RESUMO
Human sapoviruses (HuSaVs) cause acute gastroenteritis similar to human noroviruses. Although HuSaVs were discovered four decades ago, no HuSaV has been grown in vitro, which has significantly impeded the understanding of viral biology and the development of antiviral strategies. In this study, we identified two susceptible human cell lines, that originated from testis and duodenum, that support HuSaV replication and found that replication requires bile acids. HuSaVs replicated more efficiently in the duodenum cell line, and viral RNA levels increased up to â¼6 log10-fold. We also detected double-stranded RNA, viral nonstructural and structural proteins in the cell cultures, and intact HuSaV particles. We confirmed the infectivity of progeny viruses released into the cell culture supernatants by passaging. These results indicate the successful growth of HuSaVs in vitro. Additionally, we determined the minimum infectious dose and tested the sensitivities of HuSaV GI.1 and GII.3 to heat and ultraviolet treatments. This system is inexpensive, scalable, and reproducible in different laboratories, and can be used to investigate mechanisms of HuSaV replication and to evaluate antivirals and/or disinfection methods for HuSaVs.
Assuntos
Ácidos e Sais Biliares/metabolismo , Meios de Cultura/metabolismo , Sapovirus/fisiologia , Cultura de Vírus/métodos , Replicação Viral , Infecções por Caliciviridae/terapia , Infecções por Caliciviridae/virologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Células Epiteliais , Fezes/virologia , Gastroenterite/terapia , Gastroenterite/virologia , Humanos , Sapovirus/isolamento & purificaçãoRESUMO
The genus Sapovirus belongs to the family Caliciviridae, and its members are common causative agents of severe acute gastroenteritis in both humans and animals. Some caliciviruses are known to use either terminal sialic acids or histo-blood group antigens as attachment factors and/or cell surface proteins, such as CD300lf, CD300ld, and junctional adhesion molecule 1 of tight junctions (TJs), as receptors. However, the roles of TJs and their proteins in sapovirus entry have not been examined. In this study, we found that porcine sapovirus (PSaV) significantly decreased transepithelial electrical resistance and increased paracellular permeability early in infection of LLC-PK cells, suggesting that PSaV dissociates TJs of cells. This led to the interaction between PSaV particles and occludin, which traveled in a complex into late endosomes via Rab5- and Rab7-dependent trafficking. Inhibition of occludin using small interfering RNA (siRNA), a specific antibody, or a dominant-negative mutant significantly blocked the entry of PSaV. Transient expression of occludin in nonpermissive Chinese hamster ovary (CHO) cells conferred susceptibility to PSaV, but only for a limited time. Although claudin-1, another TJ protein, neither directly interacted nor was internalized with PSaV particles, it facilitated PSaV entry and replication in the LLC-PK cells. We conclude that PSaV particles enter LLC-PK cells by binding to occludin as a coreceptor in PSaV-dissociated TJs. PSaV and occludin then form a complex that moves to late endosomes via Rab5- and Rab7-dependent trafficking. In addition, claudin-1 in the TJs opened by PSaV infection facilitates PSaV entry and infection as an entry factor.IMPORTANCE Sapoviruses (SaVs) cause severe acute gastroenteritis in humans and animals. Although they replicate in intestinal epithelial cells, which are tightly sealed by apical-junctional complexes, such as tight junctions (TJs), the mechanisms by which SaVs hijack TJs and their proteins for successful entry and infection remain largely unknown. Here, we demonstrate that porcine SaVs (PSaVs) induce early dissociation of TJs, allowing them to bind to the TJ protein occludin as a functional coreceptor. PSaVs then travel in a complex with occludin into late endosomes through Rab5- and Rab7-dependent trafficking. Claudin-1, another TJ protein, does not directly interact with PSaV but facilitates the entry of PSaV into cells as an entry factor. This work contributes to our understanding of the entry of SaV and other caliciviruses into cells and may aid in the development of efficient and affordable drugs to treat SaV infections.
Assuntos
Ocludina/metabolismo , Sapovirus/fisiologia , Junções Íntimas/virologia , Animais , Células CHO , Cricetulus , Endossomos/metabolismo , Células Epiteliais/virologia , Gastroenterite/virologia , Células LLC-PK1 , Ocludina/fisiologia , Sapovirus/metabolismo , Sapovirus/patogenicidade , Suínos/virologia , Junções Íntimas/metabolismo , Viroses/metabolismoRESUMO
Sapovirus, an important cause of acute gastroenteritis in humans and animals, travels from the early to the late endosomes and requires late endosomal acidification for viral uncoating. However, the signaling pathways responsible for these viral entry processes remain unknown. Here we demonstrate the receptor-mediated early activation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein extracellular signal-regulated kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways involved in sapovirus entry processes. Both signaling pathways were activated during the early stage of porcine sapovirus (PSaV) infection. However, depletion of the cell surface carbohydrate receptors by pretreatment with sodium periodate or neuraminidase reduced the PSaV-induced early activation of these signaling pathways, indicating that PSaV binding to the cell surface carbohydrate receptors triggered these cascades. Addition of bile acid, known to be essential for PSaV escape from late endosomes, was also found to exert a stiffening effect to stimulate both pathways. Inhibition of these signaling pathways by use of inhibitors specific for PI3K or MEK or small interfering RNAs (siRNAs) against PI3K or MEK resulted in entrapment of PSaV particles in early endosomes and prevented their trafficking to late endosomes. Moreover, phosphorylated PI3K and ERK coimmunoprecipitated subunit E of the V-ATPase proton pump that is important for endosomal acidification. Based on our data, we conclude that receptor binding of PSaV activates both PI3K/Akt and MEK/ERK signaling pathways, which in turn promote PSaV trafficking from early to late endosomes and acidification of late endosomes for PSaV uncoating. These signaling cascades may provide a target for potent therapeutics against infections by PSaV and other caliciviruses.IMPORTANCE Sapoviruses cause acute gastroenteritis in both humans and animals. However, the host signaling pathway(s) that facilitates host cell entry by sapoviruses remains largely unknown. Here we demonstrate that porcine sapovirus (PSaV) activates both PI3K/Akt and MEK/ERK cascades at an early stage of infection. Removal of cell surface receptors decreased PSaV-induced early activation of both cascades. Moreover, blocking of PI3K/Akt and MEK/ERK cascades entrapped PSaV particles in early endosomes and prevented their trafficking to the late endosomes. PSaV-induced early activation of PI3K and ERK molecules further mediated V-ATPase-dependent late endosomal acidification for PSaV uncoating. This work unravels a new mechanism by which receptor-mediated early activation of both cascades may facilitate PSaV trafficking from early to late endosomes and late endosomal acidification for PSaV uncoating, which in turn can be a new target for treatment of sapovirus infection.
Assuntos
Infecções por Caliciviridae/metabolismo , Endossomos/metabolismo , Rim/virologia , Sistema de Sinalização das MAP Quinases , Sapovirus/fisiologia , Animais , Infecções por Caliciviridae/virologia , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/virologia , Rim/citologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Sf9 , Suínos , Internalização do Vírus , Desenvelopamento do VírusRESUMO
Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-ß-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.
Assuntos
Infecções por Caliciviridae/veterinária , Colesterol/fisiologia , Clatrina/fisiologia , Dinamina II/fisiologia , Endocitose , Sapovirus/fisiologia , Doenças dos Suínos/virologia , Animais , Infecções por Caliciviridae/virologia , Gastroenterite/veterinária , Gastroenterite/virologia , Células HeLa , Humanos , Células LLC-PK1 , SuínosRESUMO
Cyclooxygenases (COXs)/prostaglandin E2 (PGE2) signaling pathways are known to modulate a variety of homeostatic processes and are involved in various pathophysiological conditions. COXs/PGE2 signaling pathways have also been demonstrated to have proviral or antiviral effects, which appeared different even in the same virus family. A porcine sapovirus Cowden strain, a member of genus Sapovirus within the Caliciviridae family, induces strong COX-2/PGE2 but transient COX-1/PGE2 signaling to enhance virus replication. However, whether infections of other viruses in the different genera activate COXs/PGE2 signaling, and thus affect the replication of viruses, remains unknown. In the present study, infections of cells with the feline calicivirus (FCV) F9 strain in the genus Vesivirus and murine norovirus (MNV) CW-1 strain in the genus Norovirus only activated the COX-2/PGE2 signaling in a time-dependent manner. Treatment with pharmacological inhibitors or transfection of small interfering RNAs (siRNAs) against COX-2 enzyme significantly reduced the production of PGE2 as well as FCV and MNV replications. The inhibitory effects of these pharmacological inhibitors against COX-2 enzyme on the replication of both viruses were restored by the addition of PGE2. Silencing of COX-1 via siRNAs and inhibition of COX-1 via an inhibitor also decrease the production of PGE2 and replication of both viruses, which can be attributed to the inhibition COX-1/PGE2 signaling pathway. These data indicate that the COX-2/PGE2 signaling pathway has proviral effects for the replication of FCV and MNV, and pharmacological inhibitors against these enzymes serve as potential therapeutic candidates for treating FCV and MNV infections.
Assuntos
Calicivirus Felino/fisiologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Norovirus/fisiologia , Provírus/fisiologia , Transdução de Sinais , Replicação Viral , Animais , Gatos , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células RAW 264.7 , Sapovirus/fisiologiaRESUMO
Lettuce has been implicated in human norovirus (HuNoV) outbreaks. The virus is stable on the leaf surface for at least 2 weeks; however, the dynamics of virus internalization have not been fully investigated. The purpose of this study was to assess the internalization and distribution of HuNoV and two surrogate viruses, porcine sapovirus (SaV) and Tulane virus (TV), in lettuce and spinach. Viral inoculations through the roots of seedlings and the petiole of leaves from mature plants were performed, and the viruses were tracked on days 1 and 6 post-root inoculation and at 16 h and 72 h post-petiole inoculation. Confocal microscopy was used to visualize root-internalized HuNoV. In both lettuce and spinach, (i) HuNoV was internalized into the roots and leaves at similar RNA titers, whereas surrogate viruses were more restricted to the roots, (ii) all three viruses were stable inside the roots and leaves for at least 6 days, and (iii) HuNoV disseminated similarly inside the central veins and leaf lamina, whereas surrogate viruses were more restricted to the central veins. Infectious TV, but not SaV, was detectable in all tissues, suggesting that TV has greater stability than SaV. HuNoV was visualized inside the roots' vascular bundle and the leaf mesophyll of both plants. In conclusion, using surrogate viruses may underestimate the level of HuNoV internalization into edible leaves. The internalization of HuNoV through roots and cut leaves and the dissemination into various spinach and lettuce tissues raise concerns of internal contamination through irrigation and/or wash water.IMPORTANCE Human noroviruses are the leading cause of foodborne outbreaks, with lettuce being implicated in the majority of outbreaks. The virus causes acute gastroenteritis in all age groups, with more severe symptoms in children, the elderly, and immunocompromised patients, contributing to over 200,000 deaths worldwide annually. The majority of deaths due to HuNoV occur in the developing world, where limited sanitation exists along with poor wastewater treatment facilities, resulting in the contamination of water resources that are often used for irrigation. Our study confirms the ability of lettuce and spinach to internalize HuNoV from contaminated water through the roots into the edible leaves. Since these leafy greens are consumed with minimal processing that targets only surface pathogens, the internalized HuNoV presents an added risk to consumers. Thus, preventive measures should be in place to limit the contamination of irrigation water. In addition, better processing technologies are needed to inactivate internalized viral pathogens.
Assuntos
Lactuca/virologia , Norovirus/fisiologia , Folhas de Planta/virologia , Spinacia oleracea/virologia , Internalização do Vírus , Contaminação de Alimentos , Norovirus/genética , Norovirus/isolamento & purificação , Raízes de Plantas/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Sapovirus/genética , Sapovirus/isolamento & purificação , Sapovirus/fisiologiaRESUMO
Noroviruses (NoVs) and Sapoviruses (SaVs) are enteric caliciviruses that have been detected in multiple mammalian species, including humans. Currently, efficient cell culture systems have been established only for murine NoVs and porcine SaV Cowden strain. Establishment of an efficient in vitro cell culture system for other NoVs and SaVs remains challenging; however, human NoV (HuNoV) replication in 3D cultured Caco-2 cells and a clone of Caco-2 cells, C2BBe1, human enteroids and in human B cells has been reported. In this study, we tested various cells and culture conditions to grow HuNoVs and a human SaV (HuSaV) to test the possibility of the propagation in different cells and culture conditions. We also attempted to grow a bovine NoV (BoNoV) in ex vivo organ cultures. We did not observe significant RNA level increases for HuSaV and BoNoV under our test conditions. HuNoV RNA levels increased to a maximum of ~600-fold in long-term Caco-2 cells that were cultured for 1-2 months in multi-well plates and inoculated with HuNoV-positive and bacteria-free human stool suspensions using serum-free medium supplemented with the bile acid, GCDCA. However, this positive result was inconsistent. Our results demonstrated that HuNoVs, BoNoV and HuSaV largely failed to grow in vitro under our test conditions. Our purpose is to share our findings with other researchers with the goal to develop efficient, reproducible simplified and cost-effective culture systems for human and animal NoVs and SaVs in the future.
Assuntos
Norovirus/fisiologia , Sapovirus/fisiologia , Células CACO-2 , Humanos , Técnicas In Vitro , Reação em Cadeia da Polimerase/métodos , Replicação ViralRESUMO
Enteric caliciviruses in the genera Norovirus and Sapovirus are important pathogens that cause severe acute gastroenteritis in both humans and animals. Cyclooxygenases (COXs) and their final product, prostaglandin E2 (PGE2), are known to play important roles in the modulation of both the host response to infection and the replicative cycles of several viruses. However, the precise mechanism(s) by which the COX/PGE2 pathway regulates sapovirus replication remains largely unknown. In this study, infection with porcine sapovirus (PSaV) strain Cowden, the only cultivable virus within the genus Sapovirus, markedly increased COX-2 mRNA and protein levels at 24 and 36 h postinfection (hpi), with only a transient increase in COX-1 levels seen at 24 hpi. The treatment of cells with pharmacological inhibitors, such as nonsteroidal anti-inflammatory drugs or small interfering RNAs (siRNAs) against COX-1 and COX-2, significantly reduced PGE2 production, as well as PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We observed that pharmacological inhibition of COX-2 dramatically increased NO production, causing a reduction in PSaV replication that could be restored by inhibition of nitric oxide synthase via the inhibitor N-nitro-l-methyl-arginine ester. This study identified a pivotal role for the COX/PGE2 pathway in the regulation of NO production during the sapovirus life cycle, providing new insights into the life cycle of this poorly characterized family of viruses. Our findings also reveal potential new targets for treatment of sapovirus infection. IMPORTANCE: Sapoviruses are among the major etiological agents of acute gastroenteritis in both humans and animals, but little is known about sapovirus host factor requirements. Here, using only cultivable porcine sapovirus (PSaV) strain Cowden, we demonstrate that PSaV induced the vitalization of the cyclooxygenase (COX) and prostaglandin E2 (PGE2) pathway. Targeting of COX-1/2 using nonsteroidal anti-inflammatory drugs (NSAIDs) such as the COX-1/2 inhibitor indomethacin and the COX-2-specific inhibitors NS-398 and celecoxib or siRNAs targeting COXs, inhibited PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We further demonstrate that the production of PGE2 provides a protective effect against the antiviral effector mechanism of nitric oxide. Our findings uncover a new mechanism by which PSaV manipulates the host cell to provide an environment suitable for efficient viral growth, which in turn can be a new target for treatment of sapovirus infection.
Assuntos
Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Óxido Nítrico/biossíntese , Sapovirus/fisiologia , Replicação Viral , Animais , Ácidos e Sais Biliares/farmacologia , Infecções por Caliciviridae/genética , Linhagem Celular , Células Cultivadas , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Expressão Gênica , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Suínos , Replicação Viral/efeitos dos fármacosRESUMO
The eukaryotic initiation factor 4A (eIF4A) is a DEAD box helicase that unwinds RNA structure in the 5' untranslated region (UTR) of mRNAs. Here, we investigated the role of eIF4A in porcine sapovirus VPg-dependent translation. Using inhibitors and dominant-negative mutants, we found that eIF4A is required for viral translation and infectivity, suggesting that despite the presence of a very short 5' UTR, eIF4A is required to unwind RNA structure in the sapovirus genome to facilitate virus translation.
Assuntos
Fator de Iniciação 4A em Eucariotos/metabolismo , Genoma Viral , Sapovirus/genética , Proteínas Virais/biossíntese , Regiões 5' não Traduzidas , Animais , Fator de Iniciação 4A em Eucariotos/genética , Mutação , Ligação Proteica , RNA Viral/metabolismo , Coelhos , Reticulócitos/metabolismo , Sapovirus/fisiologia , Esteróis/farmacologia , Suínos , Proteínas Virais/genética , Replicação ViralRESUMO
Bufavirus (BuV) is a newly discovered human parvovirus that has been detected in some countries. The current study was designed to understand the epidemic of BuV in China. Totally 1877 fecal specimens were collected from pediatric and adult patients with acute diarrhea in two large hospitals from 2010 to 2014. BuV was detected in 0.5% (9/1877) of the fecal samples by PCR and subsequent sequencing. The positive patients had a wide age range from 1 month through 60 years (median 24 years old) and 6 were male. A geographic specific pattern was obvious, with significantly higher frequency of BuV presented in Northern than in Southern China. Four BuV-1 and five BuV-3 were determined. Mixed-infections of BuV with sapovirus and novavirus were found in 2 cases, respectively. A temporal clustering was identified, with most positive detection focused in the cold weather. These findings have expanded the current knowledge on the geographic boundaries of BuV circulation.
Assuntos
Diarreia/virologia , Fezes/virologia , Sapovirus/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Criança , Pré-Escolar , China , Demografia , Humanos , Lactente , Recém-Nascido , Funções Verossimilhança , Pessoa de Meia-Idade , Filogenia , Adulto JovemRESUMO
Leafy greens are increasingly being recognized as an important vehicle for human noroviruses (HuNoV), which cause recurring gastroenteritis outbreaks. Leafy greens often become infected by phytopathogens in the field, which may cause symptoms on the edible parts. Whether plant pathogen infections enhance the survival of HuNoV on leafy greens is unknown. Lettuce and spinach plants were infected with a bacterium, Xanthomonas campestris pv. vitians strain 701a, and with Cucumber mosaic virus strain Fny, respectively. The survival rate of porcine sapovirus (SaV), a HuNoV surrogate, on infected and noninfected postharvest leaves was then assessed. In addition, acibenzolar-S-methyl, a commercial chemical elicitor of plant systemic defense, was used to assess whether stimulating the plant host defense affects the postharvest survival of SaV. Leaves harvested from control and treated plants were inoculated with SaV and incubated for 7 days at 4°C. The infectivity (tissue culture infectious dose affecting 50% of the culture [TCID50]/ml) and RNA (genomic equivalent/ml) titers of SaV were assayed using immunohistochemistry staining and SaV-specific TaqMan real-time reverse transcription PCR. Our results showed that cucumber mosaic virus Fny induced mild, nonnecrotic symptoms on spinach leaves and had no effect on SaV survival. In contrast, X. campestris pv. vitians 701a induced small localized necrotic lesions and significantly enhanced SaV survival on lettuce leaves. Treatment with acibenzolar-S-methyl was effective in reducing X. campestris pv. vitians 701a-induced lesions on infected lettuce plants but had no direct effect on SaV survival when used on healthy lettuce plants. These findings indicate that phytopathogen-induced necrotic lesions may enhance the postharvest survival of HuNoV on lettuce leaves. Therefore, preventive measures aiming to maintain healthy plants and minimize preharvest biological damage are expected to improve the safety of leafy greens.
Assuntos
Folhas de Planta/virologia , Sapovirus/fisiologia , Suínos/virologia , Animais , Infecções por Caliciviridae/virologia , Cucumovirus , Inocuidade dos Alimentos , Gastroenterite/virologia , Humanos , Lactuca/microbiologia , Norovirus , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Sapovirus/genética , Spinacia oleracea/microbiologia , Xanthomonas campestrisRESUMO
Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses.
Assuntos
Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/virologia , Sapovirus/fisiologia , Animais , Antígenos Virais/metabolismo , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/patologia , Genoma Viral/genética , Humanos , Tipagem Molecular , Sapovirus/classificação , Sapovirus/genéticaRESUMO
UNLABELLED: Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5' end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. IMPORTANCE: Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and functions via a direct interaction with the cellular translation initiation factor eIF4E. This work provides new insights into the novel protein-primed mechanism of calicivirus VPg-dependent translation initiation.
Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Sapovirus/fisiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Ligação Proteica , SuínosRESUMO
Replication of porcine enteric calicivirus (PEC) in LLC-PK cells is dependent on the presence of bile acids in the medium. However, the mechanism of bile acid-dependent PEC replication is unknown. Understanding of bile acid-mediated PEC replication may provide insight into cultivating related human noroviruses, currently uncultivable, which are the major cause of viral gastroenteritis outbreaks in humans. Our results demonstrated that while uptake of PEC into the endosomes does not require bile acids, the presence of bile acids is critical for viral escape from the endosomes into cell cytoplasm to initiate viral replication. We also demonstrated that bile acid transporters including the sodium-taurocholate co-transporting polypeptide and the apical sodium-dependent bile acid transporter are important in exerting the effects of bile acids in PEC replication in cells. In summary, our results suggest that bile acids play a critical role in virus entry for successful replication.
Assuntos
Ácidos e Sais Biliares/metabolismo , Células Epiteliais/virologia , Sapovirus/efeitos dos fármacos , Sapovirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Células Cultivadas , Citoplasma/virologia , Endossomos/efeitos dos fármacos , Endossomos/virologia , SuínosRESUMO
Sapovirus, a member of the Caliciviridae family, is an important cause of acute gastroenteritis in humans and pigs. Currently, the porcine sapovirus (PSaV) Cowden strain remains the only cultivable member of the Sapovirus genus. While some caliciviruses are known to utilize carbohydrate receptors for entry and infection, a functional receptor for sapovirus is unknown. To characterize the functional receptor of the Cowden strain of PSaV, we undertook a comprehensive series of protein-ligand biochemical assays in mock and PSaV-infected cell culture and/or piglet intestinal tissue sections. PSaV revealed neither hemagglutination activity with red blood cells from any species nor binding activity to synthetic histo-blood group antigens, indicating that PSaV does not use histo-blood group antigens as receptors. Attachment and infection of PSaV were markedly blocked by sialic acid and Vibrio cholerae neuraminidase (NA), suggesting a role for α2,3-linked, α2,6-linked or α2,8-linked sialic acid in virus attachment. However, viral attachment and infection were only partially inhibited by treatment of cells with sialidase S (SS) or Maackia amurensis lectin (MAL), both specific for α2,3-linked sialic acid, or Sambucus nigra lectin (SNL), specific for α2,6-linked sialic acid. These results indicated that PSaV recognizes both α2,3- and α2,6-linked sialic acids for viral attachment and infection. Treatment of cells with proteases or with benzyl 4-O-ß-D-galactopyranosyl-ß-D-glucopyranoside (benzylGalNAc), which inhibits O-linked glycosylation, also reduced virus binding and infection, whereas inhibition of glycolipd synthesis or N-linked glycosylation had no such effect on virus binding or infection. These data suggest PSaV binds to cellular receptors that consist of α2,3- and α2,6-linked sialic acids on glycoproteins attached via O-linked glycosylation.
Assuntos
Interações Hospedeiro-Patógeno , Mucosa Intestinal/virologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Receptores Virais/metabolismo , Sapovirus/fisiologia , Ácidos Siálicos/metabolismo , Animais , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Gastroenterite/patologia , Gastroenterite/veterinária , Gastroenterite/virologia , Glicosilação/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ligantes , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/química , Estabilidade Proteica , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , Sapovirus/efeitos dos fármacos , Sapovirus/patogenicidade , Ácidos Siálicos/antagonistas & inibidores , Ácidos Siálicos/química , Estereoisomerismo , Sus scrofa , Suínos , Doenças dos Suínos/patologia , Doenças dos Suínos/virologiaRESUMO
Norovirus (NoV), sapovirus (SaV) and human astrovirus (HAstV) are viral pathogens that are associated with outbreaks and sporadic cases of gastroenteritis. However, little is known about the occurrence of these pathogens in relatively isolated communities, such as the remnants of African-descendant villages ("Quilombola"). The objective of this study was the frequency determination of these viruses in children under 10 years, with and without gastroenteritis, from a "Quilombola" Community, Northern Brazil. A total of 159 stool samples were obtained from April/2008 to July/2010 and tested by an enzyme immunoassay (EIA) and reverse transcription-polymerase chain reaction (RT-PCR) to detect NoV, SaV and HAstV, and further molecular characterization was performed. These viruses were detected only in the diarrheic group. NoV was the most frequent viral agent detected (19.7%-16/81), followed by SaV (2.5%-2/81) and HAstV (1.2%-1/81). Of the 16 NoV-positive samples, 14 were sequenced with primers targeting the B region of the polymerase (ORF1) and the D region of the capsid (ORF2). The results showed a broad genetic diversity of NoV, with 12 strains being classified as GII-4 (5-41.7%), GII-6 (3-25%), GII-7 (2-16.7%), GII-17 (1-8.3%) and GI-2 (1-8.3%), as based on the polymerase region; 12 samples were classified, based on the capsid region, as GII-4 (6-50%, being 3-2006b variant and 3-2010 variant), GII-6 (3-25%), GII-17 (2-16.7%) and GII-20 (1-8.3%). One NoV-strain showed dual genotype specificity, based on the polymerase and capsid region (GII-7/GII-20). This study provides, for the first time, epidemiological and molecular information on the circulation of NoV, SaV and HAstV in African-descendant communities in Northern Brazil and identifies NoV genotypes that were different from those detected previously in studies conducted in the urban area of Belém. It remains to be determined why a broader NoV diversity was observed in such a semi-isolated community.
Assuntos
População Negra/estatística & dados numéricos , Diarreia/etnologia , Diarreia/virologia , Variação Genética , Norovirus/genética , Norovirus/isolamento & purificação , Animais , Brasil/etnologia , Criança , Diarreia/complicações , Cães , Fezes/virologia , Gastroenterite/complicações , Gastroenterite/etnologia , Gastroenterite/virologia , Humanos , Mamastrovirus/genética , Mamastrovirus/isolamento & purificação , Mamastrovirus/fisiologia , Norovirus/fisiologia , Sapovirus/genética , Sapovirus/isolamento & purificação , Sapovirus/fisiologiaRESUMO
Noroviruses are the leading cause of food-borne outbreaks, including those that involve lettuce. The culturable porcine sapovirus (SaV) was used as a norovirus surrogate to study the persistence and the potential transfer of the virus from roots to leaves and from outer to inner leaves of lettuce plants. Treatment of lettuce with SaV was done through the roots of young plants, the soil, or the outer leaves of mature plants. Sampling of roots, xylem sap, and inner and outer leaves followed by RNA extraction and SaV-specific real-time reverse transcription (RT)-PCR was performed at 2 h and on postinoculation days (PID) 2, 5, 7, 14, and/or 28. When SaV was inoculated through the roots, viral RNA persisted on the roots and in the leaves until PID 28. When the virus was inoculated through the soil, viral RNA was detected on the roots and in the xylem sap until PID 14; viral RNA was detected in the leaves only until PID 2. No infectious virus was detected inside the leaves for either treatment. When SaV was inoculated through the outer leaves, viral RNA persisted on the leaves until PID 14; however, the virus did not transfer to inner leaves. Infectious viral particles on leaves were detected only at 2 h postinoculation. The milky sap (latex) of leaves, but not the roots' xylem sap, significantly decreased virus infectivity when tested in vitro. Collectively, our results showed the transfer of SaV from roots to leaves through the xylem system and the capacity of the sap of lettuce leaves to decrease virus infectivity in leaves.
Assuntos
Lactuca/virologia , Látex/imunologia , Sapovirus/fisiologia , Internalização do Vírus , Antivirais/imunologia , Antivirais/metabolismo , Látex/metabolismo , Lactuca/imunologia , Norovirus/fisiologia , Folhas de Planta/virologia , Raízes de Plantas/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sapovirus/efeitos dos fármacos , Sapovirus/isolamento & purificação , Microbiologia do Solo , Fatores de Tempo , Virulência/efeitos dos fármacosRESUMO
Human noroviruses (HuNoVs) are the leading cause of food-borne illness, accounting for 58% of U.S. cases. Because HuNoVs are unculturable, surrogates are needed to investigate transmission routes and evaluate disinfection methods. However, the current surrogates, feline calicivirus (FCV) and murine NoV (MNV), are less tolerant than HuNoVs to acid and chlorine, respectively. Porcine sapovirus (SaV) is the only culturable enteropathogenic calicivirus. In this study, the resistance of SaV to physicochemical treatments was compared to that of HuNoVs (by reverse transcription-PCR), FCV, and MNV (by infectivity assays). Sapovirus and HuNoV (viral RNA) showed similar resistances to heat (56°C) and to different concentrations of chlorine. However, SaV was more resistant than HuNoVs to ethanol treatment (60% and 70%). Like HuNoVs, SaV was stable at pH 3.0 to 8.0, with a <1.0 log(10) 50% tissue culture infective dose (TCID(50)) reduction at pH 3.0 compared to the value for pH 4.0 to 8.0. SaV and MNV showed similar resistances, and both were more resistant than FCV to heat inactivation (56°C). FCV was more resistant than MNV and SaV to ethanol, and all three viruses showed similar resistances to treatment with low concentrations of chlorine for 1 min. Those results indicate that SaV is a promising surrogate for HuNoVs. Next, we used SaV as a surrogate to examine virus attachment to lettuce at different pHs. Sapovirus attached to lettuce leaves significantly at its capsid isoelectric point (pH 5.0), and the attached viral particles remained infectious on lettuce after 1 week of storage at 4°C. The culturable SaV is a good surrogate for studying HuNoV contamination and transmission in leafy greens and potential disinfectants.
Assuntos
Cloro/farmacologia , Desinfetantes/farmacologia , Lactuca/virologia , Norovirus/fisiologia , Sapovirus/fisiologia , Suínos/virologia , Animais , Linhagem Celular , Desinfecção , Etanol/farmacologia , Contaminação de Alimentos , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Norovirus/efeitos dos fármacos , Norovirus/genética , Norovirus/patogenicidade , Sapovirus/efeitos dos fármacos , Sapovirus/genética , Sapovirus/patogenicidade , Inativação de Vírus/efeitos dos fármacosRESUMO
Sapporo virus belongs to the genus Sapovirus (family Caliciviridae) and has a non-segmented single-stranded, positive-sense RNA genome. This virus causes acute gastroenteritis in human, porcine and mink hosts. In this study, the complete genome of a Brazilian sapovirus isolate from a child with acute gastroenteritis was determined. A phylogenetic tree was constructed to analyze the genotype of this sapovirus (Sapo_BR-DF01), and possible intra- and inter-genogroups recombination events were evaluated in silico using the RDP3 program. Two inter-genogroup and two intra-genogroup recombination events were newly recognized in this study.
Assuntos
Evolução Molecular , Recombinação Genética , Sapovirus/classificação , Sapovirus/genética , Infecções por Caliciviridae/virologia , Pré-Escolar , Gastroenterite/virologia , Variação Genética , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , Sapovirus/isolamento & purificação , Sapovirus/fisiologiaRESUMO
Caliciviruses are an important cause of gastroenteritis in humans and animals. Molecular analysis of the polymerase and capsid genes of porcine caliciviruses, sapoviruses (SaVs) and noroviruses (NoVs), has demonstrated a broad range of genetic diversity but information on their epidemiology and pathogenic role in pigs is limited. In this study, 292 faecal samples were obtained from 4-5 to 8-9 week old asymptomatic pigs from four porcine herds in Ireland during 2005-2007 and were screened by RT-PCR using calicivirus-specific primers. Only seven samples from two porcine herds tested positive for porcine calicivirus. By sequence analysis of the partial RNA-dependent RNA polymerase (RdRp) fragment, six samples from one such herd were closely related to each other (>98% nucleotide identity) and were characterised as genogroup (GG) III (Cowden-like) porcine SaVs. These viruses demonstrated an amino acid (aa) identity of 81.3-98.6% to GGIII SaVs. Conversely, one calicivirus strain, 9/07/Ire (identified from a different herd in 2007), was distantly related to GIII SaVs and displayed 94.6-98.6% aa identity to rare K7-like porcine caliciviruses, representatives of a potential novel SaV genogroup (GGVII), described previously in Japan and the USA. Circulation of SaVs in asymptomatic animals might be a mechanism of virus persistence in porcine populations and should be considered with respect to understanding the epidemiology of these viruses in porcine herds.