS. Our findings suggest that these biomarkers can be serve as clinical tool for diagnosis targets and may have some impact on the spermatogenesis of SCOS from a testicular germ cell perspective.


Assuntos
MicroRNAs , Síndrome de Células de Sertoli , Humanos , Masculino , Síndrome de Células de Sertoli/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , Biologia Computacional , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica
4.
Reprod Biol Endocrinol ; 21(1): 53, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296437

RESUMO

BACKGROUND: Sertoli cell-only syndrome (SCOS) is the most serious pathological type of non-obstructive azoospermia. Recently, several genes related to SCOS have been identified, including FANCM, TEX14, NR5A1, NANOS2, PLK4, WNK3, and FANCA, but they cannot fully explain the pathogenesis of SCOS. This study attempted to explain spermatogenesis dysfunction in SCOS through testicular tissue RNA sequencing and to provide new targets for SCOS diagnosis and therapy. METHODS: We analyzed differentially expressed genes (DEGs) based on RNA sequencing of nine patients with SCOS and three patients with obstructive azoospermia and normal spermatogenesis. We further explored the identified genes using ELISA and immunohistochemistry. RESULTS: In total, 9406 DEGs were expressed (Log2|FC|≥ 1; adjusted P value < 0.05) in SCOS samples, and 21 hub genes were identified. Three upregulated core genes were found, including CASP4, CASP1, and PLA2G4A. Thus, we hypothesized that testis cell pyroptosis mediated by CASP1 and CASP4 might be involved in SCOS occurrence and development. ELISA verified that CASP1 and CASP4 activities in the testes of patients with SCOS were significantly higher than those in patients with normal spermatogenesis. Immunohistochemical results showed that CASP1 and CASP4 in the normal spermatogenesis group were mainly expressed in the nuclei of spermatogenic, Sertoli, and interstitial cells. CASP1 and CASP4 in the SCOS group were mainly expressed in the nuclei of Sertoli and interstitial cells because of the loss of spermatogonia and spermatocytes. CASP1 and CASP4 expression levels in the testes of patients with SCOS were significantly higher than those in patients with normal spermatogenisis. Furthermore, the pyroptosis-related proteins GSDMD and GSDME in the testes of patients with SCOS were also significantly higher than those in control patients. ELISA also showed that inflammatory factors (IL-1 ß, IL-18, LDH, and ROS) were significantly increased in the SCOS group. CONCLUSIONS: For the first time, we found that cell pyroptosis-related genes and key markers were significantly increased in the testes of patients with SCOS. We also observed many inflammatory and oxidative stress reactions in SCOS. Thus, we propose that testis cell pyroptosis mediated by CASP1 and CASP4 could participate in SCOS occurrence and development.


Assuntos
Azoospermia , Síndrome de Células de Sertoli , Masculino , Humanos , Testículo/metabolismo , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/patologia , Azoospermia/patologia , Piroptose/genética , Espermatogênese/genética , Proteínas Serina-Treonina Quinases/metabolismo , DNA Helicases/metabolismo , Fatores de Transcrição/metabolismo
5.
Front Immunol ; 14: 1135753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033952

RESUMO

Sertoli cell -only syndrome (SCOS) is a type of testicular pathological failure that causes male infertility and no effective treatment strategy, is available for this condition. Moreover, the molecular mechanism underlying its development remains unknown. We identified DExD/H-Box helicase 58 (DDX58) as a key gene in SCOS based on four datasets of testicular tissue samples obtained from the Gene Expression Synthesis database. DDX58 was significantly upregulated in SCOS testicular Sertoli cells. Moreover, high expression of DDX58 was positively correlated with the expression of several testicular inflammatory factors, such as IL -1ß, IL-18, and IL-6. Interestingly, DDX58 could be induced in the D-galactose (D-gal)-stimulated TM4 cell injury model. Whereas silencing of DDX58 inhibited D-gal -mediated p65 expression, inflammatory cytokine release, and growth arrest. Mechanistically, we found that DDX58 acts as an RNA-binding protein, which enhances p65 expression by promoting mRNA stability. Furthermore, p65 gene silencing decreased the expression of inflammatory cytokines and inhibition of cell growth in D-gal-induced cells. In conclusion, our findings demonstrate that DDX58 promotes inflammatory responses and growth arrest in SCOS Sertoli cells by stabilizing p65 mRNA. Accordingly, the DDX58/p65 regulatory axis might be a therapeutic target for SCOS.


Assuntos
Síndrome de Células de Sertoli , Células de Sertoli , Humanos , Masculino , Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Testículo/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , Receptores Imunológicos/metabolismo
6.
Cell Mol Life Sci ; 80(3): 67, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814036

RESUMO

Male infertility can be caused by quantitative and/or qualitative abnormalities in spermatogenesis, which affects men's physical and mental health. Sertoli cell-only syndrome (SCOS) is the most severe histological phenotype of male infertility characterized by the depletion of germ cells with only Sertoli cells remaining in the seminiferous tubules. Most SCOS cases cannot be explained by the already known genetic causes including karyotype abnormalities and microdeletions of the Y chromosome. With the development of sequencing technology, studies on screening new genetic causes for SCOS are growing in recent years. Directly sequencing of target genes in sporadic cases and whole-exome sequencing applied in familial cases have identified several genes associated with SCOS. Analyses of the testicular transcriptome, proteome, and epigenetics in SCOS patients provide explanations regarding the molecular mechanisms of SCOS. In this review, we discuss the possible relationship between defective germline development and SCOS based on mouse models with SCO phenotype. We also summarize the advances and challenges in the exploration of genetic causes and mechanisms of SCOS. Knowing the genetic factors of SCOS offers a better understanding of SCO and human spermatogenesis, and it also has practical significance for improving diagnosis, making appropriate medical decisions, and genetic counseling. For therapeutic implications, SCOS research, along with the achievements in stem cell technologies and gene therapy, build the foundation to develop novel therapies for SCOS patients to produce functional spermatozoa, giving them hope to father children.


Assuntos
Azoospermia , Infertilidade Masculina , Síndrome de Células de Sertoli , Animais , Camundongos , Criança , Humanos , Masculino , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/patologia , Azoospermia/genética , Azoospermia/patologia , Testículo/patologia , Túbulos Seminíferos , Espermatogênese/genética , Infertilidade Masculina/patologia
7.
Asian J Androl ; 25(1): 5-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35259786

RESUMO

Spermatogenesis is regulated by several Y chromosome-specific genes located in a specific region of the long arm of the Y chromosome, the azoospermia factor region (AZF). AZF microdeletions are the main structural chromosomal abnormalities that cause male infertility. Assisted reproductive technology (ART) has been used to overcome natural fertilization barriers, allowing infertile couples to have children. However, these techniques increase the risk of vertical transmission of genetic defects. Despite widespread awareness of AZF microdeletions, the occurrence of de novo deletions and overexpression, as well as the expansion of AZF microdeletion vertical transmission, remains unknown. This review summarizes the mechanism of AZF microdeletion and the function of the candidate genes in the AZF region and their corresponding clinical phenotypes. Moreover, vertical transmission cases of AZF microdeletions, the impact of vertical inheritance on male fertility, and the prospective direction of research in this field are also outlined.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Síndrome de Células de Sertoli , Humanos , Masculino , Azoospermia/genética , Aberrações dos Cromossomos Sexuais , Estudos Prospectivos , Deleção Cromossômica , Cromossomos Humanos Y/genética , Infertilidade Masculina/genética , Síndrome de Células de Sertoli/genética , Oligospermia/genética
8.
Biomed J ; 46(2): 100524, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35358715

RESUMO

BACKGROUND: The precise contribution of each chromosome gene or gene family in achieving male fertility is still the subject of debate. Most studies have examined male populations with heterogeneous causes of infertility, and have therefore reached controversial or uncertain conclusions. This study uses Y-chromosome array-based comparative genomic hybridization (aCGH) to examine a population of males with a uniform sertoli cell-only syndrome (SCOS) infertility phenotype. METHODS: Initial analysis of gene copy number variations in 8 SCOS patients, with determination of the log-ratio of probe signal intensity against a DNA reference, was performed using the Y-chromosome NimbleGen aCGH. To confirm the role of candidate genes, real-time quantitative RT-PCR was used to compare 19 patients who had SCOS non-obstructive azoospermia with 15 patients who had obstructive azoospermia but normal spermatogenesis. RESULTS: Our initial aCGH experiments identified CDY1a and CDY1b double deletions in all 8 patients who had total germ cell depletion. However, 5 patients had DAZ1/2 and DAZ3/4 deletions, 1 patient had a DAZ2 and DAZ3/4 deletion, and 2 patients had no DAZ1/2 or DAZ3/4 deletions. Examination of testicular mRNA expression in another 19 patients with SCOS indicated all patients had no detectable levels of CDY1. CONCLUSIONS: Our findings indicate that CDY1 deletion in SCOS patients, and analysis of the expression of DAZ and CDY1 genes using aCGH and quantitative RT-PCR, may be useful to predict the presence of mature spermatozoa.


Assuntos
Azoospermia , Síndrome de Células de Sertoli , Humanos , Masculino , Azoospermia/genética , Hibridização Genômica Comparativa , Síndrome de Células de Sertoli/genética , Deleção de Genes , Genes Ligados ao Cromossomo Y , Variações do Número de Cópias de DNA/genética
9.
Front Immunol ; 13: 821010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833143

RESUMO

Sertoli cell-only syndrome (SCOS) is the most severe and common pathological type of non-obstructive azoospermia. The etiology of SCOS remains largely unknown to date despite a handful of studies reported in this area. According to the gene expression of testicular tissue samples in six datasets from the Gene Expression Omnibus, we detected 1441 differentially expressed genes (DEGs) between SCOS and obstructive azoospermia (OA) testicular tissue samples. Enriched GO terms and KEGG pathways for the downregulated genes included various terms and pathways related to cell cycle and reproduction, while the enrichment for the upregulated genes yielded many inflammation-related terms and pathways. In accordance with the protein-protein interaction (PPI) network, all genes in the most critical module belonged to the downregulated DEGs, and we obtained nine hub genes, including CCNB1, AURKA, CCNA2, BIRC5, TYMS, UBE2C, CDC20, TOP2A, and OIP5. Among these hub genes, six were also found in the most significant SCOS-specific module obtained from consensus module analysis. In addition, most of SCOS-specific modules did not have a consensus counterpart. Based on the downregulated genes, transcription factors (TFs) and kinases within the upstream regulatory network were predicted. Then, we compared the difference in infiltrating levels of immune cells between OA and SCOS samples and found a significantly higher degree of infiltration for most immune cells in SCOS than OA samples. Moreover, CD56bright natural killer cell was significantly associated with six hub genes. Enriched hallmark pathways in SCOS had remarkably more upregulated pathways than the downregulated ones. Collectively, we detected DEGs, significant modules, hub genes, upstream TFs and kinases, enriched downstream pathways, and infiltrated immune cells that might be specifically implicated in the pathogenesis of SCOS. These findings provide new insights into the pathogenesis of SCOS and fuel future advances in its theranostics.


Assuntos
Azoospermia , Síndrome de Células de Sertoli , Azoospermia/genética , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/patologia
10.
Gene ; 826: 146405, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341953

RESUMO

Spermatogenesis is a multistep biological process. In addition to somatic cells, it involves the orderly differentiation of dozens of spermatogenic cells. In this process, the regulatory networks between different spermatogenic cell populations are significantly different. RNA m6A regulators and miRNAs have been found to be closely related to spermatogenesis in recent years, and they are an important part of the above regulatory networks. Understanding gene expression and its rules in different spermatogenic cell populations will help in the in-depth exploration of their detailed roles in spermatogenesis. This study collected a public dataset of nonobstructive azoospermia (NOA). Based on the Johnson score, the testicular samples of NOA were divided into three types, Sertoli-cell only syndrome, meiotic arrest and postmeiotic arrest, which represented the loss of three germ cell populations, including whole spermatogenic cells, postmeiotic spermatogenic cells, and a mixture of late spermatids and spermatozoa, respectively. The aforementioned three types of testis data were compared with normal testis data, and the molecular expression characteristics of the abovementioned three germ cell populations were obtained. Our study showed that different germ cell populations have different active molecules and their pathways. In addition, RNA m6A regulators, including METTL3, IGF2BP2 and PRRC2A, and miRNAs, including hsa-let-7a-2, hsa-let-7f-1, hsa-let-7g, hsa-miR-15a, hsa-miR-197, hsa-miR-21, hsa-miR-30e, hsa-miR-32, hsa-miR-503 and hsa-miR-99a, also presented regulatory roles in almost all germ cells.


Assuntos
Azoospermia , MicroRNAs , Síndrome de Células de Sertoli , Azoospermia/genética , Humanos , Masculino , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Síndrome de Células de Sertoli/genética , Espermatogênese/genética , Testículo/metabolismo
11.
Genet Test Mol Biomarkers ; 25(10): 654-659, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672775

RESUMO

Background: Male infertility is a major health concern in couples of childbearing ages. Nonobstructive azoospermia (NOA) is an extreme form of male infertility that affects ∼1% of adult men, and the etiology remains unknown in most cases. Sertoli cell-only syndrome (SCOS) is the most severe type of NOA. Aims: To explore novel human candidate variants that cause SCOS. Methods: (1) Whole exome sequencing (WES) of 20 men with SCOS, (2) Sanger sequencing of the HELQ gene in an additional 163 men with SCOS, (3) in vitro functional assays, and (4) in vivo studies. Results: WES of 20 patients with SCOS led to the identification of two heterozygous missense mutations (M1 and M2) in two unrelated Chinese patients with infertility. Using subsequent Sanger sequencing covering all the coding regions of the HELQ gene for 163 additional SCOS cases, we identified four additional heterozygous mutations (M3-M6) in unrelated patients. In vitro functional analyses revealed that two of these mutations (M5, c.2538T > G and M6, c.2945G > T) might affect the function of the HELQ protein. Two heterozygous mutant mouse models with mutations similar to those of two patients (M5 and M6) did not show any considerable spermatogenic defects. Conclusion: Assuming that the mouse models accurately reflect the impact of the mutations, heterozygous HELQ variants alone did not lead to the development of the SCOS phenotype in mice. However, we cannot rule out the risk variants in Chinese or other human populations, and a larger dataset is needed to confirm the association between HELQ mutations with SCOS.


Assuntos
Azoospermia/genética , DNA Helicases/genética , Síndrome de Células de Sertoli/genética , Adulto , Animais , Azoospermia/diagnóstico , Azoospermia/patologia , Biópsia , Análise Mutacional de DNA , Modelos Animais de Doenças , Heterozigoto , Humanos , Masculino , Camundongos Transgênicos , Síndrome de Células de Sertoli/diagnóstico , Síndrome de Células de Sertoli/patologia , Espermatogênese/genética , Testículo/patologia , Sequenciamento do Exoma
12.
Gene ; 801: 145851, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34274474

RESUMO

Sertoli cell only syndrome (SCOS) is characterized by complete absence of germ cells in seminiferous tubules of testis. SCOS is multifactorial but genetic factors play a major role in pathogenesis of the disorder with idiopathic origin. Genetic factors majorly include sex chromosomal aneuploidy and Yq Microdeletion. But a large number of cases are still idiopathic. The study aimed to evaluate the genomic imbalances (CNVs and LOH) in idiopathic SCOS patients. The study is based on 28 apparent idiopathic SCOS cases and 10 controls. Molecular cytogenetic techniques viz., FISH, STS-Multiplex PCR and Affymetrix cytoscan microarray (750 K) were used. The microarray screened whole genomic imbalances in DNA from peripheral blood of 25 cases (excluded Klinefelter syndrome patients) and testicular FNAC sample of 2 cases. High FSH and low Inhibin B were observed in cases as compared to control controls groups. Four cases of sex chromosomal abnormality (i.e., three non-mosaic 47, XXY males and one non-mosaic 46, XX male) as well as four cases of Yq microdeletion (i.e., three cases with AZFc deletion and one case with complete AZFa, b and c deletion) were identified. Microarray detected unbalanced translocation of two segments of Y-chromosome i.e., Yp11.31-p11.2 (~4.o mb region, involving SRY) and Yp11.2 (~2.5 mb region) on X-chromosome in XX male. Also, loss of segment on same X-chromosome involving PAR1 region was identified. We have identified both autosomal and sex chromosomal CNVs (recurrent as well as private) involving candidate genes like SYCE1, ZFPM2, SRPK1, DAZ1, BPY2, HSFY1, VCY1 etc. All these CNVs are possibly associated with SCOS pathogenesis. CNVs identified in cases were already reported as pathogenic variant in clinical database DECIPHER. Microarray also detected many LOH (all autosomal, >3.0 mb size) that covered genes with spermatogenesis related function. The mechanism of action of LOH in pathogenesis of SCOS still remains unravelled. CNVs and LOH related to spermatogenesis identified from two different sample types (blood vs. testicular tissue) were discordant. This study should be extended for larger cohort of patients.


Assuntos
Variações do Número de Cópias de DNA , Perda de Heterozigosidade , Síndrome de Células de Sertoli/genética , Aberrações dos Cromossomos Sexuais , Hormônio Antimülleriano/sangue , Azoospermia/genética , Estudos de Casos e Controles , Análise Citogenética/métodos , Humanos , Hibridização in Situ Fluorescente , Subunidades beta de Inibinas/sangue , Masculino , Testículo/fisiologia
13.
Genomics ; 113(4): 1845-1854, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865957

RESUMO

Studies increasingly show the involvement of circular RNAs (circRNAs) in several diseases. This study aims to explore the circRNA expression pattern in the testicular tissues of patients with Sertoli only cell syndrome (SCOS) and their potential functions. High throughput circRNA microarray analysis indicated that 399 circRNAs were upregulated and 1195 were down-regulated (fold change >2, P < 0.05) in SCOS relative to obstructive azoospermia (OA). The hsa_circRNA_101222, hsa_circRNA_001387, hsa_circRNA_001153, hsa_circRNA_101373 and hsa_circRNA_103864 were validated by qRT-PCR. Furthermore, the hosting genes of the differentially expressed circRNAs (DEcircRNAs) were enriched in biological processes related to cell cycle and intercellular communication. Also, the overlapping genes between the hosting genes of SCOS-related DEcircRNAs and those highly expressed in Sertoli cells of non-obstructive azoospermia (NOA) were enriched in immune cell development and cell communication. Taken together, aberrantly expressed circRNAs likely mediate SCOS development by regulating the function of Sertoli cells and the spermatogenic microenvironment.


Assuntos
Azoospermia , Síndrome de Células de Sertoli , Azoospermia/genética , Humanos , Masculino , Análise em Microsséries , RNA Circular , Síndrome de Células de Sertoli/genética , Espermatogênese
14.
Fertil Steril ; 115(5): 1197-1211, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602558

RESUMO

OBJECTIVE: To investigate microRNA (miRNA) expression profiles in the seminal plasma of nonobstructive azoospermia (NOA) patients with different histopathologic patterns and evaluate potential noninvasive diagnostic biomarkers of NOA. DESIGN: Sequencing and validation using quantitative reverse transcription polymerase chain reaction (qRT-PCR). SETTING: Reproductive center and research institute. PATIENT(S): Thirteen patients with NOA (7 Sertoli cell-only syndrome [SCOS] and 6 hypospermatogenesis to spermatogenesis arrest [SA]) and 7 normal fertile controls for sequencing, six samples per group for validation; 54 patients with NOA (27 SCOS and 27 SA) and 19 normal fertile controls for large-sample qRT-PCR analysis. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): MicroRNA expression profiles in the seminal plasma of patients with NOA with different histopathologic patterns were assessed using high-throughput sequencing and validated using qRT-PCR. RESULT(S): There were 78 overexpressed and 132 underexpressed miRNAs in patients with SCOS and 32 up-regulated and 90 down-regulated miRNAs in patients with SA compared with fertile men with normozoospermia. Two down-regulated and one up-regulated miRNA were validated using qRT-PCR, which indicated that the qRT-PCR and sequencing results were basically consistent. Hsa-miR-34c-5p expression was significantly lower in the seminal plasma of patients with NOA than normal fertile controls. The area under the receiver operating characteristic curve(AUC) for hsa-miR-34c-5p was 0.979 and 0.987 in the seminal plasma of patients with SA and patients with SCOS, respectively, compared with normal fertile controls. The AUC was 0.799 for hsa-miR-34c-5p in the seminal plasma between patients with SA and patients with SCOS. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed miRNA target genes revealed that the Notch signaling pathway was one of the most abundant signaling pathways. The expression of Hes5, an effector of the Notch signaling pathway, was significantly higher in the seminal plasma of patients with NOA than normal fertile controls. CONCLUSION(S): MicroRNA expression profiles in seminal plasma were altered in patients with NOA compared with normal fertile controls. The profiles differed in patients with NOA with different pathologic patterns. We speculate that miR-34c-5p in seminal plasma could be a potential noninvasive biomarker to diagnose patients with NOA and distinguish different pathologic types of NOA. The Notch signaling pathway may be involved in the pathogenesis of NOA.


Assuntos
Azoospermia , MicroRNAs/genética , Sêmen/metabolismo , Adulto , Azoospermia/classificação , Azoospermia/congênito , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/patologia , Estudos de Casos e Controles , Técnicas Histológicas , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , MicroRNAs/metabolismo , Análise do Sêmen , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/patologia , Testículo/metabolismo , Testículo/patologia , Transcriptoma
15.
Andrology ; 9(2): 657-664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290605

RESUMO

BACKGROUND: Decreased testosterone (T) to LH ratio and increased 17ß-estradiol (E2) serum concentrations represent a common finding among patients with severe spermatogenic failure, suggesting a concurrent Leydig cell steroidogenic dysfunction. Aromatase overexpression has been associated with increased serum and intratesticular E2 in these patients. However, it is unknown whether the sulfatase pathway contributes to the increased availability of active estrogens in patients with primary spermatogenic failure. OBJECTIVES: To assess estrogen sulfotransferase (SULT1E1) and steroid sulfatase (STS) mRNA abundance in testicular tissue of patients with Sertoli cell-only syndrome (SCOS) and normal tissues, its association with serum and intratesticular hormone levels, and to explore the mRNA and protein testicular localization of both enzymes. MATERIALS AND METHODS: Testicular tissues of 23 subjects with SCOS (cases) and 22 patients with obstructive azoospermia and normal spermatogenesis (controls) were obtained after biopsy. SULT1E1 and STS transcripts accumulation was quantified by RT-qPCR. For mRNA and protein localization, we performed RT-qPCR in Leydig cell clusters and seminiferous tubules isolated by laser-capture microdissection and immunofluorescence in testicular tissues. Serum and intratesticular hormones were measured by immunoradiometric assays. RESULTS: SULT1E1 mRNA accumulation was similar in both groups. The amount of STS mRNA was higher in cases (p = 0.007) and inversely correlated with T/LH ratio (r = -0.402; p = 0.02). Also, a near significant correlation was observed with intratesticular E2 (r = 0.329, p = 0.057), in agreement with higher intratesticular E2 in cases (p < 0.001). Strong STS immunoreaction was localized in the wall of small blood vessels but not in Leydig cells. Both SULT1E1 and STS mRNA abundance was similar in Leydig cell clusters and the tubular compartment, except for lower SUTL1E1 mRNA in the seminiferous tubules of SCOS patients (p = 0.001). CONCLUSIONS: Our results suggest that an unbalance of the STS/SULT1E1 pathway contributes to the testicular hyperestrogenic microenvironment in patients with primary spermatogenic failure and Leydig cell dysfunction.


Assuntos
Células Intersticiais do Testículo , Síndrome de Células de Sertoli/enzimologia , Esteril-Sulfatase/metabolismo , Testículo/enzimologia , Adulto , Azoospermia/enzimologia , Azoospermia/genética , Azoospermia/fisiopatologia , Microambiente Celular , Hormônios Esteroides Gonadais/sangue , Humanos , Masculino , RNA Mensageiro , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/fisiopatologia , Espermatogênese , Esteril-Sulfatase/genética , Sulfotransferases/genética , Sulfotransferases/metabolismo
16.
Mol Reprod Dev ; 87(9): 978-985, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32770619

RESUMO

Retinoic acid (RA), the active metabolite of vitamin A, is one of the most important factors regulating spermatogenesis. RA activates downstream pathways through its receptors (retinoic acid receptor alpha [RARA], retinoic acid receptor beta, and retinoic acid receptor gamma [RARG]) and retinoid X receptors (retinoid X receptor alpha [RXRA], retinoid X receptor beta [RXRB], and retinoid X receptor gamma [RXRG]). These receptors may serve as therapeutic targets for infertile men. However, the localization and expression of retinoid receptors in normal and infertile men were unknown. In this study, we found RARA and RARG were mostly localized in spermatocytes and round spermatids, RXRB was mainly expressed in Sertoli cells, and RXRG was expressed in most cell types in the fertile human testis. The localization of RARA, RARG, RXRB, and RXRG in men with hypospermatogenesis (HYPO) was similar to that of men with normal fertility. In addition, the messenger RNA expression levels of RARA, RARG, RXRA, RXRB, and RXRG were significantly decreased in men with Sertoli cell-only syndrome (SCOS) and maturational arrest (MA), but not in men with HYPO. These results suggest that reduced levels of RARA, RARG, RXRB, RXRA, and RXRG are more closely associated with SCOS and MA spermatogenetic failure. These results could contribute to the development of new molecular indicators of spermatogenic dysfunction and might provide novel therapeutic targets for treating male infertility.


Assuntos
Infertilidade Masculina , Receptores do Ácido Retinoico , Testículo/metabolismo , Adulto , Estudos de Casos e Controles , Expressão Gênica , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Oligospermia/genética , Oligospermia/metabolismo , Oligospermia/patologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/patologia , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Espermatogênese/fisiologia , Testículo/patologia , Distribuição Tecidual
17.
Andrology ; 8(6): 1834-1843, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735753

RESUMO

BACKGROUND: Non-obstructive azoospermia (NOA), identified in approximately 10% of infertile males, is a multifactorial disease whose molecular mechanisms remain unknown. OBJECTIVES: The aim of this study was to identify the role of hsa_circ_0000116 in NOA and illustrate its predictive value in testicular sperm retrieval. MATERIALS AND METHODS: The study included 78 individuals, 58 with NOA and 20 with obstructive azoospermia (OA). Serum hormones including testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and estradiol II (E2) were measured. Testicular histopathology was analyzed by at least two pathologists. The expression of hsa_circ_0000116 in testicular tissue samples was detected using real-time PCR, and the circRNA-miRNA-mRNA networks were predicted using bioinformatics analysis. RESULTS: Our study illustrated that the expression of hsa_circ_0000116 was significantly higher in testicular tissue samples of NOA patients than in that of OA patients. Moreover, hsa_circ_0000116 was aberrantly expressed in three different pathological types of NOA: It was significantly up-regulated in patients with Sertoli cell-only syndrome (SCOS) when compared to patients with hypospermatogenesis (HS). In addition, the expression of hsa_circ_0000116 was negatively correlated with Johnsen score, while it was positively correlated with serum FSH level. A multivariate logistic regression model demonstrated that a high level of hsa_circ_0000116 was associated with a low rate of successful testicular sperm retrieval. Bioinformatics analysis and verification experiments showed that one of the most probable potential target miRNA for hsa_circ_0000116 was hsa-miR-449a. Further analysis indicated that hsa_circ_0000116 may be affecting the fertility function through a hsa_circ_0000116-miR-449-autophagy-related competing endogenous RNA (ceRNA) network. DISCUSSION AND CONCLUSION: We report for the first time that hsa_circ_0000116 may play pivotal roles in regulating spermatogenesis and may also be a potential biomarker for the diagnosis and treatment of NOA, while acting as a predictive tool for the rate of successful testicular sperm retrieval in NOA patients.


Assuntos
Azoospermia/genética , MicroRNAs/genética , RNA Circular/genética , Recuperação Espermática , Espermatogênese/genética , Adulto , Estradiol/sangue , Hormônio Foliculoestimulante/sangue , Marcadores Genéticos , Humanos , Hormônio Luteinizante/sangue , Masculino , MicroRNAs/biossíntese , Oligospermia/genética , Prolactina/sangue , RNA Circular/biossíntese , Síndrome de Células de Sertoli/genética , Espermatozoides/citologia , Testículo/patologia , Testosterona/sangue
18.
Stem Cell Res ; 42: 101703, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006804

RESUMO

Sertoli cell-only syndrome (SCOS) is a severe phenotype of male infertility; autosomal gene defects are thought to be the causes for this disease. The iPSC line generated from a SCOS patient carrying a mutation in PIWIL2 gene expresses pluripotent markers, has a normal karyotype and the mutation c.731_732delAT in PIWIL2 gene and is able to differentiate into three germ layers. This cell line will help to study the pathogenesis of SCOS, and the roles of PIWIL2 in human germ cells development and spermatogenesis.


Assuntos
Proteínas Argonautas/genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Células de Sertoli/genética , Diferenciação Celular , Linhagem Celular , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
19.
J Assist Reprod Genet ; 37(2): 331-340, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31983050

RESUMO

PURPOSE: To assess testicular mRNA and protein expression levels of MRE11 and RAD50 in human azoospermia patients. METHODS: Patients diagnosed with maturation arrest at the spermatocyte stage (MA) and Sertoli cell-only syndrome (SCOS) were recruited through diagnostic testicular biopsy. Patients with normal spermatogenesis were studied as controls. In addition, knockdown of MRE11 and RAD50 was performed in GC-2spd(ts) cells to investigate their roles in cellular proliferation and apoptosis. RESULTS: mRNA and protein expression levels of MRE11 and RAD50 were measured using quantitative polymerase chain reaction, western blotting, and immunohistochemistry, respectively. Knockdown of both MRE11 and RAD50 utilized transfection with small interfering RNAs. CONCLUSION: Our findings demonstrated altered expression levels of MRE11 and RAD50 in human testes with MA and SCOS, and showed that these alterations might be associated with impaired spermatogenesis. These results offer valuable new perspectives into the molecular mechanisms of male infertility.


Assuntos
Hidrolases Anidrido Ácido/genética , Azoospermia/genética , Proteínas de Ligação a DNA/genética , Proteína Homóloga a MRE11/genética , Síndrome de Células de Sertoli/genética , Adulto , Azoospermia/fisiopatologia , Linhagem Celular , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Masculino , RNA Mensageiro/genética , Síndrome de Células de Sertoli/patologia , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testículo/patologia
20.
Elife ; 82019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710289

RESUMO

Sertoli cells are essential nurse cells in the testis that regulate the process of spermatogenesis and establish the immune-privileged environment of the blood-testis-barrier (BTB). Here, we report the in vitro reprogramming of fibroblasts to human induced Sertoli-like cells (hiSCs). Initially, five transcriptional factors and a gene reporter carrying the AMH promoter were utilized to obtain the hiSCs. We further reduce the number of reprogramming factors to two, NR5A1 and GATA4, and show that these hiSCs have transcriptome profiles and cellular properties that are similar to those of primary human Sertoli cells. Moreover, hiSCs can sustain the viability of spermatogonia cells harvested from mouse seminiferous tubules. hiSCs suppress the proliferation of human T lymphocytes and protect xenotransplanted human cells in mice with normal immune systems. hiSCs also allow us to determine a gene associated with Sertoli cell only syndrome (SCO), CX43, is indeed important in regulating the maturation of Sertoli cells.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Síndrome de Células de Sertoli/genética , Células de Sertoli/metabolismo , Fator Esteroidogênico 1/genética , Animais , Diferenciação Celular/genética , Proliferação de Células , Técnicas de Cocultura , Fibroblastos/citologia , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Túbulos Seminíferos/citologia , Túbulos Seminíferos/crescimento & desenvolvimento , Túbulos Seminíferos/metabolismo , Síndrome de Células de Sertoli/metabolismo , Síndrome de Células de Sertoli/patologia , Células de Sertoli/citologia , Células de Sertoli/transplante , Espermatogênese/genética , Espermatogônias/citologia , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/metabolismo , Fator Esteroidogênico 1/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo/métodos , Proteínas WT1/genética , Proteínas WT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA