Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.189
Filtrar
1.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727305

RESUMO

BACKGROUND: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS: TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS: These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Proteínas Proto-Oncogênicas c-akt , SARS-CoV-2 , Transdução de Sinais , Tapsigargina , Tunicamicina , Resposta a Proteínas não Dobradas , Humanos , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Tunicamicina/farmacologia , Apoptose/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , COVID-19/virologia , COVID-19/metabolismo , Internalização do Vírus/efeitos dos fármacos
2.
Sci Rep ; 14(1): 10696, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730068

RESUMO

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Assuntos
Anti-Inflamatórios , Antioxidantes , Antivirais , Tratamento Farmacológico da COVID-19 , Curcumina , SARS-CoV-2 , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Antioxidantes/farmacologia , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Curcuma/química , Serina Endopeptidases/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Citocinas/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/virologia
3.
Front Immunol ; 15: 1383612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742107

RESUMO

Introduction: SARS-CoV-2, the cause of the COVID pandemic, is an RNA virus with a high propensity to mutate. Successive virus variants, including variants of concern (VOC), have emerged with increased transmission or immune escape. The original pandemic virus and early variants replicated poorly, if at all, in mice at least partly due to a mismatch between the receptor binding domain on the viral spike protein and the murine angiotensin converting enzyme 2 (ACE2). Omicron VOC emerged in late 2021 harboring > 50 new mutations, 35 of them in the spike protein. This variant resulted in a very large wave of infections, even in the face of prior immunity, albeit being inherently less severe than earlier variants. Reflecting the lower severity reported in humans, Omicron displayed attenuated infection in hamsters and also in the K18-hACE2 mouse model. K18-hACE2 mice express both the human ACE2 as well as the endogenous mouse ACE2. Methods: Here we infected hACE2 knock-in mice that express only human ACE2 and no murine ACE2, or C57BL/6 wildtype mice with SARS-CoV-2 D614G (first-wave isolate), Delta or Omicron BA.1 variants and assessed infectivity and downstream innate immune responses. Results: While replication of SARS-CoV-2 Omicron was lower in the lungs of hACE2 knock-in mice compared with SARS-CoV-2 D614G and VOC Delta, it replicated more efficiently than the earlier variants in C57BL/6 wildtype mice. This opens the opportunity to test the effect of host genetics on SARS-CoV-2 infections in wildtype mice. As a proof of principle, we tested Omicron infection in mice lacking expression of the interferon-alpha receptor-1 (IFNAR1). In these mice we found that loss of type I IFN receptor signaling resulted in higher viral loads in the lungs were detected. Finally, using a chimeric virus of first wave SARS-CoV-2 harboring the Omicron spike protein, we show that Omicron spike increase infection of C57BL/6 wildtype mice, but non-spike genes of Omicron confer attenuation of viral replication. Discussion: Since this chimeric virus efficiently infected C57BL/6 wildtype mice, and replicated in their lungs, our findings illustrate a pathway for genetic mapping of virushost interactions during SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Replicação Viral , Animais , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos Transgênicos
4.
Nat Commun ; 15(1): 4014, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740770

RESUMO

SARS-CoV-2 can re-structure chromatin organization and alter the epigenomic landscape of the host genome, but the mechanisms that produce such changes remain unclear. Here, we use polymer physics to investigate how the chromatin of the host genome is re-organized upon infection with SARS-CoV-2. We show that re-structuring of A/B compartments can be explained by a re-modulation of intra-compartment homo-typic affinities, which leads to the weakening of A-A interactions and the enhancement of A-B mixing. At the TAD level, re-arrangements are physically described by a reduction in the loop extrusion activity coupled with an alteration of chromatin phase-separation properties, resulting in more intermingling between different TADs and a spread in space of the TADs themselves. In addition, the architecture of loci relevant to the antiviral interferon response, such as DDX58 or IFIT, becomes more variable within the 3D single-molecule population of the infected model, suggesting that viral infection leads to a loss of chromatin structural specificity. Analysing the time trajectories of pairwise gene-enhancer and higher-order contacts reveals that this variability derives from increased fluctuations in the chromatin dynamics of infected cells. This suggests that SARS-CoV-2 alters gene regulation by impacting the stability of the contact network in time.


Assuntos
COVID-19 , Cromatina , SARS-CoV-2 , Cromatina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Humanos , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo
6.
Front Immunol ; 15: 1380697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715608

RESUMO

The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.


Assuntos
COVID-19 , Miocardite , SARS-CoV-2 , Miocardite/virologia , Miocardite/imunologia , Miocardite/terapia , Miocardite/genética , Humanos , COVID-19/imunologia , COVID-19/genética , COVID-19/terapia , SARS-CoV-2/fisiologia , Metilação , 5-Metilcitosina/metabolismo , Imunidade Inata , Tratamento Farmacológico da COVID-19 , Animais , RNA Viral/genética , RNA Viral/metabolismo , Processamento Pós-Transcricional do RNA
7.
Front Immunol ; 15: 1337215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715618

RESUMO

Background: Mortalin/GRP75 is a ubiquitous mitochondrial chaperone related to the cytosolic heat shock protein 70. It protects cells from various types of damages and from senescence. Our goal was to determine whether COVID-19 patients have circulating mortalin in their blood and to assess its prognostic value in anticipating disease severity. Methods: Mortalin was determined by ELISA in the sera of 83 COVID-19 patients enrolled in the study. Patients were categorized into 4 groups: critical patients who died (FATAL) or required intensive care and survived (ICU), patients of mild severity (hospitalized but not critical) who required nasal oxygen support (HOSP+O2), and patients who did not need oxygen therapy (HOSP). Results: The mortalin concentration in the serum of all COVID-19 patients in the cohort was 194-2324 pg/mL. A comparison of the mortalin levels by peak severity among the various patient groups showed a highly significant difference between the HOSP and FATAL groups and a significant difference between the HOSP and the ICU groups. COVID-19 patients who eventually failed to survive had at hospitalization a markedly higher level of mortalin in their sera. Cox regression analysis revealed a high mortality hazard (HR=3.96, p<0.01) in patients with high mortalin circulating levels (above the median, ≥651 pg/mL). This was confirmed in survival curve analysis (Kaplan-Meier; p=0.0032, log-rank test). Mortalin remained an independent predictor of mortality even after adjusting for age and sex or various complement activation products. Complement activation data collected in an earlier study in the same cohort was compared regarding the mortalin levels. Patients with higher circulating mortalin levels also had higher levels of complement C3a but reduced levels of properdin. Discussion: This is the first report on circulating mortalin in COVID-19 patients. Higher mortalin levels were associated with more severe illnesses and a higher risk of death. We claim that quantifying the blood levels of mortalin and activated complement proteins will provide important information on the prognosis of COVID-19 patients and will serve as a useful tool for guiding their clinical management and treatment.


Assuntos
COVID-19 , Proteínas de Choque Térmico HSP70 , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/sangue , COVID-19/imunologia , Proteínas de Choque Térmico HSP70/sangue , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Idoso , Prognóstico , Índice de Gravidade de Doença , Adulto , Biomarcadores/sangue , Ativação do Complemento , Idoso de 80 Anos ou mais
8.
Oncotarget ; 15: 275-284, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709242

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 infection has led to worsened outcomes for patients with cancer. SARS-CoV-2 spike protein mediates host cell infection and cell-cell fusion that causes stabilization of tumor suppressor p53 protein. In-silico analysis previously suggested that SARS-CoV-2 spike interacts with p53 directly but this putative interaction has not been demonstrated in cells. We examined the interaction between SARS-CoV-2 spike, p53 and MDM2 (E3 ligase, which mediates p53 degradation) in cancer cells using an immunoprecipitation assay. We observed that SARS-CoV-2 spike protein interrupts p53-MDM2 protein interaction but did not detect SARS-CoV-2 spike bound with p53 protein in the cancer cells. We further observed that SARS-CoV-2 spike suppresses p53 transcriptional activity in cancer cells including after nutlin exposure of wild-type p53-, spike-expressing tumor cells and inhibits chemotherapy-induced p53 gene activation of p21(WAF1), TRAIL Death Receptor DR5 and MDM2. The suppressive effect of SARS-CoV-2 spike on p53-dependent gene activation provides a potential molecular mechanism by which SARS-CoV-2 infection may impact tumorigenesis, tumor progression and chemotherapy sensitivity. In fact, cisplatin-treated tumor cells expressing spike were found to have increased cell viability as compared to control cells. Further observations on γ-H2AX expression in spike-expressing cells treated with cisplatin may indicate altered DNA damage sensing in the DNA damage response pathway. The preliminary observations reported here warrant further studies to unravel the impact of SARS-CoV-2 and its various encoded proteins including spike on pathways of tumorigenesis and response to cancer therapeutics. More efforts should be directed at studying the effects of the SARS-CoV-2 spike and other viral proteins on host DNA damage sensing, response and repair mechanisms. A goal would be to understand the structural basis for maximal anti-viral immunity while minimizing suppression of host defenses including the p53 DNA damage response and tumor suppression pathway. Such directions are relevant and important including not only in the context of viral infection and mRNA vaccines in general but also for patients with cancer who may be receiving cytotoxic or other cancer treatments.


Assuntos
Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Proteínas Proto-Oncogênicas c-mdm2 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteína Supressora de Tumor p53 , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Sobrevivência Celular/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , SARS-CoV-2/fisiologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Transfecção , COVID-19/virologia , COVID-19/metabolismo
9.
Commun Biol ; 7(1): 526, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702425

RESUMO

COVID-19, caused by SARS-CoV-2, can lead to a severe inflammatory disease characterized by significant lymphopenia. However, the underlying cause for the depletion of T-cells in COVID-19 patients remains incompletely understood. In this study, we assessed the presence of different T-cell subsets in the progression of COVID-19 from mild to severe disease, with a focus on TCF1 expressing progenitor T-cells that are needed to replenish peripheral T-cells during infection. Our results showed a preferential decline in TCF1+ progenitor CD4 and CD8+ T-cells with disease severity. This decline was seen in various TCF1+ subsets including naive, memory and effector-memory cells, and surprisingly, was accompanied by a loss in cell division as seen by a marked decline in Ki67 expression. In addition, TCF1+ T-cells showed a reduction in pro-survival regulator, BcL2, and the appearance of a new population of TCF1 negative caspase-3 expressing cells in peripheral blood from patients with severe disease. The decline in TCF1+ T-cells was also seen in a subgroup of severe patients with vitamin D deficiency. Lastly, we found that sera from severe patients inhibited TCF1 transcription ex vivo which was attenuated by a blocking antibody against the cytokine, interleukin-12 (IL12). Collectively, our findings underscore the potential significance of TCF1+ progenitor T-cells in accounting for the loss of immunity in severe COVID-19 and outline an array of markers that could be used to identify disease progression.


Assuntos
COVID-19 , Fator 1-alfa Nuclear de Hepatócito , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/imunologia , COVID-19/patologia , Masculino , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Idoso , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
10.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622380

RESUMO

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Células Epiteliais , Mucosa Nasal , SARS-CoV-2 , Serina Endopeptidases , Humanos , COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Adulto , Pessoa de Meia-Idade , Idoso , Células Epiteliais/virologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Mucosa Nasal/virologia , Criança , Fatores Etários , Replicação Viral , Pré-Escolar , Tropismo Viral , Masculino , Feminino , Idoso de 80 Anos ou mais , Células Cultivadas , Adolescente , Lactente
11.
Daru ; 32(1): 215-235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652363

RESUMO

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Assuntos
Antivirais , Coronavirus Humano 229E , Reposicionamento de Medicamentos , Mapas de Interação de Proteínas , SARS-CoV-2 , Biologia de Sistemas , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/efeitos dos fármacos , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Nucleofosmina , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Redes Reguladoras de Genes/efeitos dos fármacos , COVID-19
12.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674036

RESUMO

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Assuntos
Quimiocina CX3CL1 , Viroses , Quimiocina CX3CL1/metabolismo , Humanos , Viroses/metabolismo , Viroses/imunologia , Viroses/virologia , Animais , COVID-19/virologia , COVID-19/metabolismo , COVID-19/imunologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Microglia/metabolismo , Microglia/virologia , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética
13.
Viruses ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675974

RESUMO

The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.


Assuntos
COVID-19 , Colo , Células Epiteliais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Colo/virologia , COVID-19/virologia , Células Epiteliais/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral , Interferon lambda
14.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674009

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to raise concerns worldwide. Numerous host factors involved in SARS-CoV-2 infection have been identified, but the regulatory mechanisms of these host factor remain unclear. Here, we report the role of G-quadruplexes (G4s) located in the host factor promoter region in SARS-CoV-2 infection. Using bioinformatics, biochemical, and biological assays, we provide evidence for the presence of G4 structures in the promoter regions of SARS-CoV-2 host factors NRP1. Specifically, we focus on two representative G4s in the NRP1 promoter and highlight its importance in SARS-CoV-2 pathogenesis. The presence of the G4 structure greatly increases NRP1 expression, facilitating SARS-CoV-2 entry into cells. Utilizing published single-cell RNA sequencing data obtained from simulated SARS-CoV-2 infection in human bronchial epithelial cells (HBECs), we found that ciliated cells with high levels of NRP1 are prominently targeted by the virus during infection. Furthermore, our study identifies E2F1 act as a transcription factor that binds to G4s. These findings uncover a previously unknown mechanism underlying SARS-CoV-2 infection and suggest that targeting G4 structures could be a potential strategy for COVID-19 prevention and treatment.


Assuntos
COVID-19 , Quadruplex G , Neuropilina-1 , Regiões Promotoras Genéticas , SARS-CoV-2 , Humanos , Neuropilina-1/genética , Neuropilina-1/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , COVID-19/genética , COVID-19/virologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Internalização do Vírus , Células Epiteliais/virologia , Células Epiteliais/metabolismo
15.
Elife ; 132024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622989

RESUMO

Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Estudos Retrospectivos , Antivirais/uso terapêutico , SARS-CoV-2/fisiologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Masculino , Hong Kong/epidemiologia , Feminino , Pessoa de Meia-Idade , Hospitalização , Eliminação de Partículas Virais , Idoso , Adulto , Resultado do Tratamento , Fatores de Tempo , Combinação de Medicamentos
16.
Cell Stem Cell ; 31(5): 734-753.e8, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608707

RESUMO

Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.


Assuntos
Diferenciação Celular , Disautonomia Familiar , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Disautonomia Familiar/patologia , Neurônios , Síndrome de Sjogren/patologia , COVID-19/virologia , COVID-19/patologia , Animais , Sistema Nervoso Parassimpático , Células de Schwann , Camundongos , SARS-CoV-2/fisiologia
17.
J Virol ; 98(5): e0190323, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593045

RESUMO

We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Serina Endopeptidases , Inibidores de Serina Proteinase , Replicação Viral , Animais , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Humanos , Camundongos , Replicação Viral/efeitos dos fármacos , COVID-19/virologia , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Antivirais/farmacologia , Serina Endopeptidases/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Chlorocebus aethiops , Células Vero , Feminino , Peptidomiméticos/farmacologia
18.
J Virol ; 98(5): e0034924, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639488

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has rapidly spread worldwide since its emergence in late 2019. Its ongoing evolution poses challenges for antiviral drug development. Coronavirus nsp6, a multiple-spanning transmembrane protein, participates in the biogenesis of the viral replication complex, which accommodates the viral replication-transcription complex. The roles of its structural domains in viral replication are not well studied. Herein, we predicted the structure of the SARS-CoV-2 nsp6 protein using AlphaFold2 and identified a highly folded C-terminal region (nsp6C) downstream of the transmembrane helices. The enhanced green fluorescent protein (EGFP)-fused nsp6C was found to cluster in the cytoplasm and associate with membranes. Functional mapping identified a minimal membrane-associated element (MAE) as the region from amino acids 237 to 276 (LGV-KLL), which is mainly composed of the α-helix H1 and the α-helix H2; the latter exhibits characteristics of an amphipathic helix (AH). Mutagenesis studies and membrane flotation experiments demonstrate that AH-like H2 is required for MAE-mediated membrane association. This MAE was functionally conserved across MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63, all capable of mediating membrane association. In a SARS-CoV-2 replicon system, mutagenesis studies of H2 and replacements of H1 and H2 with their homologous counterparts demonstrated requirements of residues on both sides of the H2 and properly paired H1-H2 for MAE-mediated membrane association and viral replication. Notably, mutations I266A and K274A significantly attenuated viral replication without dramatically affecting membrane association, suggesting a dual role of the MAE in viral replication: mediating membrane association as well as participating in protein-protein interactions.IMPORTANCESevere acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) assembles a double-membrane vesicle (DMV) by the viral non-structural proteins for viral replication. Understanding the mechanisms of the DMV assembly is of paramount importance for antiviral development. Nsp6, a multiple-spanning transmembrane protein, plays an important role in the DMV biogenesis. Herein, we predicted the nsp6 structure of SARS-CoV-2 and other human coronaviruses using AlphaFold2 and identified a putative membrane-associated element (MAE) in the highly conserved C-terminal regions of nsp6. Experimentally, we verified a functionally conserved minimal MAE composed of two α-helices, the H1, and the amphipathic helix-like H2. Mutagenesis studies confirmed the requirement of H2 for MAE-mediated membrane association and viral replication and demonstrated a dual role of the MAE in viral replication, by mediating membrane association and participating in residue-specific interactions. This functionally conserved MAE may serve as a novel anti-viral target.


Assuntos
SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , COVID-19/virologia , Membrana Celular/metabolismo , Animais , Chlorocebus aethiops , Betacoronavirus/genética , Betacoronavirus/fisiologia , Betacoronavirus/metabolismo , Células HEK293 , Células Vero , Pandemias , Sequência de Aminoácidos
19.
J Virol ; 98(5): e0034724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38651897

RESUMO

Angiotensin converting enzyme 2 (ACE2), the host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is differentially expressed in a wide variety of tissues and cell types. The expression of ACE2 is under tight regulation, but the mechanisms regulating ACE2 expression have not yet been well defined. Through a genome-wide CRISPR knockout screen, we discovered that host factors TRAF3, DYRK1A, and RAD54L2 (TDR) form a complex to regulate the expression of ACE2. Knockout of TRAF3, DYRK1A, or RAD54L2 reduces the mRNA levels of ACE2 and inhibits the cellular entry of SARS-CoV-2. On the other hand, SARS-CoV-2 continuously evolves by genetic mutations for the adaption to the host. We have identified mutations in spike (S) (P1079T) and nucleocapsid (N) (S194L) that enhance the replication of SARS-CoV-2 in cells that express ACE2 at a low level. Our results have revealed the mechanisms for the transcriptional regulation of ACE2 and the adaption of SARS-CoV-2. IMPORTANCE: The expression of ACE2 is essential for the entry of SARS-CoV-2 into host cells. We identify a new complex-the TDR complex-that acts to maintain the abundance of ACE2 in host cells. The identification and characterization of the TDR complex provide new targets for the development of therapeutics against SARS-CoV-2 infection. By analysis of SARS-CoV-2 virus replicating in cells expressing low levels of ACE2, we identified mutations in spike (P1079T) and nucleocapsid (S194L) that overcome the restriction of limited ACE2. Functional analysis of these key amino acids in S and N extends our knowledge of the impact of SARS-CoV-2 variants on virus infection and transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Proteínas Serina-Treonina Quinases , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Internalização do Vírus , Células HEK293 , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
20.
Front Immunol ; 15: 1294020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646531

RESUMO

Endogenous retroviruses (ERVs) derived from the long terminal repeat (LTR) family of transposons constitute a significant portion of the mammalian genome, with origins tracing back to ancient viral infections. Despite comprising approximately 8% of the human genome, the specific role of ERVs in the pathogenesis of COVID-19 remains unclear. In this study, we conducted a genome-wide identification of ERVs in human peripheral blood mononuclear cells (hPBMCs) and primary lung epithelial cells from monkeys and mice, both infected and uninfected with SARS-CoV-2. We identified 405, 283, and 206 significantly up-regulated transposable elements (TEs) in hPBMCs, monkeys, and mice, respectively. This included 254, 119, 68, and 28 ERVs found in hPBMCs from severe and mild COVID-19 patients, monkeys, and transgenic mice expressing the human ACE2 receptor (hACE2) and infected with SARS-CoV-2. Furthermore, analysis using the Genomic Regions Enrichment of Annotations Tool (GREAT) revealed certain parental genomic sequences of these up-regulated ERVs in COVID-19 patients may be involved in various biological processes, including histone modification and viral replication. Of particular interest, we identified 210 ERVs specifically up-regulated in the severe COVID-19 group. The genes associated with these differentially expressed ERVs were enriched in processes such as immune response activation and histone modification. HERV1_I-int: ERV1:LTR and LTR7Y: ERV1:LTR were highlighted as potential biomarkers for evaluating the severity of COVID-19. Additionally, validation of our findings using RT-qPCR in Bone Marrow-Derived Macrophages (BMDMs) from mice infected by HSV-1 and VSV provided further support to our results. This study offers insights into the expression patterns and potential roles of ERVs following viral infection, providing a valuable resource for future studies on ERVs and their interaction with SARS-CoV-2.


Assuntos
COVID-19 , Retrovirus Endógenos , SARS-CoV-2 , Retrovirus Endógenos/genética , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Camundongos , Leucócitos Mononucleares/virologia , Leucócitos Mononucleares/imunologia , Camundongos Transgênicos , Elementos de DNA Transponíveis/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/virologia , Pulmão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA