Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600235

RESUMO

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Assuntos
Síndrome de Cockayne , DNA Helicases , Enzimas Reparadoras do DNA , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II , Transcrição Gênica , Ubiquitinação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Humanos , DNA Helicases/metabolismo , DNA Helicases/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Dano ao DNA , Raios Ultravioleta , DNA/metabolismo , DNA/genética , Adutos de DNA/metabolismo , Adutos de DNA/genética , Reparo por Excisão , Fatores de Transcrição , Receptores de Interleucina-17
2.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607030

RESUMO

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Assuntos
Síndrome de Cockayne , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
3.
DNA Repair (Amst) ; 138: 103679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640601

RESUMO

Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.


Assuntos
Reparo do DNA , Doenças Neurodegenerativas , Humanos , Animais , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Distúrbios no Reparo do DNA/genética , Distúrbios no Reparo do DNA/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo
4.
Aging Cell ; 22(10): e13959, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688320

RESUMO

Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS) are rare genetic disorders caused by mutation of the DNA repair and multifunctional CSA or CSB protein, but only CS patients display a progeroid and neurodegenerative phenotype, providing a unique conceptual and experimental paradigm. As DNA methylation (DNAm) remodelling is a major ageing marker, we performed genome-wide analysis of DNAm of fibroblasts from healthy, UVSS and CS individuals. Differential analysis highlighted a CS-specific epigenomic signature (progeroid-related; not present in UVSS) enriched in three categories: developmental transcription factors, ion/neurotransmitter membrane transporters and synaptic neuro-developmental genes. A large fraction of CS-specific DNAm changes were associated with expression changes in CS samples, including in previously reported post-mortem cerebella. The progeroid phenotype of CS was further supported by epigenomic hallmarks of ageing: the prediction of DNAm of repetitive elements suggested an hypomethylation of Alu sequences in CS, and the epigenetic clock returned a marked increase in CS biological age respect to healthy and UVSS cells. The epigenomic remodelling of accelerated ageing in CS displayed both commonalities and differences with other progeroid diseases and regular ageing. CS shared DNAm changes with normal ageing more than other progeroid diseases do, and included genes functionally validated for regular ageing. Collectively, our results support the existence of an epigenomic basis of accelerated ageing in CS and unveil new genes and pathways that are potentially associated with the progeroid/degenerative phenotype.


Assuntos
Síndrome de Cockayne , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Epigenômica , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Envelhecimento/genética , Mutação
5.
DNA Repair (Amst) ; 127: 103510, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148846

RESUMO

Mutations that affect the proteins responsible for the nucleotide excision repair (NER) pathway can lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, Cockayne syndrome, and Cerebro-oculo-facio-skeletal syndrome. Hence, understanding their molecular behavior is needed to elucidate these diseases' phenotypes and how the NER pathway is organized and coordinated. Molecular dynamics techniques enable the study of different protein conformations, adaptable to any research question, shedding light on the dynamics of biomolecules. However, as important as they are, molecular dynamics studies focused on DNA repair pathways are still becoming more widespread. Currently, there are no review articles compiling the advancements made in molecular dynamics approaches applied to NER and discussing: (i) how this technique is currently employed in the field of DNA repair, focusing on NER proteins; (ii) which technical setups are being employed, their strengths and limitations; (iii) which insights or information are they providing to understand the NER pathway or NER-associated proteins; (iv) which open questions would be suited for this technique to answer; and (v) where can we go from here. These questions become even more crucial considering the numerous 3D structures published regarding the NER pathway's proteins in recent years. In this work, we tackle each one of these questions, revising and critically discussing the results published in the context of the NER pathway.


Assuntos
Síndrome de Cockayne , Xeroderma Pigmentoso , Humanos , Simulação de Dinâmica Molecular , Reparo do DNA , Xeroderma Pigmentoso/genética , Proteínas , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo
6.
Eur J Cell Biol ; 102(2): 151325, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37216802

RESUMO

Mutations in CSA and CSB proteins cause Cockayne syndrome, a rare genetic neurodevelopment disorder. Alongside their demonstrated roles in DNA repair and transcription, these two proteins have recently been discovered to regulate cytokinesis, the final stage of the cell division. This last finding allowed, for the first time, to highlight an extranuclear localization of CS proteins, beyond the one already known at mitochondria. In this study, we demonstrated an additional role for CSA protein being recruited at centrosomes in a strictly determined step of mitosis, which ranges from pro-metaphase until metaphase exit. Centrosomal CSA exerts its function in specifically targeting the pool of centrosomal Cyclin B1 for ubiquitination and proteasomal degradation. Interestingly, a lack of CSA recruitment at centrosomes does not affect Cyclin B1 centrosomal localization but, instead, it causes its lasting centrosomal permanence, thus inducing Caspase 3 activation and apoptosis. The discovery of this unveiled before CSA recruitment at centrosomes opens a new and promising scenario for the understanding of some of the complex and different clinical aspects of Cockayne Syndrome.


Assuntos
Síndrome de Cockayne , Humanos , Ciclina B1/genética , Ciclina B1/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Mitose , Centrossomo/metabolismo , Ubiquitinação
7.
Annu Rev Biochem ; 92: 81-113, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37040775

RESUMO

Ultraviolet (UV) irradiation and other genotoxic stresses induce bulky DNA lesions, which threaten genome stability and cell viability. Cells have evolved two main repair pathways to remove such lesions: global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER). The modes by which these subpathways recognize DNA lesions are distinct, but they converge onto the same downstream steps for DNA repair. Here, we first summarize the current understanding of these repair mechanisms, specifically focusing on the roles of stalled RNA polymerase II, Cockayne syndrome protein B (CSB), CSA and UV-stimulated scaffold protein A (UVSSA) in TC-NER. We also discuss the intriguing role of protein ubiquitylation in this process. Additionally, we highlight key aspects of the effect of UV irradiation on transcription and describe the role of signaling cascades in orchestrating this response. Finally, we describe the pathogenic mechanisms underlying xeroderma pigmentosum and Cockayne syndrome, the two main diseases linked to mutations in NER factors.


Assuntos
Síndrome de Cockayne , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Transcrição Gênica , Reparo do DNA , Dano ao DNA , DNA/genética , DNA/metabolismo , Proteínas de Transporte/metabolismo
8.
Pharmacol Res ; 187: 106637, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586641

RESUMO

Cockayne syndrome (CS) is a devastating autosomal recessive genetic disorder, mainly characterized by photosensitivity, growth failure, neurological abnormalities, and premature aging. Mutations in CSB (ERCC6) are associated with almost all clinical phenotypes resembling classic CS. Using RNA-seq approach in multiple cell types, we identified Necdin (NDN) as a target of the CSB protein. Supportive of the RNA-seq results, CSB directly binds to NDN and manipulates the remodeling of active histone marks and DNA 5mC methylation on the regulatory elements of the NDN gene. Intriguingly, hyperactivation of NDN due to CSB deficiency does not interfere with nucleotide excision repair (1), but greatly affects neuronal cell differentiation. Inhibition of NDN can partially rescue the motor neuron defects in CSB mouse models. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for intervention, these data substantiate a reciprocal communication between CSB and NDN in the context of general transcription regulation.


Assuntos
Síndrome de Cockayne , Animais , Camundongos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Diferenciação Celular
9.
Nucleic Acids Res ; 49(19): 10911-10930, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34581821

RESUMO

CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA-FECH-CSB-RNAP1-RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Ferroquelatase/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase I/genética , RNA Ribossômico/genética , Fatores de Transcrição/genética , Linhagem Celular Transformada , Sobrevivência Celular , Imunoprecipitação da Cromatina , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Ferroquelatase/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Raios Ultravioleta
10.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281194

RESUMO

Cockayne syndrome group A (CS-A) is a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. Cells derived from CS-A patients present as pathological hallmarks excessive oxidative stress, mitochondrial fragmentation and apoptosis associated with hyperactivation of the mitochondrial fission dynamin related protein 1 (DRP1). In this study, by using human cell models we further investigated the interplay between DRP1 and CSA and we determined whether pharmacological or genetic inhibition of DRP1 affects disease progression. Both reactive oxygen and nitrogen species are in excess in CS-A cells and when the mitochondrial translocation of DRP1 is inhibited a reduction of these species is observed together with a recovery of mitochondrial integrity and a significant decrease of apoptosis. This study indicates that the CSA-driven modulation of DRP1 pathway is key to control mitochondrial homeostasis and apoptosis and suggests DRP1 as a potential target in the treatment of CS patients.


Assuntos
Síndrome de Cockayne/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose/genética , Linhagem Celular , Síndrome de Cockayne/fisiopatologia , Progressão da Doença , Dinaminas/genética , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Estresse Oxidativo , Quinazolinonas/metabolismo , Quinazolinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Cells ; 10(4)2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920220

RESUMO

Cockayne syndrome (CS) is a DNA repair syndrome characterized by a broad spectrum of clinical manifestations such as neurodegeneration, premature aging, developmental impairment, photosensitivity and other symptoms. Mutations in Cockayne syndrome protein B (CSB) are present in the vast majority of CS patients and in other DNA repair-related pathologies. In the literature, the role of CSB in different DNA repair pathways has been highlighted, however, new CSB functions have been identified in DNA transcription, mitochondrial biology, telomere maintenance and p53 regulation. Herein, we present an overview of identified structural elements and processes that impact on CSB activity and its post-translational modifications, known to balance the different roles of the protein not only during normal conditions but most importantly in stress situations. Moreover, since CSB has been found to be overexpressed in a number of different tumors, its role in cancer is presented and possible therapeutic targeting is discussed.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Animais , Síndrome de Cockayne/metabolismo , Dano ao DNA , DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Moleculares , Mutação , Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional
12.
Mech Ageing Dev ; 195: 111466, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33727156

RESUMO

When mutated, csa and csb genes are responsible of the complex phenotype of the premature aging Cockayne Syndrome (CS). Our working hypothesis is to reconcile the multiple cellular and molecular phenotypes associated to CS within the unifying molecular function of CSA and CSB proteins in the cascade of events leading to ubiquitin/proteasome-directed protein degradation, which occurs in processes as DNA repair, transcription and cell division. This achievement may reasonably explain the plethora of cellular UPS-regulated functions that result impaired when either CSA or CSB are mutated and suggestively explains part of their pleiotropic effect. This review is aimed to solicit the interest of the scientific community in further investigating this aspect, since we believe that the identification of the ubiquitin-proteasome machinery as a new potential therapeutic target, able to comprehensively face the different molecular aspects of CS, whether confirmed and corroborated by in vivo studies, would open a promising avenue to design effective therapeutic intervention.


Assuntos
Senilidade Prematura , Síndrome de Cockayne , DNA Helicases , Enzimas Reparadoras do DNA , Proteínas de Ligação a Poli-ADP-Ribose , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição , Ubiquitina/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/prevenção & controle , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/terapia , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Descoberta de Drogas , Humanos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteólise , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Aging Cell ; 19(12): e13268, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166073

RESUMO

Cockayne syndrome (CS) is a rare premature aging disease, most commonly caused by mutations of the genes encoding the CSA or CSB proteins. CS patients display cachectic dwarfism and severe neurological manifestations and have an average life expectancy of 12 years. The CS proteins are involved in transcription and DNA repair, with the latter including transcription-coupled nucleotide excision repair (TC-NER). However, there is also evidence for mitochondrial dysfunction in CS, which likely contributes to the severe premature aging phenotype of this disease. While damaged mitochondria and impaired mitophagy were characterized in mice with CSB deficiency, such changes in the CS nematode model and CS patients are not fully known. Our cross-species transcriptomic analysis in CS postmortem brain tissue, CS mouse, and nematode models shows that mitochondrial dysfunction is indeed a common feature in CS. Restoration of mitochondrial dysfunction through NAD+ supplementation significantly improved lifespan and healthspan in the CS nematodes, highlighting mitochondrial dysfunction as a major driver of the aging features of CS. In cerebellar samples from CS patients, we found molecular signatures of dysfunctional mitochondrial dynamics and impaired mitophagy/autophagy. In primary cells depleted for CSA or CSB, this dysfunction can be corrected with supplementation of NAD+ precursors. Our study provides support for the interconnection between major causative aging theories, DNA damage accumulation, mitochondrial dysfunction, and compromised mitophagy/autophagy. Together, these three agents contribute to an accelerated aging program that can be averted by cellular NAD+ restoration.


Assuntos
Síndrome de Cockayne/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cerebelo/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , DNA Helicases/deficiência , DNA Helicases/genética , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Modelos Animais de Doenças , Humanos , Longevidade/genética , Longevidade/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , Proteínas de Ligação a Poli-ADP-Ribose/genética , Transdução de Sinais , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
14.
Nat Commun ; 10(1): 5576, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811121

RESUMO

Cellular senescence has causative links with ageing and age-related diseases, however, it remains unclear if progeroid factors cause senescence in normal cells. Here, we show that depletion of CSB, a protein mutated in progeroid Cockayne syndrome (CS), is the earliest known trigger of p21-dependent replicative senescence. CSB depletion promotes overexpression of the HTRA3 protease resulting in mitochondrial impairments, which are causally linked to CS pathological phenotypes. The CSB promoter is downregulated by histone H3 hypoacetylation during DNA damage-response. Mechanistically, CSB binds to the p21 promoter thereby downregulating its transcription and blocking replicative senescence in a p53-independent manner. This activity of CSB is independent of its role in the repair of UV-induced DNA damage. HTRA3 accumulation and senescence are partially rescued upon reduction of oxidative/nitrosative stress. These findings establish a CSB/p21 axis that acts as a barrier to replicative senescence, and link a progeroid factor with the process of regular ageing in human.


Assuntos
Senescência Celular/fisiologia , Síndrome de Cockayne/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Histonas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Linhagem Celular , Senescência Celular/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Dano ao DNA , DNA Helicases/genética , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Regulação para Baixo , Epigenômica , Fibroblastos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transcriptoma , Raios Ultravioleta/efeitos adversos
15.
Nat Commun ; 10(1): 4887, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653834

RESUMO

Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses.


Assuntos
Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Glicólise/fisiologia , NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Transcrição Gênica/genética , Regulação Alostérica , Animais , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Fibroblastos/metabolismo , Instabilidade Genômica , Metabolômica , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Oxirredução , Pele/citologia , Fatores de Transcrição/genética
16.
Oxid Med Cell Longev ; 2019: 4654206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485292

RESUMO

The continuous exposure of the human body's cells to radiation and genotoxic stresses leads to the accumulation of DNA lesions. Fortunately, our body has several effective repair mechanisms, among which is nucleotide excision repair (NER), to counteract these lesions. NER includes both global genome repair (GG-NER) and transcription-coupled repair (TC-NER). Deficiencies in the NER pathway underlie the development of several DNA repair diseases, such as xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Deficiencies in GG-NER and TC-NER render individuals to become prone to cancer and neurological disorders, respectively. Therefore, NER regulation is of interest in fine-tuning these risks. Distinct signaling cascades including the NFE2L2 (NRF2), AHR, PI3K/AKT1, MAPK, and CSNK2A1 pathways can modulate NER function. In addition, several chemical and biological compounds have proven success in regulating NER's activity. These modulators, particularly the positive ones, could therefore provide potential treatments for genetic DNA repair-based diseases. Negative modulators, nonetheless, can help sensitize cells to killing by genotoxic chemicals. In this review, we will summarize and discuss the major upstream signaling pathways and molecules that could modulate the NER's activity.


Assuntos
Síndrome de Cockayne/metabolismo , Dano ao DNA , Reparo do DNA , Transdução de Sinais , Síndromes de Tricotiodistrofia/metabolismo , Raios Ultravioleta/efeitos adversos , Xeroderma Pigmentoso/metabolismo , Animais , Síndrome de Cockayne/patologia , Humanos , Síndromes de Tricotiodistrofia/patologia , Xeroderma Pigmentoso/patologia
17.
Nucleic Acids Res ; 47(16): 8548-8562, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31276581

RESUMO

Cockayne syndrome is an accelerated aging disorder, caused by mutations in the CSA or CSB genes. In CSB-deficient cells, poly (ADP ribose) polymerase (PARP) is persistently activated by unrepaired DNA damage and consumes and depletes cellular nicotinamide adenine dinucleotide, which leads to mitochondrial dysfunction. Here, the distribution of poly (ADP ribose) (PAR) was determined in CSB-deficient cells using ADPr-ChAP (ADP ribose-chromatin affinity purification), and the results show striking enrichment of PAR at transcription start sites, depletion of heterochromatin and downregulation of H3K9me3-specific methyltransferases SUV39H1 and SETDB1. Induced-expression of SETDB1 in CSB-deficient cells downregulated PAR and normalized mitochondrial function. The results suggest that defects in CSB are strongly associated with loss of heterochromatin, downregulation of SETDB1, increased PAR in highly-transcribed regions, and mitochondrial dysfunction.


Assuntos
Senescência Celular/genética , Síndrome de Cockayne/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Histonas/genética , Mitocôndrias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Metiltransferases/genética , Fatores de Transcrição/genética , Linhagem Celular Transformada , Cromatina/química , Cromatina/metabolismo , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/patologia , Mutação , NAD/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
18.
Cells ; 8(6)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167386

RESUMO

The nucleolus organizes around the sites of transcription by RNA polymerase I (RNA Pol I). rDNA transcription by this enzyme is the key step of ribosome biogenesis and most of the assembly and maturation processes of the ribosome occur co-transcriptionally. Therefore, disturbances in rRNA transcription and processing translate to ribosomal malfunction. Nucleolar malfunction has recently been described in the classical progeria of childhood, Hutchinson-Gilford syndrome (HGPS), which is characterized by severe signs of premature aging, including atherosclerosis, alopecia, and osteoporosis. A deregulated ribosomal biogenesis with enlarged nucleoli is not only characteristic for HGPS patients, but it is also found in the fibroblasts of "normal" aging individuals. Cockayne syndrome (CS) is also characterized by signs of premature aging, including the loss of subcutaneous fat, alopecia, and cataracts. It has been shown that all genes in which a mutation causes CS, are involved in rDNA transcription by RNA Pol I. A disturbed ribosomal biogenesis affects mitochondria and translates into ribosomes with a reduced translational fidelity that causes endoplasmic reticulum (ER) stress and apoptosis. Therefore, it is speculated that disease-causing disturbances in the process of ribosomal biogenesis may be more common than hitherto anticipated.


Assuntos
Nucléolo Celular/metabolismo , Progéria/patologia , Ribossomos/metabolismo , Senilidade Prematura , Nucléolo Celular/genética , Criança , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Estresse do Retículo Endoplasmático , Humanos , Mitocôndrias/metabolismo , Progéria/genética , Progéria/metabolismo , RNA Polimerase I/metabolismo , Ribossomos/genética
19.
Nat Commun ; 10(1): 1288, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894545

RESUMO

The TFIIH subunit XPB is involved in combined Xeroderma Pigmentosum and Cockayne syndrome (XP-B/CS). Our analyses reveal that XPB interacts functionally with KAT2A, a histone acetyltransferase (HAT) that belongs to the hSAGA and hATAC complexes. XPB interacts with KAT2A-containing complexes on chromatin and an XP-B/CS mutation specifically elicits KAT2A-mediated large-scale chromatin decondensation. In XP-B/CS cells, the abnormal recruitment of TFIIH and KAT2A to chromatin causes inappropriate acetylation of histone H3K9, leading to aberrant formation of transcription initiation complexes on the promoters of several hundred genes and their subsequent overexpression. Significantly, this cascade of events is similarly sensitive to KAT2A HAT inhibition or to the rescue with wild-type XPB. In agreement, the XP-B/CS mutation increases KAT2A HAT activity in vitro. Our results unveil a tight connection between TFIIH and KAT2A that controls higher-order chromatin structure and gene expression and provide new insights into transcriptional misregulation in a cancer-prone DNA repair-deficient disorder.


Assuntos
Cromatina/química , Síndrome de Cockayne/genética , Histona Acetiltransferases/genética , Histonas/metabolismo , Subunidades Proteicas/genética , Fator de Transcrição TFIIH/genética , Xeroderma Pigmentoso/genética , Acetilação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cromatina/metabolismo , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Histonas/genética , Humanos , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Cultura Primária de Células , Subunidades Proteicas/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia
20.
Nucleic Acids Res ; 47(7): 3784-3794, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30753618

RESUMO

Cockayne syndrome group B (CSB, also known as ERCC6) protein is involved in many DNA repair processes and essential for transcription-coupled repair (TCR). The central region of CSB has the helicase motif, whereas the C-terminal region contains important regulatory elements for repair of UV- and oxidative stress-induced damages and double-strand breaks (DSBs). A previous study suggested that a small part (∼30 residues) within this region was responsible for binding to ubiquitin (Ub). Here, we show that the Ub-binding of CSB requires a larger part of CSB, which was previously identified as a winged-helix domain (WHD) and is involved in the recruitment of CSB to DSBs. We also present the crystal structure of CSB WHD in complex with Ub. CSB WHD folds as a single globular domain, defining a class of Ub-binding domains (UBDs) different from 23 UBD classes identified so far. The second α-helix and C-terminal extremity of CSB WHD interact with Ub. Together with structure-guided mutational analysis, we identified the residues critical for the binding to Ub. CSB mutants defective in the Ub binding reduced repair of UV-induced damage. This study supports the notion that DSB repair and TCR may be associated with the Ub-binding of CSB.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/química , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a Poli-ADP-Ribose/química , Ubiquitina/química , Ubiquitinas/química , Fatores de Transcrição Winged-Helix/química , Sequência de Aminoácidos/genética , Sobrevivência Celular , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Humanos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética , Conformação Proteica em alfa-Hélice/genética , Ubiquitina/genética , Ubiquitinas/genética , Raios Ultravioleta , Fatores de Transcrição Winged-Helix/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA