Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.738
Filtrar
1.
Microbiology (Reading) ; 170(4)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753417

RESUMO

Salmonella enterica subsp. enterica Typhimurium and its monophasic variant I 1;4,[5],12:i:- (MVST) are responsible for thousands of reported cases of salmonellosis each year in Canada, and countries worldwide. We investigated S. Typhimurium and MVST isolates recovered from raw shellfish harvested in Atlantic Canada by the Canadian Food Inspection Agency (CFIA) over the past decade, to assess the potential impact of these isolates on human illness and to explore possible routes of shellfish contamination. Whole-genome sequence analysis was performed on 210 isolates of S. Typhimurium and MVST recovered from various food sources, including shellfish. The objective was to identify genetic markers linked to ST-99, a sequence type specifically associated with shellfish, which could explain their high prevalence in shellfish. We also investigated the genetic similarity amongst CFIA ST-99 isolates recovered in different years and geographical locations. Finally, the study aimed to enhance the molecular serotyping of ST-99 isolates, as they are serologically classified as MVST but are frequently misidentified as S. Typhimurium through sequence analysis. To ensure recovery of ST-99 from shellfish was not due to favourable growth kinetics, we measured the growth rates of these isolates relative to other Salmonella and determined that ST-99 did not have a faster growth rate and/or shorter lag phase than other Salmonella evaluated. The CFIA ST-99 isolates from shellfish were highly clonal, with up to 81 high-quality single nucleotide variants amongst isolates. ST-99 isolates both within the CFIA collection and those isolated globally carried numerous unique deletions, insertions and mutations in genes, including some considered important for virulence, such as gene deletions in the type VI secretion system. Interestingly, several of these genetic characteristics appear to be unique to North America. Most notably was a large genomic region showing a high prevalence in genomes from Canadian isolates compared to those from the USA. Although the functions of the majority of the proteins encoded within this region remain unknown, the genes umuC and umuD, known to be protective against UV light damage, were present. While this study did not specifically examine the effects of mutations and insertions, results indicate that these isolates may be adapted to survive in specific environments, such as ocean water, where wild birds and/or animals serve as the natural hosts. Our hypothesis is reinforced by a global phylogenetic analysis, which indicates that isolates obtained from North American shellfish and wild birds are infrequently connected to isolates from human sources. These findings suggest a distinct ecological niche for ST-99, potentially indicating their specialization and adaptation to non-human hosts and environments, such as oceanic habitats.


Assuntos
Tipagem de Sequências Multilocus , Salmonella typhimurium , Frutos do Mar , Frutos do Mar/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/classificação , Canadá , Sequenciamento Completo do Genoma , Animais , Humanos , Genoma Bacteriano , Microbiologia de Alimentos , Filogenia
2.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755524

RESUMO

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Assuntos
Antibacterianos , Defensinas , Dípteros , Larva , Animais , Defensinas/farmacologia , Defensinas/genética , Defensinas/química , Defensinas/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Dípteros/genética , Larva/efeitos dos fármacos , Larva/genética , Testes de Sensibilidade Microbiana , Sequência de Aminoácidos , Proteínas de Insetos/genética , Proteínas de Insetos/farmacologia , Proteínas de Insetos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/química , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Bactérias Gram-Negativas/efeitos dos fármacos
3.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622116

RESUMO

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Assuntos
Fator Rho , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Virulência/genética , Fator Rho/genética , Fator Rho/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Bactérias/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
4.
Food Microbiol ; 121: 104519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637081

RESUMO

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Assuntos
Manose , Salmonella typhimurium , Salmonella typhimurium/genética , Manose/metabolismo , Spinacia oleracea , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana/genética
5.
Open Vet J ; 14(1): 274-283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633164

RESUMO

Background: Salmonella-related foodborne illnesses are a significant public health concern. Naturally, antibacterial food components have been shown to limit microbial growth proliferation with various degrees of efficacy. Aims: To examine the occurrence, microbial load, and effect of apple vinegar on Salmonella serovars in beef and beef products. Methods: 150 beef and beef products were collected between March and May 2022. Total viable count (TVC), Enterobacteriaceae count (ENT), isolation and identification of Salmonella, and their virulence factors detection by multiplex PCR were determined, and an experimental study of the effect of natural apple vinegar marination on Salmonella spp. Results: TVC was higher in meatballs (3.32 × 106 ± 1.07 × 106) while beef burgers (4.22 × 103 ± 0.71 × 103) had the highest ENT. Concerning the prevalence of Salmonella spp., meatball (46.7%) and beef burger (25.3%) samples were the highest contamination rate. The common serovars detected were Salmonella typhimurium (6%), Salmonella enteritidis (6%), and Salmonella infantis (4%). Based on the results of PCR, 12, 11, and 11 out of 18 samples of Salmonella isolates possess hila, stn, and invA genes. By immersing the inoculated steak meat in apple vinegar at different concentrations (50%, 70%, and 100%), the initial populations of the Salmonella strains after 12 hours were reduced to 0.38 × 102 ± 0.05 × 102 log CFU/ml; however, after 48 hours become the most reduction (0.31 × 102 ± 0.07 × 102 log CFU/ml) at a concentration of 100% apple vinegar. An enhancement in the sensory attributes was noted across all concentrations. Conclusion: The consumed beef and beef products are contaminated with pathogenic bacteria such as Salmonella spp. Marinades made using apple vinegar concentrations of 50%, 75%, and 100% effectively minimized the prevalence of artificially inoculated Salmonella and extended the shelf life of preserved refrigerated beef products to 48 hours.


Assuntos
Ácido Acético , Malus , Bovinos , Animais , Microbiologia de Alimentos , Contagem de Colônia Microbiana/veterinária , Antibacterianos , Salmonella typhimurium/genética
6.
ACS Synth Biol ; 13(4): 1093-1099, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38593047

RESUMO

RNA synthetic biology tools have primarily been applied in E. coli; however, many other bacteria are of industrial and clinical significance. Thus, the multicolor fluorogenic aptamer Pepper was evaluated in both Gram-positive and Gram-negative bacteria. Suitable HBC-Pepper dye pairs were identified that give blue, green, or red fluorescence signals in the E. coli, Bacillus subtilis, and Salmonella enterica serovar Typhimurium (S. Typhimurium). Furthermore, we found that different RNA scaffolds have a drastic effect on in vivo fluorescence, which did not correlate with the in vitro folding efficiency. One such scaffold termed DF30-tRNA displays 199-fold greater fluorescence than the Pepper aptamer alone and permits simultaneous dual color imaging in live cells.


Assuntos
Aptâmeros de Nucleotídeos , RNA , Escherichia coli/genética , Antibacterianos , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas , Salmonella typhimurium/genética , Aptâmeros de Nucleotídeos/genética
7.
Avian Dis ; 68(1): 18-24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38687103

RESUMO

The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool (BLAST) with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the crp and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.


Detección in silico y por PCR de una cepa vacunal viva atenuada de Salmonella Typhimurium. La aplicación de vacunas vivas atenuadas contra Salmonella Typhimurium ha ayudado significativamente a controlar Salmonella en productos avícolas. Debido a que el Servicio de Inspección de Seguridad Alimentaria del Departamento de Agricultura de los Estados Unidos. (USDA-FSIS) califica todas las Salmonella como positivas, independientemente del serovar. Las cepas atenuadas de la vacuna que se identifican en el procesamiento contribuyen negativamente a los estándares de desempeño de Salmonella. Este estudio fue diseñado para determinar la incidencia de una vacuna viva atenuada de Salmonella serovar Typhimurium identificada en productos de pollo de engorde por el FSIS y para desarrollar un ensayo de PCR para la detección de aislados. Se recolectaron y ensamblaron secuencias de lectura corta de Salmonella Typhimurium de muestras de pollos de engorde introducidas en la plataforma de detección de patógenos del Centro Nacional de Información Biotecnológica (NCBI) por el USDA-FSIS entre los años 2016 al 2022. Estos se analizaron utilizando la herramienta de búsqueda de alineación local básica con una secuencia exclusiva para las cepas de campo, seguida de una secuencia exclusiva para la cepa vacunal. Los ensayos de PCR se desarrollaron contra cepas de campo y vacunales centrándose en eventos de transposición en los genes crp y cya y se validaron mediante la detección de aislados de Salmonella serovar Typhimurium. Entre 2016 y 2022, se encontraron 1708 aislados de Salmonella Typhimurium de origen avícola en el sistema de detección de patógenos del NCBI, lo que corresponde al 7.99 % de todas las Salmonellas identificadas. De ellas, 104 (5.97%) fueron identificadas como cepa vacunal. El ensayo de PCR diferenció las cepas de campo de la cepa de la vacuna cuando se aplicó a los aislados y también fue capaz de detectar la cepa de la vacuna a partir del ADN aislado de cultivos de enriquecimiento por toda la noche de Salmonella con serovares mixtos. Las vacunas vivas atenuadas contra Salmonella son una herramienta fundamental para el control de Salmonella y se utilizan ampliamente en la industria. Con las próximas regulaciones que probablemente se centrarán en Salmonella Typhimurium, junto con otros serovares, es necesario distinguir entre los aislados que pertenecen a la cepa vacunal y los que son responsables de causar enfermedades humanas.


Assuntos
Galinhas , Reação em Cadeia da Polimerase , Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Salmonella typhimurium , Vacinas Atenuadas , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Vacinas Atenuadas/imunologia , Animais , Vacinas contra Salmonella/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Reação em Cadeia da Polimerase/veterinária , Simulação por Computador
8.
PeerJ ; 12: e17069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549779

RESUMO

In this work we carried out an in silico analysis to understand the interaction between InvF-SicA and RNAP in the bacterium Salmonella Typhimurium strain LT2. Structural analysis of InvF allowed the identification of three possible potential cavities for interaction with SicA. This interaction could occur with the structural motif known as tetratricopeptide repeat (TPR) 1 and 2 in the two cavities located in the interface of the InvF and α-CTD of RNAP. Indeed, molecular dynamics simulations showed that SicA stabilizes the Helix-turn-Helix DNA-binding motifs, i.e., maintaining their proper conformation, mainly in the DNA Binding Domain (DBD). Finally, to evaluate the role of amino acids that contribute to protein-protein affinity, an alanine scanning mutagenesis approach, indicated that R177 and R181, located in the DBD motif, caused the greatest changes in binding affinity with α-CTD, suggesting a central role in the stabilization of the complex. However, it seems that the N-terminal region also plays a key role in the protein-protein interaction, especially the amino acid R40, since we observed conformational flexibility in this region allowing it to interact with interface residues. We consider that this analysis opens the possibility to validate experimentally the amino acids involved in protein-protein interactions and explore other regulatory complexes where chaperones are involved.


Assuntos
Proteínas de Bactérias , Chaperonas Moleculares , Proteínas de Bactérias/genética , Chaperonas Moleculares/genética , Salmonella typhimurium/genética , Aminoácidos/metabolismo , DNA/metabolismo
9.
PLoS One ; 19(3): e0298419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452024

RESUMO

Genetic screening of pools of mutants can reveal genetic determinants involved in complex biological interactions, processes, and systems. We previously constructed two single-gene deletion resources for Salmonella enterica serovar Typhimurium 14028s in which kanamycin (KanR) and chloramphenicol (CamR) cassettes were used to replace non-essential genes. We have now used lambda-red recombination to convert the antibiotic cassettes in these resources into a tetracycline-resistant (TetR) version where each mutant contains a different 21-base barcode flanked by Illumina Read1 and Read2 primer sequences. A motility assay of a pool of the entire library, followed by a single-tube processing of the bacterial pellet, PCR, and sequencing, was used to verify the performance of the barcoded TetR collection. The new resource is useful for experiments with defined subsets of barcoded mutant strains where biological bottlenecks preclude high numbers of founder bacteria, such as in animal infections. The TetR version of the library will also facilitate the construction of triple mutants by transduction. The resource of 6197 mutants covering 3490 genes is deposited at Biological and Emerging Infections Resources (beiresources.org).


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Salmonella typhimurium/genética , Sorogrupo , Deleção de Genes , Antibacterianos , Tetraciclina , Bactérias
10.
Microbiol Spectr ; 12(5): e0004724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546218

RESUMO

Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.


Assuntos
Farmacorresistência Bacteriana Múltipla , Filogenia , Salmonella enterica , Salmonella typhimurium , Sorogrupo , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Brasil , Farmacorresistência Bacteriana Múltipla/genética , México , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/classificação , Integrons/genética , Genoma Bacteriano , Chile , Genômica , Antibacterianos/farmacologia , América Latina , Microbiologia da Água , Polimorfismo de Nucleotídeo Único , Plasmídeos/genética , Testes de Sensibilidade Microbiana
11.
Nat Microbiol ; 9(4): 1103-1116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503975

RESUMO

Microbiomes feature recurrent compositional structures under given environmental conditions. However, these patterns may conceal diverse underlying population dynamics that require intrastrain resolution. Here we developed a genomic tagging system, termed wild-type isogenic standardized hybrid (WISH)-tags, that can be combined with quantitative polymerase chain reaction and next-generation sequencing for microbial strain enumeration. We experimentally validated the performance of 62 tags and showed that they can be differentiated with high precision. WISH-tags were introduced into model and non-model bacterial members of the mouse and plant microbiota. Intrastrain priority effects were tested using one species of isogenic barcoded bacteria in the murine gut and the Arabidopsis phyllosphere, both with and without microbiota context. We observed colonization resistance against late-arriving strains of Salmonella Typhimurium in the mouse gut, whereas the phyllosphere accommodated Sphingomonas latecomers in a manner proportional to their presence at the late inoculation timepoint. This demonstrates that WISH-tags are a resource for deciphering population dynamics underlying microbiome assembly across biological systems.


Assuntos
Microbiota , Animais , Camundongos , Microbiota/genética , Salmonella typhimurium/genética , Bactérias , Dinâmica Populacional
12.
Talanta ; 273: 125875, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452591

RESUMO

Rapid and quantitative detection of foodborne bacteria is of great significance to public health. In this work, an aptamer-mediated double strand displacement amplification (SDA) strategy was first explored to couple with microchip electrophoresis (MCE) for rapid and ultrasensitive detection of Salmonella typhimurium (S. Typhimurium). In double-SDA, a bacteria-identified probe consisting of the aptamer (Apt) and trigger sequence (Tr) was ingeniously designed. The aptamer showed high affinity to the S. Typhimurium, releasing the Tr sequence from the probe. The released Tr hybridized with template C1 chain, initiating the first SDA to produce numerous output strands (OS). The second SDA process was induced with the hybridization of the liberated OS and template C2 sequence, generating a large number of reporter strands (RS), which were separated and quantified through MCE. Cascade signal amplification and rapid separation of nucleic acids could be realized by the proposed double-SDA method with MCE, achieving the limit of detection for S. typhimurium down to 6 CFU/mL under the optimal conditions. Based on the elaborate design of the probes, the double-SDA assisted MCE strategy achieved better amplification performance, showing high separation efficiency and simple operation, which has satisfactory expectation for bacterial disease diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Eletroforese em Microchip , Ácidos Nucleicos , Salmonella typhimurium/genética , Eletroforese em Microchip/métodos , Aptâmeros de Nucleotídeos/genética , Hibridização de Ácido Nucleico , Bactérias , Técnicas de Amplificação de Ácido Nucleico , Técnicas Biossensoriais/métodos , Limite de Detecção
13.
Euro Surveill ; 29(10)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456218

RESUMO

In September 2022, the Public Health Agency of Sweden observed an increase in domestic Salmonella Typhimurium cases through the Swedish electronic notification system, and an outbreak strain was identified with whole genome sequencing. Overall, 109 cases with symptom onset between 17 September and 24 November 2022 were reported from 20 of 21 Swedish regions. The median age of cases was 52 years (range 4-87 years) and 62% were female. A case-control study found cases to be associated with consumption of rocket salad (adjusted odds ratio (aOR) = 4.9; 95% confidence interval (CI): 2.4-10, p value < 0.001) and bagged mixed salad (aOR = 4.0; 95% CI: 1.9-8.1, p value < 0.001). Trace-back, supported by Finnish authorities who identified the Swedish outbreak strain in a Finnish cluster during the same time period, identified rocket salad, cultivated, pre-washed and pre-packed in Sweden as the likely source of the outbreak. No microbiological analyses of rocket salad were performed. Our investigation indicates that bagged leafy greens such as rocket salad, regardless of pre-washing procedures in the production chain, may contain Salmonella and cause outbreaks, posing a health risk to consumers. We emphasise the need for primary producers of leafy greens to identify possible contamination points to prevent outbreaks.


Assuntos
Saladas , Intoxicação Alimentar por Salmonella , Humanos , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Salmonella typhimurium/genética , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologia , Suécia/epidemiologia , Estudos de Casos e Controles , Surtos de Doenças
14.
Diagn Microbiol Infect Dis ; 109(2): 116280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522369

RESUMO

We describe a case of Salmonella infection caused by a sucrose-fermenting Salmonella enterica Typhimurium sequence type 12 which acquired transposon CTnscr94 carrying the sucrose operon scrKYABR. Sucrose-fermenting Salmonella are particularly challenging for culture-based detection and may lead to failure to detect Salmonella in clinical samples.


Assuntos
Infecções por Salmonella , Salmonella typhimurium , Sacarose , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Humanos , Sacarose/metabolismo , Infecções por Salmonella/diagnóstico , Infecções por Salmonella/microbiologia , Elementos de DNA Transponíveis/genética , Fermentação , Óperon , Masculino
15.
Front Cell Infect Microbiol ; 14: 1347813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487353

RESUMO

Introduction: Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods: These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results: Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion: Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Salmonella enterica , Humanos , Animais , Camundongos , Coelhos , Antígenos O/genética , Salmonella enterica/genética , Salmonella typhimurium/genética , Sorogrupo , Imunidade , Modelos Animais , Vacinas contra Salmonella/genética
16.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474006

RESUMO

The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1ß with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.


Assuntos
Lipídeo A , Salmonella typhimurium , Humanos , Animais , Camundongos , Salmonella typhimurium/genética , Lipídeo A/química , Lipopolissacarídeos/química , Virulência , Matriz Extracelular de Substâncias Poliméricas , Células HeLa , Proteínas de Bactérias/genética
17.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457455

RESUMO

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Assuntos
Proteínas de Bactérias , Ácido Succínico , Animais , Proteínas de Bactérias/metabolismo , Ácido Succínico/metabolismo , Salmonella typhimurium/genética , Succinatos/metabolismo , Carbono/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
18.
Front Immunol ; 15: 1328707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361917

RESUMO

Salmonella enterica serovar Typhimurium expresses two type III secretion systems, T3SS1 and T3SS2, which are encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. These are essential virulent factors that secrete more than 40 effectors that are translocated into host animal cells. This study focuses on three of these effectors, SlrP, SspH1, and SspH2, which are members of the NEL family of E3 ubiquitin ligases. We compared their expression, regulation, and translocation patterns, their role in cell invasion and intracellular proliferation, their ability to interact and ubiquitinate specific host partners, and their effect on cytokine secretion. We found that transcription of the three genes encoding these effectors depends on the virulence regulator PhoP. Although the three effectors have the potential to be secreted through T3SS1 and T3SS2, the secretion of SspH1 and SspH2 is largely restricted to T3SS2 due to their expression pattern. We detected a role for these effectors in proliferation inside fibroblasts that is masked by redundancy. The generation of chimeric proteins allowed us to demonstrate that the N-terminal part of these proteins, containing the leucine-rich repeat motifs, confers specificity towards ubiquitination targets. Furthermore, the polyubiquitination patterns generated were different for each effector, with Lys48 linkages being predominant for SspH1 and SspH2. Finally, our experiments support an anti-inflammatory role for SspH1 and SspH2.


Assuntos
Salmonella typhimurium , Ubiquitina-Proteína Ligases , Animais , Salmonella typhimurium/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sorogrupo , Ubiquitinação
19.
J Med Microbiol ; 73(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38353511

RESUMO

Introduction. Salmonella Typhimurium (STM) is a food-borne Gram-negative bacterium, which can infect humans and a wide range of livestock and poultry, causing a variety of diseases such as septicaemia, enteritis and abortion.Hypothesis/Gap Statement. We will decipher the impacts of sRNA STnc1280 on STM virulence and provide a theoretical basis to reveal the regulatory role and molecular mechanism of STnc1280.Aim. The main objective of this study was to clarify whether sRNA STnc1280 exerts regulatory roles on STM pathogenicity.Methodology. The STnc1280 gene was amplified and its molecular characteristics were analysed in this study. Then, STnc1280 gene deletion strain (STM-ΔSTnc1280) and the complementary strain (ΔSTnc1280/STnc1280) were constructed by λ-Red homologous recombination method, respectively, to analyse of adhesion and invasive ability and pathogenicity of different strains. Subsequently, the potential target gene regulated by STnc1280 was predicted using target RNA2 software, followed by the verification of the interaction between STnc1280 and target mRNA using the dual plasmid reporter system (DPRS). Furthermore, the mRNA and protein level of target gene was determined using qRT-PCR and Western blot, respectively.Results. The results revealed that the cell adhesion and invasive ability and pathogenicity of STM-ΔSTnc1280 were significantly reduced compared to STM-SL1344 strain, indicating that the deficiency of STnc1280 gene significantly influenced STM pathogenicity. The DPRS results showed that STnc1280 can interact with the mRNA of target gene gldA, thus suppressing the expression of lacZ gene. Furthermore, the level of gldA mRNA was not influenced in STM-ΔSTnc1280, but the expression of GldA protein decreased significantly.Conclusion. Combining the bioinformatic analysis, these findings suggested that STnc1280 may bind to the SD sequence of gldA mRNA, hindering the binding of ribosomes to gldA mRNA, thereby inhibiting the expression of GldA protein to modulate the virulence of STM.


Assuntos
Salmonella typhimurium , Fatores de Virulência , Humanos , Gravidez , Feminino , Salmonella typhimurium/genética , Virulência/genética , RNA Mensageiro/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Plasmídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
J Hazard Mater ; 466: 133648, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306835

RESUMO

The precise identification viable pathogens hold paramount significance in the prevention of foodborne diseases outbreaks. In this study, we integrated machine vision and learning with single microsphere to develop a phage and Clostridium butyricum Argonaute (CbAgo)-mediated fluorescence biosensor for detecting viable Salmonella typhimurium (S. typhimurium) without convoluted DNA extraction and amplification procedures. Phage and lysis buffer was utilized to capture and lyse viable S. typhimurium, respectively. Subsequently, CbAgo can cleave the bacterial DNA to obtain target DNA that guides a newly targeted cleavage of fluorescent probes. After that, the resulting fluorescent signal accumulates on the streptavidin-modified single microsphere. The overall detection process is then analyzed and interpreted by machine vision and learning algorithms, achieving highly sensitive detection of S. typhimurium with a limit of detection at 40.5 CFU/mL and a linear range of 50-107 CFU/mL. Furthermore, the proposed biosensor demonstrates standard recovery rates and coefficients of variation at 93.22% - 106.02% and 1.47% - 12.75%, respectively. This biosensor exhibits exceptional sensitivity and selectivity, presenting a promising method for the rapid and effective detection of foodborne pathogens. ENVIRONMENTAL IMPLICATION: Bacterial pathogens exist widely in the environment and seriously threaten the safety of human life. In this study, we developed a phage and Clostridium butyricum Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella typhimurium in environmental water and food samples. Compared with other Salmonella detection methods, this method does not need complex DNA extraction and amplification steps, which reduces the use of chemical reagents and experimental consumables in classic DNA extraction kit methods.


Assuntos
Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/métodos , Salmonella typhimurium/genética , Alimentos , DNA , DNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA