Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Dev Comp Immunol ; 157: 105193, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729458

RESUMO

The development and persistence of antibody secreting cells (ASC) after antigenic challenge remain inadequately understood in teleosts. In this study, intraperitoneal (ip) injection of Atlantic salmon (Salmo salar) with salmonid alphavirus (WtSAV3) increased the total ASC response, peaking 3-6 weeks post injection (wpi) locally in the peritoneal cavity (PerC) and in systemic lymphoid tissues, while at 13 wpi the response was only elevated in PerC. At the same time point a specific ASC response was induced by WtSAV3 in PerC and systemic tissues, with the highest frequency in PerC, suggesting a local role. Inactivated SAV (InSAV1) induced comparatively lower ASC responses in all sites, and specific serum antibodies were only induced by WtSAV3 and not by InSAV1. An InSAV1 boost did not increase these responses. Expression of immune marker genes implies a role for PerC adipose tissue in the PerC immune response. Overall, the study suggests the Atlantic salmon PerC as a secondary immune site and an ASC survival niche.


Assuntos
Infecções por Alphavirus , Alphavirus , Anticorpos Antivirais , Células Produtoras de Anticorpos , Doenças dos Peixes , Cavidade Peritoneal , Salmo salar , Animais , Salmo salar/imunologia , Salmo salar/virologia , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/veterinária , Infecções por Alphavirus/virologia , Cavidade Peritoneal/citologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Células Produtoras de Anticorpos/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Injeções Intraperitoneais/veterinária
2.
PLoS One ; 19(5): e0302286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805503

RESUMO

Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.


Assuntos
Ácido Eicosapentaenoico , Imunidade Inata , Rim , Poli I-C , Salmo salar , Animais , Salmo salar/imunologia , Salmo salar/genética , Salmo salar/virologia , Imunidade Inata/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Linhagem Celular , Poli I-C/farmacologia , Rim/efeitos dos fármacos , Rim/imunologia , Rim/metabolismo , Transcriptoma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica
3.
J Vet Diagn Invest ; 36(3): 329-337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38212882

RESUMO

Infectious salmon anemia virus (ISAV; Isavirus salaris) causes an economically important disease of Atlantic salmon (Salmo salar L.). ISA outbreaks have resulted in significant losses of farmed salmon globally, often with a sudden onset. However, 2 phenotypically distinct variants of ISAV exist, each with divergent disease outcomes, associated regulations, and control measures. ISAV-HPRΔ, also known as ISAV-HPR deleted, is responsible for ISA outbreaks; ISAV-HPR0, is avirulent and is not known to cause fish mortality. Current detection methodology requires genetic sequencing of ISAV-positive samples to differentiate phenotypes, which may slow responses to disease management. To increase the speed of phenotypic determinations of ISAV, we developed a new, rapid multiplex RT-qPCR method capable of 1) detecting if a sample contains any form of ISAV, 2) discriminating whether positive samples contain HPRΔ or HPR0, and 3) validating RNA extractions with an internal control, all in a single reaction. Following assay development and optimization, we validated this new multiplex on 31 ISAV strains collected from North America and Europe (28 ISAV-HPRΔ, 3 ISAV-HPR0). Finally, we completed an inter-laboratory comparison of this multiplex qPCR with commercial ISAV testing and found that both methods provided equivalent results for ISAV detection.


Assuntos
Doenças dos Peixes , Isavirus , Reação em Cadeia da Polimerase Multiplex , Salmo salar , Animais , Isavirus/genética , Isavirus/isolamento & purificação , Doenças dos Peixes/virologia , Doenças dos Peixes/diagnóstico , Salmo salar/virologia , Reação em Cadeia da Polimerase Multiplex/veterinária , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/diagnóstico , Virulência , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
Viruses ; 14(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215905

RESUMO

Infectious salmon anaemia virus (ISAV) binds circulating Atlantic salmon erythrocytes, but the relevance of this interaction for the course of infection and development of disease remains unclear. We here characterise ISAV-erythrocyte interactions in experimentally infected Atlantic salmon and show that ISAV-binding to erythrocytes is common and precedes the development of disease. Viral RNA and infective particles were enriched in the cellular fraction of blood. While erythrocyte-associated ISAV remained infectious, erythrocytes dose-dependently limited the infection of cultured cells. Surprisingly, immunostaining of blood smears revealed expression of ISAV proteins in a small fraction of erythrocytes in one of the examined trials, confirming that ISAV can be internalised in this cell type and engage the cellular machinery in transcription and translation. However, viral protein expression in erythrocytes was rare and not required for development of disease and mortality. Furthermore, active transcription of ISAV mRNA was higher in tissues than in blood, supporting the assumption that ISAV replication predominantly takes place in endothelial cells. In conclusion, Atlantic salmon erythrocytes bind ISAV and sequester infective virus particles during infection, but do not appear to significantly contribute to ISAV replication. We discuss the implications of our findings for infection dynamics and pathogenesis of infectious salmon anaemia.


Assuntos
Eritrócitos/virologia , Doenças dos Peixes/virologia , Isavirus/fisiologia , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Células Endoteliais/virologia , Doenças dos Peixes/sangue , Isavirus/genética , Isavirus/isolamento & purificação , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/virologia , Salmo salar/sangue , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/isolamento & purificação , Vírion/fisiologia , Replicação Viral
5.
Viruses ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960697

RESUMO

The nonvirulent infectious salmon anaemia virus (ISAV-HPR0) is the putative progenitor for virulent-ISAV, and a potential risk factor for the development of infectious salmon anaemia (ISA). Understanding the transmission dynamics of ISAV-HPR0 is fundamental to proper management and mitigation strategies. Here, we demonstrate that ISAV-HPR0 causes prevalent and transient infections in all three production stages of Atlantic salmon in the Faroe Islands. Phylogenetic analysis of the haemagglutinin-esterase gene from 247 salmon showed a clear geographical structuring into two significantly distinct HPR0-subgroups, which were designated G2 and G4. Whereas G2 and G4 co-circulated in marine farms, Faroese broodfish were predominantly infected by G2, and smolt were predominantly infected by G4. This infection pattern was confirmed by our G2- and G4-specific RT-qPCR assays. Moreover, the HPR0 variants detected in Icelandic and Norwegian broodfish were never detected in the Faroe Islands, despite the extensive import of ova from both countries. Accordingly, the vertical transmission of HPR0 from broodfish to progeny is uncommon. Phylogenetic and statistical analysis suggest that HPR0 persists in the smolt farms as "house-strains", and that new HPR0 variants are occasionally introduced from the marine environment, probably by HPR0-contaminated sea-spray. Thus, high biosecurity-including water and air intake-is required to avoid the introduction of pathogens to the smolt farms.


Assuntos
Doenças dos Peixes/transmissão , Pesqueiros , Transmissão Vertical de Doenças Infecciosas/veterinária , Isavirus/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Biosseguridade , Dinamarca , Doenças dos Peixes/virologia , Isavirus/classificação , Isavirus/genética , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Virulência
6.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768822

RESUMO

The feeding behavior in fish is a complex activity that relies on the ability of the brain to integrate multiple signals to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Upon stress cues including viral infection or mediators such as the proinflammatory cytokines, prostaglandins, and cortisol, both Pomc and Npy/Agrp neurons from the hypothalamus are stimulated, thus triggering a response that controls both energy storage and expenditure. However, how appetite modulators or neuro-immune cues link pathogenesis and energy homeostasis in fish remains poorly understood. Here, we provide the first evidence of a molecular linkage between inflammation and food intake in Salmon salar. We show that in vivo viral challenge with infectious pancreatic necrosis virus (IPNV) impacts food consumption by activating anorexic genes such as mc4r, crf, and pomcb and 5-HT in the brain of S. salar. At the molecular level, viral infection induces an overall reduction in lipid content in the liver, favoring the production of AA and EPA associated with the increment of elovl2 gene. In addition, infection upregulates leptin signaling and inhibits insulin signaling. These changes are accompanied by a robust inflammatory response represented by the increment of Il-1b, Il-6, Tnfa, and Pge2 as well as an increased cortisol level in vivo. Thus, we propose a model in which hypothalamic neurons respond to inflammatory cytokines and stress-related molecules and interact with appetite induction/inhibition. These findings provide evidence of crosstalk between pathogenesis-driven inflammation and hypothalamic-pituitary-adrenocortical axes in stress-induced food intake behavior in fish.


Assuntos
Infecções por Birnaviridae , Comportamento Alimentar , Hipotálamo/metabolismo , Inflamação , Metabolismo dos Lipídeos , Salmo salar/fisiologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Hipotálamo/fisiologia , Vírus da Necrose Pancreática Infecciosa , Insulina/metabolismo , Leptina/metabolismo , Salmo salar/metabolismo , Salmo salar/virologia , Transdução de Sinais
7.
Front Immunol ; 12: 729017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603301

RESUMO

Piscine orthoreovirus (PRV-1) infection causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). The virus is also associated with focal melanized changes in white skeletal muscle where PRV-1 infection of macrophages appears to be important. In this study, we studied the macrophage polarization into M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes during experimentally induced HSMI. The immune response in heart with HSMI lesions was characterized by CD8+ and MHC-I expressing cells and not by polarized macrophages. Fluorescent in situ hybridization (FISH) assays revealed localization of PRV-1 in a few M1 macrophages in both heart and skeletal muscle. M2 type macrophages were widely scattered in the heart and were more abundant in heart compared to the skeletal muscle. However, the M2 macrophages did not co-stain for PRV-1. There was a strong cellular immune response to the infection in the heart compared to that of the skeletal muscle, seen as increased MHC-I expression, partly in cells also containing PRV-1 RNA, and a high number of cytotoxic CD8+ granzyme producing cells that targeted PRV-1. In skeletal muscle, MHC-I expressing cells and CD8+ cells were dispersed between myocytes, but these cells did not stain for PRV-1. Gene expression analysis by RT-qPCR complied with the FISH results and confirmed a drop in level of PRV-1 following the cell mediated immune response. Overall, the results indicated that M1 macrophages do not contribute to the initial development of HSMI. However, large numbers of M2 macrophages reside in the heart and may contribute to the subsequent fast recovery following clearance of PRV-1 infection.


Assuntos
Linfócitos T CD8-Positivos/virologia , Doenças dos Peixes/virologia , Coração/virologia , Macrófagos/virologia , Orthoreovirus/patogenicidade , Infecções por Retroviridae/virologia , Salmo salar/virologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Celular , Macrófagos/imunologia , Macrófagos/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/virologia , Miocárdio/imunologia , Miocárdio/metabolismo , Orthoreovirus/imunologia , Fenótipo , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/metabolismo , Salmo salar/imunologia , Salmo salar/metabolismo , Fatores de Tempo , Carga Viral
8.
Viruses ; 13(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578311

RESUMO

The sole member of the Piscihepevirus genus (family Hepeviridae) is cutthroat trout virus (CTV) but recent metatranscriptomic studies have identified numerous fish hepevirus sequences including CTV-2. In the current study, viruses with sequences resembling both CTV and CTV-2 were isolated from salmonids in eastern and western Canada. Phylogenetic analysis of eight full genomes delineated the Canadian CTV isolates into two genotypes (CTV-1 and CTV-2) within the Piscihepevirus genus. Hepevirus genomes typically have three open reading frames but an ORF3 counterpart was not predicted in the Canadian CTV isolates. In vitro replication of a CTV-2 isolate produced cytopathic effects in the CHSE-214 cell line with similar amplification efficiency as CTV. Likewise, the morphology of the CTV-2 isolate resembled CTV, yet viral replication caused dilation of the endoplasmic reticulum lumen which was not previously observed. Controlled laboratory studies exposing sockeye (Oncorhynchus nerka), pink (O. gorbuscha), and chinook salmon (O. tshawytscha) to CTV-2 resulted in persistent infections without disease and mortality. Infected Atlantic salmon (Salmo salar) and chinook salmon served as hosts and potential reservoirs of CTV-2. The data presented herein provides the first in vitro and in vivo characterization of CTV-2 and reveals greater diversity of piscihepeviruses extending the known host range and geographic distribution of CTV viruses.


Assuntos
Doenças dos Peixes/virologia , Hepevirus/classificação , Hepevirus/genética , Hepevirus/isolamento & purificação , Animais , Canadá , Genótipo , Hepevirus/patogenicidade , Infecção Persistente/virologia , Filogenia , Salmo salar/virologia , Salmão/virologia , Truta , Virulência , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação , Vírus não Classificados/patogenicidade
9.
Viruses ; 13(9)2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578351

RESUMO

Infectious salmon anemia virus (ISAV) infection is currently detected by fish sampling for PCR and immunohistochemistry analysis. As an alternative to sampling fish, we evaluated two different membrane filters in combination with four buffers for elution, concentration, and detection of ISAV in seawater, during a bath challenge of Atlantic salmon (Salmo salar L.) post-smolts with high and low concentrations of ISAV. Transmission of ISAV in the bath challenge was confirmed by a high mortality, clinical signs associated with ISA disease, and detection of ISAV RNA in organ tissues and seawater samples. The electronegatively charged filter, combined with lysis buffer, gave significantly higher ISAV RNA detection by droplet digital PCR from seawater (5.6 × 104 ISAV RNA copies/L; p < 0.001). Viral shedding in seawater was first detected at two days post-challenge and peaked on day 11 post-challenge, one day before mortalities started in fish challenged with high dose ISAV, demonstrating that a large viral shedding event occurs before death. These data provide important information for ISAV shedding that is relevant for the development of improved surveillance tools based on water samples, transmission models, and management of ISA.


Assuntos
Doenças dos Peixes/virologia , Isavirus/genética , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Salmo salar/virologia , Eliminação de Partículas Virais , Anemia , Animais , Aquicultura , Doenças dos Peixes/patologia , Doenças dos Peixes/transmissão , Isavirus/isolamento & purificação , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/transmissão , Reação em Cadeia da Polimerase , Água do Mar/virologia
10.
Front Immunol ; 12: 696781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475871

RESUMO

In salmon farming, viruses are responsible for outbreaks that produce significant economic losses for which there is a lack of control tools other than vaccines. Type I interferon has been successfully used for treating some chronic viral infections in humans. However, its application in salmonids depends on the proper design of a vehicle that allows its massive administration, ideally orally. In mammals, administration of recombinant probiotics capable of expressing cytokines has shown local and systemic therapeutic effects. In this work, we evaluate the use of Lactococcus lactis as a type I Interferon expression system in Atlantic salmon, and we analyze its ability to stimulate the antiviral immune response against IPNV, in vivo and in vitro. The interferon expressed in L. lactis, even though it was located mainly in the bacterial cytoplasm, was functional, stimulating Mx and PKR expression in CHSE-214 cells, and reducing the IPNV viral load in SHK-1 cells. In vivo, the oral administration of this L. lactis producer of Interferon I increases Mx and PKR expression, mainly in the spleen, and to a lesser extent, in the head kidney. The oral administration of this strain also reduces the IPNV viral load in Atlantic salmon specimens challenged with this pathogen. Our results show that oral administration of L. lactis producing Interferon I induces systemic effects in Atlantic salmon, allowing to stimulate the antiviral immune response. This probiotic could have effects against a wide variety of viruses that infect Atlantic salmon and also be effective in other salmonids due to the high identity among their type I interferons.


Assuntos
Infecções por Birnaviridae/prevenção & controle , Proteínas de Peixes/metabolismo , Imunidade Inata , Vírus da Necrose Pancreática Infecciosa/patogenicidade , Interferon Tipo I/metabolismo , Lactococcus lactis/metabolismo , Probióticos , Salmo salar/microbiologia , Animais , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/microbiologia , Infecções por Birnaviridae/virologia , Linhagem Celular , Proteínas de Peixes/genética , Pesqueiros , Interações Hospedeiro-Patógeno , Vírus da Necrose Pancreática Infecciosa/crescimento & desenvolvimento , Vírus da Necrose Pancreática Infecciosa/imunologia , Interferon Tipo I/genética , Lactococcus lactis/genética , Lactococcus lactis/imunologia , Proteínas de Resistência a Myxovirus/metabolismo , Salmo salar/genética , Salmo salar/imunologia , Salmo salar/virologia , Carga Viral , eIF-2 Quinase/metabolismo
11.
J Fish Dis ; 44(11): 1697-1709, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34224170

RESUMO

Cardiomyopathy syndrome (CMS), caused by piscine myocarditis virus (PMCV), is a serious challenge to Atlantic salmon (Salmo salar L.) aquaculture. Regrettably, husbandry techniques are the only tool to manage CMS outbreaks, and no prophylactic measures are available at present. Early diagnosis of CMS is therefore desirable, preferably with non-lethal diagnostic methods, such as serum biomarkers. To identify candidate biomarkers for CMS, the protein content of pools of sera (4 fish/pool) from salmon with a CMS outbreak (3 pools) and from clinically healthy salmon (3 pools) was compared using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Overall, seven proteins were uniquely identified in the sera of clinically healthy fish, while 27 proteins were unique to the sera of CMS fish. Of the latter, 24 have been associated with cardiac disease in humans. These were grouped as leakage enzymes (creatine kinase, lactate dehydrogenase, glycogen phosphorylase and carbonic anhydrase); host reaction proteins (acute-phase response proteins-haptoglobin, fibrinogen, α2-macroglobulin and ceruloplasmin; and complement-related proteins); and regeneration/remodelling proteins (fibronectin, lumican and retinol). Clinical evaluation of the suitability of these proteins as biomarkers of CMS, either individually or as part of a panel, is a logical next step for the development of early diagnostic tools for CMS.


Assuntos
Proteínas Sanguíneas/análise , Cardiomiopatias/veterinária , Doenças dos Peixes/virologia , Salmo salar/virologia , Animais , Aquicultura , Biomarcadores/sangue , Cardiomiopatias/virologia , Surtos de Doenças , Proteômica , Salmo salar/sangue , Escócia
12.
Fish Shellfish Immunol ; 118: 188-196, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34252544

RESUMO

Before seawater transfer, farmed Atlantic salmon are subjected to treatments that may affect the immune system and susceptibility to pathogens. E.g., exposure to constant light (CL) stimulates smoltification, which prepares salmon to life in sea water, but endocrine changes in this period are associated with suppression of immune genes. Salmon are vaccinated towards end of the freshwater period to safeguard that adequate vaccine efficacy is achieved by the time the fish is transferred to sea. In the present study, we investigated how the responses to vaccination and viral infection varied depending on the time of CL onset relative to vaccination. The salmon were either exposed to CL two weeks prior to vaccination (2-PRI) or exposed to CL at the time of vaccination (0-PRI). A cohabitant challenge with salmonid alphavirus, the causative agent of pancreatic disease, was performed 9 weeks post vaccination. The immunological effects of the different light manipulation were examined at 0- and 6-weeks post vaccination, and 6 weeks post challenge. Antibody levels in serum were measured using a serological bead-based multiplex panel as well as ELISA, and 92 immune genes in heart and spleen were measured using an integrated fluidic circuit-based qPCR array for multiple gene expression. The 2-PRI group showed a moderate transcript down-regulation of genes in the heart at the time of vaccination, which were restored 6 weeks after vaccination (WPV). Conversely, at 6WPV a down-regulation was seen for the 0-PRI fish. Moreover, the 2-PRI group had significantly higher levels of antibodies binding to three of the vaccine components at 6WPV, compared to 0-PRI. In response to SAV challenge, transcription of immune genes between 2-PRI and 0-PRI was markedly dissimilar in the heart and spleen of control fish, but no difference was found between vaccinated salmon from the two CL regimens. Thus, by using labor-saving high throughput detection methods, we demonstrated that light regimens affected antibody production and transcription of immune genes in non-vaccinated and virus challenged salmon, but the differences between the light treatment groups appeared eliminated by vaccination.


Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Salmo salar , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/veterinária , Animais , Doenças dos Peixes/virologia , Expressão Gênica , Salmo salar/virologia , Vacinação/veterinária , Eficácia de Vacinas
13.
Front Immunol ; 12: 689302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177946

RESUMO

Salmon Gill Poxvirus Disease (SGPVD) has emerged as a cause of acute mortality in Atlantic salmon (Salmo salar L.) presmolts in Norwegian aquaculture. The clinical phase of the disease is associated with apoptotic cell death in the gill epithelium causing acute respiratory distress, followed by proliferative changes in the regenerating gill in the period after the disease outbreak. In an experimental SGPV challenge trial published in 2020, acute disease was only seen in fish injected with hydrocortisone 24 h prior to infection. SGPV-mediated mortality in the hydrocortisone-injected group was associated with more extensive gill pathology and higher SGPV levels compared to the group infected with SGPV only. In this study based on the same trial, SGPV gene expression and the innate and adaptive antiviral immune response was monitored in gills and spleen in the presence and absence of hydrocortisone. Whereas most SGPV genes were induced from day 3 along with the interferon-regulated innate immune response in gills, the putative SGPV virulence genes of the B22R family were expressed already one day after SGPV exposure, indicating a potential role as early markers of SGPV infection. In gills of the hydrocortisone-injected fish infected with SGPV, MX expression was delayed until day 10, and then expression skyrocketed along with the viral peak, gill pathology and mortality occurring from day 14. A similar expression pattern was observed for Interferon gamma (IFNγ) and granzyme A (GzmA) in the gills, indicating a role of acute cytotoxic cell activity in SGPVD. Duplex in situ hybridization demonstrated effects of hydrocortisone on the number and localization of GzmA-containing cells, and colocalization with SGPV infected cells in the gill. SGPV was generally not detected in spleen, and gill infection did not induce any corresponding systemic immune activity in the absence of stress hormone injection. However, in fish injected with hydrocortisone, IFNγ and GzmA gene expression was induced in spleen in the days prior to acute mortality. These data indicate that suppressed mucosal immune response in the gills and the late triggered systemic immune response in the spleen following hormonal stress induction may be the key to the onset of clinical SGPVD.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças dos Peixes/imunologia , Hidrocortisona/farmacologia , Imunidade nas Mucosas/efeitos dos fármacos , Infecções por Poxviridae/imunologia , Salmo salar/imunologia , Animais , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Brânquias/imunologia , Brânquias/virologia , Granzimas/genética , Granzimas/imunologia , Interações Hospedeiro-Patógeno , Interferon gama/genética , Interferon gama/imunologia , Mucosa/imunologia , Poxviridae/genética , Salmo salar/genética , Salmo salar/virologia
14.
PLoS One ; 16(6): e0253297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133472

RESUMO

Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate different membrane filters and buffers for concentration and recovery of ISAV in seawater, prior to molecular detection. One litre each of artificial and natural seawater was spiked with ISAV, followed by concentration with different filters and subsequent elution with different buffers. The negatively charged MF hydrophilic membrane filter, combined with NucliSENS® lysis buffer, presented the highest ISAV recovery percentages with 12.5 ± 1.3% by RT-qPCR and 31.7 ± 10.7% by RT-ddPCR. For the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter, combined with NucliSENS® lysis buffer, the ISAV recovery percentages were 3.4 ± 0.1% by RT-qPCR and 10.8 ± 14.2% by RT-ddPCR. The limits of quantification (LOQ) were estimated to be 2.2 x 103 ISAV copies/L of natural seawater for both RT-qPCR and RT-ddPCR. The ISAV concentration method was more efficient in natural seawater.


Assuntos
Filtração/métodos , Doenças dos Peixes/virologia , Isavirus , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Água do Mar/virologia , Animais , Soluções Tampão , Filtração/instrumentação , Doenças dos Peixes/prevenção & controle , Membranas Artificiais , Infecções por Orthomyxoviridae/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmo salar/virologia
15.
Dev Comp Immunol ; 122: 104109, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33930457

RESUMO

Multiple cellular components are involved in pathogen-host interaction during viral infection; in this context, the role of miRNAs have become highly relevant. We assessed the expression of selected miRNAs during an in vitro infection of a Salmo salar cell line with Infectious Salmon Anemia Virus (ISAV), the causative agent of a severe disease by the same name. Salmon orthologs for miRNAs that regulate antiviral responses were measured using RT-qPCR in an in vitro time-course assay. We observed a modulation of specific miRNAs expression, where ssa-miR-155-5p was differentially over-expressed. Using in silico analysis, we identified the putative mRNA targets for ssa-miR-155-5p, finding a high prevalence of hosts immune response-related genes; moreover, several mRNAs involved in the viral infective process were also identified as targets for this miRNA. Our results suggest a relevant role for miR-155-5p in Salmo salar during an ISAV infection as a regulator of the immune response to the virus.


Assuntos
Isavirus/imunologia , MicroRNAs/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Salmo salar/genética , Salmo salar/imunologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Regulação Viral da Expressão Gênica/genética , Rim Cefálico/citologia , Rim Cefálico/virologia , Imunidade Inata/genética , Imunidade Inata/imunologia , RNA Mensageiro/genética , Salmo salar/virologia , Proteínas não Estruturais Virais/imunologia
16.
PLoS One ; 16(2): e0243684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606747

RESUMO

The microbial communities that live in symbiosis with the mucosal surfaces of animals provide the host with defense strategies against pathogens. These microbial communities are largely shaped by the environment and the host genetics. Triploid Atlantic salmon (Salmo salar) are being considered for aquaculture as they are reproductively sterile and thus cannot contaminate the natural gene pool. It has not been previously investigated how the microbiome of triploid salmon compares to that of their diploid counterparts. In this study, we compare the steady-state skin and gill microbiome of both diploid and triploid salmon, and determine the effects of salmonid alphavirus 3 experimental infection on their microbial composition. Our results show limited differences in the skin-associated microbiome between triploid and diploid salmon, irrespective of infection. In the gills, we observed a high incidence of the bacterial pathogen Candidatus Branchiomonas, with higher abundance in diploid compared to triploid control fish. Diploid salmon infected with SAV3 showed greater histopathological signs of epitheliocystis compared to controls, a phenomenon not observed in triploid fish. Our results indicate that ploidy can affect the alpha diversity of the gills but not the skin-associated microbial community. Importantly, during a natural outbreak of Branchiomonas sp. the gill microbiome of diploid Atlantic salmon became significantly more dominated by this pathogen than in triploid animals. Thus, our results suggest that ploidy may play a role on Atlantic salmon gill health and provide insights into co-infection with SAV3 and C. Branchiomonas in Atlantic salmon.


Assuntos
Infecções por Alphavirus/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Salmo salar/genética , Salmo salar/virologia , Alphavirus/isolamento & purificação , Infecções por Alphavirus/genética , Infecções por Alphavirus/microbiologia , Infecções por Alphavirus/virologia , Animais , Aquicultura , Diploide , Doenças dos Peixes/microbiologia , Brânquias/metabolismo , Brânquias/microbiologia , Brânquias/virologia , Microbiota , Salmo salar/microbiologia , Pele/metabolismo , Pele/microbiologia , Pele/virologia , Triploidia
17.
J Fish Dis ; 44(1): 73-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944982

RESUMO

The Tasmanian salmon industry had remained relatively free of major viral diseases until the emergence of pilchard orthomyxovirus (POMV). Originally isolated from wild pilchards, POMV is of concern to the industry as it can cause high mortality in farmed salmon (Salmo salar). Field observations suggest the virus can spread from pen to pen and between farms, but evidence of passive transmission in sea water was unclear. Our aim was to establish whether direct contact between infected and naïve fish was required for transmission, and to examine viral infection dynamics. Atlantic salmon post-smolts were challenged with POMV by either direct exposure via cohabitation or indirect exposure via virus-contaminated sea water. POMV was transmissible in sea water and direct contact between fish was not required for infection. Head kidney and heart presented the highest viral loads in early stages of infection. POMV survivors presented low viral loads in most tissues, but these remained relatively high in gills. A consistent feature was the infiltration of viral-infected melanomacrophages in different tissues, suggesting an important role of these in the immune response to POMV. Understanding POMV transmission and host-pathogen interactions is key for the development of improved surveillance tools, transmission models and ultimately for disease prevention.


Assuntos
Doenças dos Peixes/transmissão , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Água do Mar/virologia , Animais , Feminino , Doenças dos Peixes/virologia , Brânquias/virologia , Rim Cefálico/virologia , Coração/virologia , Orthomyxoviridae , Infecções por Orthomyxoviridae/transmissão , Carga Viral
18.
Viruses ; 12(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339349

RESUMO

Here we have studied the impact of lice (Lepeophtheirus salmonis) infestation of donor fish on the ability of isolated peripheral blood monocytes (PMBCs) to control the replication of salmonid alphavirus (SAV) ex vivo. PMBC were collected by Percoll gradients at eight and nine weeks post copepodid infestation of Atlantic salmon post smolt. Uninfested fish were controls. PBMCs were then infected ex vivo with SAV (subtype 3), and samples were collected for analysis at two, four, and six days post virus infection. Virus titer in the supernatant was assayed in CHH-1 cells, and in addition, the relative expression of the virus structural protein E2 and selected host antiviral genes, IRF9, ISG15, Mx, and IFIT5, were assayed using real-time PCR. Significantly higher virus replication was detected in cells collected from lice-infested fish compared to controls. Higher virus titer coincided with an inability to upregulate the expression of different immune genes, IFIT5, IRF9, and Mx. These findings point towards compromised ability of PMBCs from lice-infested fish to control virus replication, and, to our knowledge, is the first report showing the direct effect of lice infestation on the interplay between viruses and immune cells. There is a possible impact on the dynamic spread of viral diseases in the aquatic environment.


Assuntos
Alphavirus/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/imunologia , Interações Hospedeiro-Parasita/imunologia , Monócitos/imunologia , Salmo salar/virologia , Replicação Viral , Animais , Células Cultivadas , Ectoparasitoses/imunologia , Salmo salar/imunologia
19.
Front Immunol ; 11: 1682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013821

RESUMO

B cell responses are a crucial part of the adaptive immune response to viral infection. Infection by salmonid alphavirus subtype 3 (SAV3) causes pancreas disease (PD) in Atlantic salmon (Salmo salar) and is a serious concern to the aquaculture industry. In this study, we have used intraperitoneal (IP) infection with SAV3 as a model to characterize local B cell responses in the peritoneal cavity (PerC) and systemic immune tissues (head kidney/spleen). Intraperitoneal administration of vaccines is common in Atlantic salmon and understanding more about the local PerC B cell response is fundamental. Intraperitoneal SAV3 infection clearly induced PerC B cell responses as assessed by increased frequency of IgM+ B cells and total IgM secreting cells (ASC). These PerC responses were prolonged up to nine weeks post-infection and positively correlated to the anti-SAV3 E2 and to neutralizing antibody responses in serum. For the systemic immune sites, virus-induced changes in B cell responses were more modest or decreased compared to controls in the same period. Collectively, data reported herein indicated that PerC could serve as a peripheral immunological site by providing a niche for prolonged maintenance of the ASC response in Atlantic salmon.


Assuntos
Imunidade Adaptativa , Infecções por Alphavirus/veterinária , Alphavirus/patogenicidade , Linfócitos B/virologia , Doenças dos Peixes/virologia , Imunidade Humoral , Salmo salar/virologia , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Interações Hospedeiro-Patógeno , Cavidade Peritoneal , Salmo salar/imunologia , Salmo salar/metabolismo
20.
Front Immunol ; 11: 2113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013890

RESUMO

Infectious pancreatic necrosis virus (IPNV) infection has been a major problem in salmonid aquaculture. Marker-assisted selection of individuals with resistant genotype at the major IPN quantitative trait locus (IPN-QTL) has significantly reduced mortality in recent years. We have identified host miRNAs that respond to IPNV challenge in salmon fry that were either homozygous resistant (RR) or homozygous susceptible (SS) for the IPN-QTL. Small RNA-sequenced control samples were compared to samples collected at 1, 7, and 20 days post challenge (dpc). This revealed 72 differentially expressed miRNAs (DE miRNAs). Viral load (VL) was lower in RR vs. SS individuals at 7 and 20 dpc. However, analysis of miRNA expression changes revealed no differences between RR vs. SS individuals in controls, at 1 or 7 dpc, while 38 "high viral load responding" miRNAs (HVL-DE miRNAs) were identified at 20 dpc. Most of the HVL-DE miRNAs showed changes that were more pronounced in the high VL SS group than in the low VL RR group when compared to the controls. The absence of differences between QTL groups in controls, 1 and 7 dpc indicates that the QTL genotype does not affect miRNA expression in healthy fish or their first response to viral infections. The miRNA differences at 20 dpc were associated with the QTL genotype and could, possibly, contribute to differences in resistance/susceptibility at the later stage of infection. In silico target gene predictions revealed that 180 immune genes were putative targets, and enrichment analysis indicated that the miRNAs may regulate several major immune system pathways. Among the targets of HVL-DE miRNAs were IRF3, STAT4, NFKB2, MYD88, and IKKA. Interestingly, TNF-alpha paralogs were targeted by different DE miRNAs. Most DE miRNAs were from conserved miRNA families that respond to viral infections in teleost (e.g., miR-21, miR-146, miR-181, miR-192, miR-221, miR-462, miR-731, and miR-8159), while eight were species specific. The miRNAs showed dynamic temporal changes implying they would affect their target genes differently throughout disease progression. This shows that miRNAs are sensitive to VL and disease progression, and may act as fine-tuners of both immediate immune response activation and the later inflammatory processes.


Assuntos
Infecções por Birnaviridae/veterinária , Doenças dos Peixes/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Necrose Pancreática Infecciosa/fisiologia , MicroRNAs/genética , Salmo salar/genética , Animais , Sequência de Bases , Infecções por Birnaviridae/genética , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Simulação por Computador , Progressão da Doença , Resistência à Doença , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Genótipo , Interações Hospedeiro-Patógeno/imunologia , Locos de Características Quantitativas , RNA Viral/análise , RNA-Seq , Salmo salar/crescimento & desenvolvimento , Salmo salar/imunologia , Salmo salar/virologia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Análise Serial de Tecidos , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA