Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
J Neuroimmune Pharmacol ; 19(1): 28, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862787

RESUMO

Despite antiretroviral therapy (ART), HIV-associated peripheral neuropathy remains one of the most prevalent neurologic manifestations of HIV infection. The spinal cord is an essential component of sensory pathways, but spinal cord sampling and evaluation in people with HIV has been very limited, especially in those on ART. The SIV/macaque model allows for assessment of the spinal cord at key time points throughout infection with and without ART. In this study, RNA was isolated from the spinal cord of uninfected, SIV+, and SIV + ART animals to track alterations in gene expression using global RNA-seq. Next, the SeqSeek platform was used to map changes in gene expression to specific cell types. Pathway analysis of differentially expressed genes demonstrated that highly upregulated genes in SIV-infected spinal cord aligned with interferon and viral response pathways. Additionally, this upregulated gene set significantly overlapped with those expressed in myeloid-derived cells including microglia. Downregulated genes were involved in cholesterol and collagen biosynthesis, and TGF-b regulation of extracellular matrix. In contrast, enriched pathways identified in SIV + ART animals included neurotransmitter receptors and post synaptic signaling regulators, and transmission across chemical synapses. SeqSeek analysis showed that upregulated genes were primarily expressed by neurons rather than glia. These findings indicate that pathways activated in the spinal cord of SIV + ART macaques are predominantly involved in neuronal signaling rather than proinflammatory pathways. This study provides the basis for further evaluation of mechanisms of SIV infection + ART within the spinal cord with a focus on therapeutic interventions to maintain synaptodendritic homeostasis.


Assuntos
Neuroglia , Neurônios , Síndrome de Imunodeficiência Adquirida dos Símios , Medula Espinal , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/virologia , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/virologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/virologia , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Macaca mulatta , Expressão Gênica/efeitos dos fármacos , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos
2.
J Virol ; 98(6): e0028324, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780248

RESUMO

Human and simian immunodeficiency viruses (HIV and SIV) are lentiviruses that reverse transcribe their RNA genome with subsequent integration into the genome of the target cell. How progressive infection and administration of antiretrovirals (ARVs) longitudinally influence the transcriptomic and epigenetic landscape of particular T cell subsets, and how these may influence the genetic location of integration are unclear. Here, we use RNAseq and ATACseq to study the transcriptomics and epigenetic landscape of longitudinally sampled naïve and memory CD4+ and CD8+ T cells in two species of non-human primates prior to SIV infection, during chronic SIV infection, and after administration of ARVs. We find that SIV infection leads to significant alteration to the transcriptomic profile of all T cell subsets that are only partially reversed by administration of ARVs. Epigenetic changes were more apparent in animals with longer periods of untreated SIV infection and correlated well with changes in corresponding gene expression. Known SIV integration sites did not vary due to SIV status but did contain more open chromatin in rhesus macaque memory T cells, and the expression of proteasome-related genes at the pre-SIV timepoint correlated with subsequent viremia.IMPORTANCEChronic inflammation during progressive human and simian immunodeficiency virus (HIV and SIV) infections leads to significant co-morbidities in infected individuals with significant consequences. Antiretroviral (ARV)-treated individuals also manifest increased levels of inflammation which are associated with increased mortalities. These data will help guide rational development of modalities to reduce inflammation observed in people living with HIV and suggest mechanisms underlying lentiviral integration site preferences.


Assuntos
Antirretrovirais , Linfócitos T CD4-Positivos , Epigênese Genética , Macaca mulatta , Células T de Memória , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Animais , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Células T de Memória/imunologia , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Transcriptoma , Humanos , Masculino
3.
BMC Bioinformatics ; 25(1): 125, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519883

RESUMO

In the battle of the host against lentiviral pathogenesis, the immune response is crucial. However, several questions remain unanswered about the interaction with different viruses and their influence on disease progression. The simian immunodeficiency virus (SIV) infecting nonhuman primates (NHP) is widely used as a model for the study of the human immunodeficiency virus (HIV) both because they are evolutionarily linked and because they share physiological and anatomical similarities that are largely explored to understand the disease progression. The HIHISIV database was developed to support researchers to integrate and evaluate the large number of transcriptional data associated with the presence/absence of the pathogen (SIV or HIV) and the host response (NHP and human). The datasets are composed of microarray and RNA-Seq gene expression data that were selected, curated, analyzed, enriched, and stored in a relational database. Six query templates comprise the main data analysis functions and the resulting information can be downloaded. The HIHISIV database, available at  https://hihisiv.github.io , provides accurate resources for browsing and visualizing results and for more robust analyses of pre-existing data in transcriptome repositories.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , HIV , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Progressão da Doença , Imunidade , Expressão Gênica
4.
Int Immunopharmacol ; 126: 111173, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984249

RESUMO

BACKGROUND: Chronic immune activation plays a significant role in the pathogenesis and disease progression of human immunodeficiency virus (HIV), and the existing interventions to address this issue are limited. In a phase II clinical trial, (5R)-5-hydroxytriptolide (LLDT-8) demonstrated promising potential in enhancing CD4+ T cell recovery. However, the therapeutical effects of LLDT-8 remained to be systemic explored. METHODS: To assess the treatment effects of LLDT-8, we conducted flow cytometry and RNA-seq analyses on eight Chinese rhesus monkeys infected with simian immunodeficiency virus (SIV). Additionally, we performed comprehensive transcriptomic analyses, including cross-sectional and longitudinal differentially expressed gene (DEG) analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution analysis using peripheral blood mononuclear cell (PBMC) samples from 14-time points. These findings were further validated with RNA-seq analysis on patients who received LLDT-8 treatment, along with in vitro cellular experiments using human PBMCs. RESULTS: Flow cytometry analysis revealed that LLDT-8 treatment significantly reduced the percentage of HLA-DR+CD38+CD8+ T cells in SIV-infected rhesus monkeys (P < 0.001). The cross-sectional and longitudinal analysis identified 2531 and 1809 DEGs, respectively. GSEA analysis indicated that LLDT-8 treatment led to significant downregulation of proliferation-related pathways, such as E2F targets, G2M checkpoint, and mitotic spindle pathways. WGCNA analysis identified two modules and 202 hub genes associated with CD8 activation levels. Deconvolution analysis showed a significant decrease in the proportion of CD8+ T cells and activated CD4+ T cells during LLDT-8 treatment. Gene ontology results demonstrated that the common DEGs between LLDT-8-treated patients and rhesus monkeys were primarily enriched in cell activation and cell cycle progression. Furthermore, in vitro cellular experiments validated the consistent impact of LLDT-8 in inhibiting proliferation, activation (HLA-DR and CD38 expression), exhaustion (PD-1 expression), and IFN-γ production in human CD4+ and CD8+ T cells. CONCLUSION: LLDT-8 exhibited notable efficacy in alleviating immune activation in both an in vivo animal model and in vitro human cell experiments. These findings suggest that LLDT-8 may hold potential as a drug for managing systemic immune activation associated with SIV/HIV infection, warranting further prospective clinical exploration.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Estudos Transversais , Perfilação da Expressão Gênica , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Linfócitos T CD4-Positivos , Carga Viral
5.
Pediatr Rheumatol Online J ; 20(1): 90, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253853

RESUMO

BACKGROUND: Systemic autoinflammatory diseases (SAIDs) are hyperinflammatory and immune-dysregulation conditions that present in childhood. This kind of disease is a rare disease with early-onset, severe condition and difficult diagnosis, which seriously affects the growth and development of children. Most children need a genetic diagnosis. However, with the limitation of access to genetic testing and the detection of somatic mutations, the diagnosis of SAIDs remains challenging. IL-1 is one of the important cytokines involved in the pathogenesis of SAIDs. Here we briefly review monogenic SAIDs mediated by aberrant IL-1 production, with the aim to further understand the pathogenesis, clinical manifestations and treatments of IL-1 mediated SAIDs. METHODS: Literature reviews were performed using "PubMed" and "Web of Science" by searching for the terms "autoinflammatory diseases" and "IL-1". RESULTS: Monogenic SAIDs mediated by IL-1 include MKD, FMF, TRAPS, PAAND, PAPA, CAPS, DIRA, Majeed syndrome, NAIAD, NLRC4-MAS, PFIT, APLAID. Monogenic SAIDs have early onset, various clinical manifestations and difficult diagnosis, so early recognition and early treatment can reduce the complications and enhance the quality of life. CONCLUSIONS: There are many kinds of IL-1 mediated SAIDs. Pediatricians should be alert to SAIDs in the face of the patients with repeated fever, repeated rash and poor effect of routine treatment. The patients should be carried out with gene testing and treatment in time.


Assuntos
Doenças Hereditárias Autoinflamatórias , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Criança , Citocinas , Testes Genéticos , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/terapia , Humanos , Qualidade de Vida , Síndrome de Imunodeficiência Adquirida dos Símios/genética
6.
PLoS Genet ; 18(8): e1010337, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007015

RESUMO

Central and eastern chimpanzees are infected with Simian Immunodeficiency Virus (SIV) in the wild, typically without developing acute immunodeficiency. Yet the recent zoonotic transmission of chimpanzee SIV to humans, which were naïve to the virus, gave rise to the Human Immunodeficiency Virus (HIV), which causes AIDS and is responsible for one of the deadliest pandemics in human history. Chimpanzees have likely been infected with SIV for tens of thousands of years and have likely evolved to reduce its pathogenicity, becoming semi-natural hosts that largely tolerate the virus. In support of this view, central and eastern chimpanzees show evidence of positive selection in genes involved in SIV/HIV cell entry and immune response to SIV, respectively. We hypothesise that the population first infected by SIV would have experienced the strongest selective pressure to control the lethal potential of zoonotic SIV, and that population genetics will reveal those first critical adaptations. With that aim we used population genetics to investigate signatures of positive selection in the common ancestor of central-eastern chimpanzees. The genes with signatures of positive selection in the ancestral population are significantly enriched in SIV-related genes, especially those involved in the immune response to SIV and those encoding for host genes that physically interact with SIV/HIV (VIPs). This supports a scenario where SIV first infected the central-eastern ancestor and where this population was under strong pressure to adapt to zoonotic SIV. Interestingly, integrating these genes with candidates of positive selection in the two infected subspecies reveals novel patterns of adaptation to SIV. Specifically, we observe evidence of positive selection in numerous steps of the biological pathway responsible for T-helper cell differentiation, including CD4 and multiple genes that SIV/HIV use to infect and control host cells. This pathway is active only in CD4+ cells which SIV/HIV infects, and it plays a crucial role in shaping the immune response so it can efficiently control the virus. Our results confirm the importance of SIV as a selective factor, identify specific genetic changes that may have allowed our closest living relatives to reduce SIV's pathogenicity, and demonstrate the potential of population genomics to reveal the evolutionary mechanisms used by naïve hosts to reduce the pathogenicity of zoonotic pathogens.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , HIV/genética , Humanos , Pan troglodytes/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética
7.
PLoS Pathog ; 18(6): e1010507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714165

RESUMO

The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Endocitose , Produtos do Gene env/genética , Macaca mulatta/metabolismo , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo
8.
Sci Immunol ; 7(72): eabn9301, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35714200

RESUMO

The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.


Assuntos
Vacinas contra Citomegalovirus , MicroRNAs , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Citomegalovirus/genética , Epitopos , Macaca mulatta , Complexo Principal de Histocompatibilidade , Células Mieloides , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Tropismo , Eficácia de Vacinas
9.
Biochem Biophys Res Commun ; 607: 124-130, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35367824

RESUMO

CD8+ T-cell responses exert strong suppressive pressure on viral replication and select for viral escape mutations in HIV infection. Multiple viral epitopes restricted by major histocompatibility complex class I (MHC-I) are targeted by CD8+ T cells. Sequential selection of viral escape mutations in individual epitope-coding regions could result in failure in CD8+ T cell-based viral control leading to disease progression. However, how this sequential selection of epitope mutations occurs has not fully been determined. Here, we examined sequential selection of viral mutations in seven CD8+ T-cell epitope-coding regions in a macaque AIDS model of simian immunodeficiency virus mac239 (SIVmac239) infection. In seven SIVmac239-infected Burmese rhesus macaques possessing MHC-I haplotype 90-120-Ia, selection of viral mutations was observed in five to seven of the seven 90-120-Ia-associated CD8+ T-cell epitope-coding regions in a year post-infection. Of the seven CD8+ T-cell epitopes, viral mutation selection was detected first at two epitopes, Gag206-216 and Nef9-19, but was found finally at Vif114-124 epitope in most animals. Viral loads in 6 months were significantly associated with the number of mutated CD8+ T-cell epitope-coding regions 1 year post-infection. Tetramer analysis revealed early induction of Gag241-249 specific CD8+ T-cell responses, which did not always result in early selection of viral mutations in the Gag241-249 epitope, suggesting that the order of epitope mutation selection may not be determined only by immunodominance. This SIV infection model using 90-120-Ia-positive macaques would be useful for analysis of the determinants for sequential epitope mutation selection, contributing to our understanding of virus-host CD8+ T-cell interaction in HIV infection.


Assuntos
Infecções por HIV , Síndromes de Imunodeficiência , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/genética , Macaca mulatta , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética
10.
Microbiol Spectr ; 10(2): e0047822, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35297654

RESUMO

TRIM5α polymorphism in rhesus macaques (RM) limits the genetic pool of animals in which we can perform simian immunodeficiency virus (SIV) studies without first screening animals for permissive TRIM5α genotypes. We have previously shown that polymorphisms in the TRIM5α B30.2/SPRY domain impact the level of SIVsmm viremia in RM and that amino acid substitutions (P37S/R98S) in the capsid N-terminal domain (CA-NTD) enables the virus to overcome restriction in RMs with the restrictive homozygous TRIM5αTFP/TFP genotype. Since this genotype also negatively impacted the development of central nervous system (CNS) lesions in animals infected with the parental source of CL757, we sought to generate a TRIM5αTFP/TFP-resistant clone, SIV-804E-CL757-P37S/R98S (CL757-SS), using a similar strategy. Unexpectedly, viral replication of CL757-SS was impaired in RMs with either the permissive TRIM5αTFP/Q or the restrictive TRIM5αTFP/TFP genotype. Analysis of the virus which emerged in the latter animals led to the discovery of a preexisting mutation relative to other SIVs. This P146T substitution in a conserved disordered linker region in the C-terminal domain of capsid (CA-CTD) has been shown to inhibit proper formation of HIV-1 capsid particles. Restoration of this residue to proline in the context of the TRIM5α-SS escape mutations not only restored viral replication, but also enhanced the infectivity of our previously reported neurotropic clone, even in RMs with permissive TRIM5α genotypes. IMPORTANCE SIV infection of rhesus macaques has become a valuable model for the development of AIDS vaccines and antiretroviral therapies. Polymorphisms in the rhesus macaque TRIM5α gene can affect SIV replication, making it necessary to genetically screen macaques for TRIM5α alleles that are permissive for SIV replication. This limits the pool of animals that can be used in a study, thereby making the acquisition of animals needed to fulfill study parameters difficult. We have constructed a viral clone that induces neuroAIDS in rhesus macaques regardless of their TRIM5α genotype, while also highlighting the important role the disordered linker domain plays in viral infectivity.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Capsídeo/metabolismo , Cinética , Macaca mulatta , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética
11.
Viruses ; 14(1)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062343

RESUMO

The central nervous system (CNS) HIV reservoir is an obstacle to achieving an HIV cure. The basal ganglia harbor a higher frequency of SIV than other brain regions in the SIV-infected rhesus macaques of Chinese-origin (chRMs) even on suppressive combination antiretroviral therapy (ART). Since residual HIV/SIV reservoir is associated with inflammation, we characterized the neuroinflammation by gene expression and systemic levels of inflammatory molecules in healthy controls and SIV-infected chRMs with or without ART. CCL2, IL-6, and IFN-γ were significantly reduced in the cerebrospinal fluid (CSF) of animals receiving ART. Moreover, there was a correlation between levels of CCL2 in plasma and CSF, suggesting the potential use of plasma CCL2 as a neuroinflammation biomarker. With higher SIV frequency, the basal ganglia of untreated SIV-infected chRMs showed an upregulation of secreted phosphoprotein 1 (SPP1), which could be an indicator of ongoing neuroinflammation. While ART greatly reduced neuroinflammation in general, proinflammatory genes, such as IL-9, were still significantly upregulated. These results expand our understanding of neuroinflammation and signaling in SIV-infected chRMs on ART, an excellent model to study HIV/SIV persistence in the CNS.


Assuntos
Terapia Antirretroviral de Alta Atividade , Macaca mulatta/virologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia , Transcriptoma , Animais , Encéfalo , Sistema Nervoso Central , Quimiocinas/metabolismo , China , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , HIV , Infecções por HIV/sangue , Infecções por HIV/genética , Infecções por HIV/metabolismo , Vírus da Influenza A , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
12.
MAbs ; 14(1): 1979447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923919

RESUMO

Targeting immune checkpoint receptors expressed in the T cell synapse induces active and long-lasting antitumor immunity in preclinical tumor models and oncology patients. However, traditional nonhuman primate (NHP) studies in healthy animals have thus far demonstrated little to no pharmacological activity or toxicity for checkpoint inhibitors (CPIs), likely due to a quiescent immune system. We developed a NHP vaccine challenge model in Mauritius cynomolgus monkey (MCMs) that elicits a strong CD8+ T cell response to assess both pharmacology and safety within the same animal. MHC I-genotyped MCMs were immunized with three replication incompetent adenovirus serotype 5 (Adv5) encoding Gag, Nef and Pol simian immunodeficiency virus (SIV) proteins administered 4 weeks apart. Immunized animals received the anti-PD-L1 atezolizumab or an immune checkpoint-targeting bispecific antibody (mAbX) in early development. After a single immunization, Adv5-SIVs induced T-cell activation as assessed by the expression of several co-stimulatory and co-inhibitory molecules, proliferation, and antigen-specific T-cell response as measured by a Nef-dependent interferon-γ ELIspot and tetramer analysis. Administration of atezolizumab increased the number of Ki67+ CD8+ T cells, CD8+ T cells co-expressing TIM3 and LAG3 and the number of CD4+ T cells co-expressing 4-1BB, BTLA, and TIM3 two weeks after vaccination. Both atezolizumab and mAbX extended the cytolytic activity of the SIV antigen-specific CD8+ T cell up to 8 weeks. Taken together, this vaccine challenge model allowed the combined study of pharmacology and safety parameters for a new immunomodulatory protein-based therapeutic targeting CD8+ T cells in an NHP model.


Assuntos
Adenoviridae , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia/imunologia , Animais , Avaliação de Medicamentos , Macaca fascicularis , Masculino , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Vacinas contra a SAIDS/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética
13.
Front Immunol ; 12: 769990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887863

RESUMO

Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.


Assuntos
Reprogramação Celular/genética , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Macaca mulatta/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Células-Tronco/metabolismo , Animais , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Interações Hospedeiro-Patógeno , Intestino Delgado/virologia , Macaca mulatta/metabolismo , Macaca mulatta/virologia , Masculino , Organoides/metabolismo , Organoides/virologia , RNA-Seq/métodos , Transdução de Sinais/genética , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Células-Tronco/virologia , Carga Viral
14.
PLoS Pathog ; 17(11): e1009728, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780577

RESUMO

The accessory protein Nef of human and simian immunodeficiency viruses (HIV and SIV) is an important pathogenicity factor known to interact with cellular protein kinases and other signaling proteins. A canonical SH3 domain binding motif in Nef is required for most of these interactions. For example, HIV-1 Nef activates the tyrosine kinase Hck by tightly binding to its SH3 domain. An archetypal contact between a negatively charged SH3 residue and a highly conserved arginine in Nef (Arg77) plays a key role here. Combining structural analyses with functional assays, we here show that Nef proteins have also developed a distinct structural strategy-termed the "R-clamp"-that favors the formation of this salt bridge via buttressing Arg77. Comparison of evolutionarily diverse Nef proteins revealed that several distinct R-clamps have evolved that are functionally equivalent but differ in the side chain compositions of Nef residues 83 and 120. Whereas a similar R-clamp design is shared by Nef proteins of HIV-1 groups M, O, and P, as well as SIVgor, the Nef proteins of SIV from the Eastern chimpanzee subspecies (SIVcpzP.t.s.) exclusively utilize another type of R-clamp. By contrast, SIV of Central chimpanzees (SIVcpzP.t.t.) and HIV-1 group N strains show more heterogenous R-clamp design principles, including a non-functional evolutionary intermediate of the aforementioned two classes. These data add to our understanding of the structural basis of SH3 binding and kinase deregulation by Nef, and provide an interesting example of primate lentiviral protein evolution.


Assuntos
Evolução Molecular , Infecções por HIV/metabolismo , Lentivirus/genética , Proteínas Proto-Oncogênicas c-hck/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Proteínas Proto-Oncogênicas c-hck/genética , Homologia de Sequência de Aminoácidos , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
15.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34676832

RESUMO

Knowledge of immune activation in the brain during acute HIV infection is crucial for the prevention and treatment of HIV-associated neurological disorders. We determined regional brain (basal ganglia, thalamus, and frontal cortex) immune and virological profiles at 7 and 14 days post infection (dpi) with SIVmac239 in rhesus macaques. The basal ganglia and thalamus had detectable viruses earlier (7 dpi) than the frontal cortex (14 dpi) and contained higher quantities of viruses than the latter. Increased immune activation of astrocytes and significant infiltration of macrophages in the thalamus at 14 dpi coincided with elevated plasma viral load, and SIV colocalized only within macrophages. RNA signatures of proinflammatory responses, including IL-6, were detected at 7 dpi in microglia and interestingly, preceded reliable detection of virus in tissues and were maintained in the chronically infected macaques. Countering the proinflammatory response, the antiinflammatory response was not detected until increased TGF-ß expression was found in perivascular macrophages at 14 dpi. But this response was not detected in chronic infection. Our data provide evidence that the interplay of acute proinflammatory and antiinflammatory responses in the brain likely contributed to the overt neuroinflammation, where the immune activation preceded reliable viral detection.


Assuntos
Interleucina-6/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Doença Aguda , Animais , Modelos Animais de Doenças , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/patologia
16.
Viruses ; 13(6)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205728

RESUMO

Antibody responses are crucial for the control of virus infection. Understanding of the mechanism of antibody induction is important for the development of a vaccine eliciting effective anti-virus antibodies. Virus-specific B cell receptor (BCR)/antibody repertoires are different among individuals, but determinants for this difference remain largely unclear. We have recently reported that a germline BCR immunoglobulin (IgG) gene polymorphism (VH3.33_ET or VH3.33_VI) in rhesus macaques is the determinant for induction of potent B404-class anti-simian immunodeficiency virus (SIV) neutralizing antibodies in neutralization-sensitive SIVsmH635FC infection. In the present study, we examined whether neutralization-resistant SIVsmE543-3 infection can induce the anti-SIV neutralizing antibodies associated with the germline VH3.33 polymorphism. Anti-SIVsmE543-3 neutralizing antibodies were induced in all the macaques possessing the VH3.33_ET allele, but not in those without VH3.33_ET, in the chronic phase of SIVsmE543-3 infection. Next generation sequencing analysis of BCR VH genes found B404-class antibody sequences only in those with VH3.33_ET. These results indicate that anti-SIVsmE543-3 neutralizing antibody induction associated with the germline BCR IgG gene polymorphism can be triggered by infection with neutralization-resistant SIVsmE543-3. This animal model would be useful for the elucidation of the mechanism of potent antibody induction against neutralization-resistant viruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Resistência à Doença/genética , Genes de Imunoglobulinas , Polimorfismo Genético , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Alelos , Sequência de Aminoácidos , Animais , Resistência à Doença/imunologia , Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Macaca mulatta , Filogenia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
17.
Cells ; 10(4)2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916615

RESUMO

Transforming growth factor-ß signaling (TGF-ß) maintains a balanced physiological function including cell growth, differentiation, and proliferation and regulation of immune system by modulating either SMAD2/3 and SMAD7 (SMAD-dependent) or SMAD-independent signaling pathways under normal conditions. Increased production of TGF-ß promotes immunosuppression in Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection. However, the cellular source and downstream events of increased TGF-ß production that attributes to its pathological manifestations remain unknown. Here, we have shown increased production of TGF-ß in a majority of intestinal CD3-CD20-CD68+ cells from acute and chronically SIV infected rhesus macaques, which negatively correlated with the frequency of jejunum CD4+ T cells. No significant changes in intestinal TGF-ß receptor II expression were observed but increased production of the pSMAD2/3 protein and SMAD3 gene expression in jejunum tissues that were accompanied by a downregulation of SMAD7 protein and gene expression. Enhanced TGF-ß production by intestinal CD3-CD20-CD68+ cells and increased TGF-ß/SMAD-dependent signaling might be due to a disruption of a negative feedback loop mediated by SMAD7. This suggests that SIV infection impacts the SMAD-dependent signaling pathway of TGF-ß and provides a potential framework for further study to understand the role of viral factor(s) in modulating TGF-ß production and downregulating SMAD7 expression in SIV. Regulation of mucosal TGF-ß expression by therapeutic TGF-ß blockers may help to create effective antiviral mucosal immune responses.


Assuntos
Intestinos/virologia , Transdução de Sinais , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Progressão da Doença , Regulação para Baixo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Intestinos/patologia , Macaca mulatta , Modelos Biológicos , Fosforilação , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Regulação para Cima , Carga Viral
18.
J Immunol ; 206(8): 1957-1965, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33692147

RESUMO

MHC class I molecules play an important role in adaptive immune responses against intracellular pathogens. These molecules are highly polymorphic, and many allotypes have been characterized. In a transplantation setting, a mismatch between MHC allotypes may initiate an alloimmune response. Rhesus macaques (Macaca mulatta, Mamu) are valuable as a preclinical model species in transplantation research as well as to evaluate the safety and efficacy of vaccine candidates. In both lines of research, the availability of nonhuman primate MHC-reactive mAbs may enable in vitro monitoring and detection of presence of particular Mamu molecules. In this study, we screened a collection of thoroughly characterized HLA class I-specific human mAbs for cross-reactivity with rhesus macaque MHC class I allotypes. Two mAbs, OK4F9 and OK4F10, recognize an epitope that is defined by isoleucine (I) at amino acid position 142 that is present on the Indian rhesus macaque Mamu-B*008:01 allotype, which is an allotype known to be associated with elite control of SIV replication. The reactive pattern of a third mAb, MUS4H4, is more complex and includes an epitope shared on Mamu-A2*05:01 and -B*001:01-encoded Ags. This is the first description, to our knowledge, of human HLA-reactive mAbs that can recognize Mamu allotypes, and these can be useful tools for in vitro monitoring the presence of the relevant allelic products. Moreover, OK4F9 and OK4F10 can be powerful mAbs for application in SIV-related research.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , HIV-1/fisiologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Síndrome da Imunodeficiência Adquirida/genética , Alelos , Animais , Anticorpos Monoclonais/metabolismo , Reações Cruzadas , Predisposição Genética para Doença , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Alótipos de Imunoglobulina , Células K562 , Macaca mulatta , Polimorfismo Genético , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Replicação Viral
19.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771926

RESUMO

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Antígenos CD4/genética , Catarrinos/genética , Catarrinos/virologia , Variação Genética , HIV , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia , Alelos , Animais , Antígenos CD4/química , Evolução Molecular , Produtos do Gene env/química , Humanos , Ligação Proteica , Domínios Proteicos
20.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431697

RESUMO

GPR15 is a G protein-coupled receptor (GPCR) proposed to play a role in mucosal immunity that also serves as a major entry cofactor for HIV-2 and simian immunodeficiency virus (SIV). To discover novel endogenous GPR15 ligands, we screened a hemofiltrate (HF)-derived peptide library for inhibitors of GPR15-mediated SIV infection. Our approach identified a C-terminal fragment of cystatin C (CysC95-146) that specifically inhibits GPR15-dependent HIV-1, HIV-2, and SIV infection. In contrast, GPR15L, the chemokine ligand of GPR15, failed to inhibit virus infection. We found that cystatin C fragments preventing GPR15-mediated viral entry do not interfere with GPR15L signaling and are generated by proteases activated at sites of inflammation. The antiretroviral activity of CysC95-146 was confirmed in primary CD4+ T cells and is conserved in simian hosts of SIV infection. Thus, we identified a potent endogenous inhibitor of GPR15-mediated HIV and SIV infection that does not interfere with the physiological function of this GPCR.


Assuntos
Cistatina C/genética , Infecções por HIV/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Animais , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Receptores Virais/genética , Transdução de Sinais/genética , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/patogenicidade , Linfócitos T/metabolismo , Linfócitos T/virologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA