Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
1.
Methods Mol Biol ; 2442: 663-683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320552

RESUMO

Galectin-1 is a small (14.5 kDa) multifunctional protein with cell-cell and cell-ECM adhesion due to interactions with the carbohydrate recognition domain (CRD). In two types of muscular dystrophies, this lectin protein has shown therapeutic properties, including positive regulation of skeletal muscle differentiation and regeneration. Both Duchenne and limb-girdle muscular dystrophy 2B (LGMD2B) are subtypes of muscular dystrophies characterized by deficient membrane repair, muscle weakness, and eventual loss of ambulation. This chapter explains confocal techniques such as laser injury, calcium imaging, and galectin-1 localization to examine the effects of galectin-1 on membrane repair in injured LGMD2B models.


Assuntos
Galectina 1 , Distrofia Muscular do Cíngulo dos Membros , Sarcolema , Galectina 1/metabolismo , Galectina 1/farmacologia , Galectina 1/uso terapêutico , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia
2.
Nat Commun ; 12(1): 3596, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155205

RESUMO

One of the earliest maturation steps in cardiomyocytes (CMs) is the sarcomere protein isoform switch between TNNI1 and TNNI3 (fetal and neonatal/adult troponin I). Here, we generate human induced pluripotent stem cells (hiPSCs) carrying a TNNI1EmGFP and TNNI3mCherry double reporter to monitor and isolate mature sub-populations during cardiac differentiation. Extensive drug screening identifies two compounds, an estrogen-related receptor gamma (ERRγ) agonist and an S-phase kinase-associated protein 2 inhibitor, that enhances cardiac maturation and a significant change to TNNI3 expression. Expression, morphological, functional, and molecular analyses indicate that hiPSC-CMs treated with the ERRγ agonist show a larger cell size, longer sarcomere length, the presence of transverse tubules, and enhanced metabolic function and contractile and electrical properties. Here, we show that ERRγ-treated hiPSC-CMs have a mature cellular property consistent with neonatal CMs and are useful for disease modeling and regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Receptores de Estrogênio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/química , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Transcriptoma/efeitos dos fármacos , Troponina I/genética , Troponina I/metabolismo
3.
Exp Neurol ; 342: 113758, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991525

RESUMO

To get insight into the mechanism of action of carbonic anhydrase inhibitors (CAI) in neuromuscular disorders, we investigated effects of dichlorphenamide (DCP) and acetazolamide (ACTZ) on ClC-1 chloride channels and skeletal muscle excitability. We performed patch-clamp experiments to test drugs on chloride currents in HEK293T cells transfected with hClC-1. Using the two-intracellular microelectrode technique in current-clamp mode, we measured the effects of drugs on the resting chloride conductance and action potential properties of sarcolemma in rat and mouse skeletal muscle fibers. Using BCECF dye fluorometry, we measured the effects of ACTZ on intracellular pH in single rat muscle fibers. Similarly to ACTZ, DCP (100 µM) increased hClC-1 chloride currents in HEK cells, because of the negative shift of the open probability voltage dependence and the slowing of deactivation kinetics. Bendroflumethiazide (BFT, 100 µM), structurally related to DCP but lacking activity on carbonic anhydrase, had little effects on chloride currents. In isolated rat muscle fibers, 50-100 µM of ACTZ or DCP, but not BFT, induced a ~ 20% increase of the resting chloride conductance. ACTZ reduced action potential firing in mouse muscle fibers. ACTZ (100 µM) reduced intracellular pH to 6.8 in rat muscle fibers. These results suggest that carbonic anhydrase inhibitors can reduce muscle excitability by increasing ClC-1 channel activity, probably through intracellular acidification. Such a mechanism may contribute in part to the clinical effects of these drugs in myotonia and other muscle excitability disorders.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Canais de Cloreto/metabolismo , Doenças Musculares/metabolismo , Sarcolema/metabolismo , Animais , Inibidores da Anidrase Carbônica/uso terapêutico , Diclorofenamida/farmacologia , Diclorofenamida/uso terapêutico , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças Musculares/tratamento farmacológico , Ratos , Ratos Wistar , Sarcolema/efeitos dos fármacos
4.
FEBS J ; 288(1): 160-174, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893434

RESUMO

Plasma membrane repair is an evolutionarily conserved mechanism by which cells can seal breaches in the plasma membrane. Mutations in several proteins with putative roles in sarcolemma integrity, membrane repair, and membrane transport result in several forms of muscle disease; however, the mechanisms that are activated and responsible for sarcolemma resealing are not well understood. Using the standard assays for membrane repair, which track the uptake of FM 1-43 dye into adult skeletal muscle fibers following laser-induced sarcolemma disruption, we show that labeling of resting fibers by FM1-43 prior to membrane wounding and the induced FM1-43 dye uptake after sarcolemma wounding occurs via dynamin-dependent endocytosis. Dysferlin-deficient muscle fibers show elevated dye uptake following wounding, which is the basis for the assertion that membrane repair is defective in this model. Our data show that dynamin inhibition mitigates the differences in FM1-43 dye uptake between dysferlin-null and wild-type muscle fibers, suggesting that elevated wound-induced FM1-43 uptake in dysferlin-deficient muscle may actually be due to enhanced dynamin-dependent endocytosis following wounding, though dynamin inhibition had no effect on dysferlin trafficking after wounding. By monitoring calcium flux after membrane wounding, we show that reversal of calcium precedes the sustained, slower increase of dynamin-dependent FM1-43 uptake in WT fibers, and that dysferlin-deficient muscle fibers have persistently increased calcium after wounding, consistent with its proposed role in resealing. These data highlight a previously unappreciated role for dynamin-dependent endocytosis in wounded skeletal muscle fibers and identify overactive dynamin-dependent endocytosis following sarcolemma wounding as a potential mechanism or consequence of dysferlin deficiency.


Assuntos
Cálcio/metabolismo , Dinaminas/genética , Disferlina/genética , Endocitose/genética , Sarcolema/genética , Animais , Animais Geneticamente Modificados , Dimetil Sulfóxido/farmacologia , Dinaminas/metabolismo , Disferlina/metabolismo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrazonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Sarcolema/patologia , Coloração e Rotulagem/métodos
5.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825681

RESUMO

Dysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown. In the present work, we found that numerous myoblasts bearing a mutated dysferlin when induced to acquire myogenic commitment express PPARγ, revealing adipogenic instead of myogenic commitment. These cell cultures presented many mononucleated cells with fat accumulation and within 48 h of differentiation formed fewer multinucleated cells. In contrast, dysferlin deficient myoblasts treated with boldine, a connexin hemichannels blocker, neither expressed PPARγ, nor accumulated fat and formed similar amount of multinucleated cells as wild type precursor cells. We recently demonstrated that myofibers of skeletal muscles from blAJ mice (an animal model of dysferlinopathies) express three connexins (Cx39, Cx43, and Cx45) that form functional hemichannels (HCs) in the sarcolemma. In symptomatic blAJ mice, we now show that eight-week treatment with a daily dose of boldine showed a progressive recovery of motor activity reaching normality. At the end of this treatment, skeletal muscles were comparable to those of wild type mice and presented normal CK activity in serum. Myofibers of boldine-treated blAJ mice also showed strong dysferlin-like immunoreactivity. These findings reveal that muscle dysfunction results from a pathophysiologic mechanism triggered by mutated dysferlin and downstream connexin hemichannels expressed de novo lead to a drastic reduction of myogenesis and favor muscle damage. Thus, boldine could represent a therapeutic opportunity to treat dysfernilopathies.


Assuntos
Aporfinas/farmacologia , Conexinas/metabolismo , Disferlina/genética , Músculo Esquelético/patologia , Mioblastos/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Disferlina/deficiência , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Mioblastos/efeitos dos fármacos , Fármacos Neuromusculares Despolarizantes/farmacologia , Teste de Desempenho do Rota-Rod , Sarcolema/efeitos dos fármacos
6.
Am J Physiol Cell Physiol ; 319(1): C194-C207, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432931

RESUMO

ATP-sensitive potassium (KATP) channels couple cell metabolic status to membrane excitability and are crucial for stress adaptation and cytoprotection in the heart. Atrial natriuretic peptide (ANP), a cardiac peptide important for cardiovascular homeostasis, also exhibits cytoprotective features including protection against myocardial ischemia-reperfusion injuries. However, how ANP modulates cardiac KATP channels is largely unknown. In the present study we sought to address this issue by investigating the role of ANP signaling in functional modulation of sarcolemmal KATP (sarcKATP) channels in ventricular myocytes freshly isolated from adult rabbit hearts. Single-channel recordings were performed in combination with pharmacological approaches in the cell-attached patch configuration. Bath application of ANP markedly potentiated sarcKATP channel activities induced by metabolic inhibition with sodium azide, whereas the KATP-stimulating effect of ANP was abrogated by selective inhibition of the natriuretic peptide receptor type A (NPR-A), cGMP-dependent protein kinase (PKG), reactive oxygen species (ROS), extracellular signal-regulated protein kinase (ERK)1/2, Ca2+/calmodulin-dependent protein kinase II (CaMKII), or the ryanodine receptor (RyR). Blockade of RyRs also nullified hydrogen peroxide (H2O2)-induced stimulation of sarcKATP channels in intact cells. Furthermore, single-channel kinetic analyses revealed that ANP enhanced the function of ventricular sarcKATP channels through destabilizing the long closures and facilitating the opening transitions, without affecting the single-channel conductance. In conclusion, here we report that ANP positively modulates the activity of ventricular sarcKATP channels via an intracellular signaling mechanism consisting of NPR-A, PKG, ROS, ERK1/2, CaMKII, and RyR2. This novel mechanism may regulate cardiac excitability and contribute to cytoprotection, in part, by opening myocardial KATP channels.


Assuntos
Fator Natriurético Atrial/farmacologia , Ventrículos do Coração/metabolismo , Líquido Intracelular/metabolismo , Canais KATP/metabolismo , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Sarcolema/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Mol Ther ; 28(2): 664-676, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843448

RESUMO

Patients with α-dystroglycanopathies, a subgroup of rare congenital muscular dystrophies, present with a spectrum of clinical manifestations that includes muscular dystrophy as well as CNS and ocular abnormalities. Although patients with α-dystroglycanopathies are genetically heterogeneous, they share a common defect of aberrant post-translational glycosylation modification of the dystroglycan alpha-subunit, which renders it defective in binding to several extracellular ligands such as laminin-211 in skeletal muscles, agrin in neuromuscular junctions, neurexin in the CNS, and pikachurin in the eye, leading to various symptoms. The genetic heterogeneity associated with the development of α-dystroglycanopathies poses significant challenges to developing a generalized treatment to address the spectrum of genetic defects. Here, we propose the development of a bispecific antibody (biAb) that functions as a surrogate molecular linker to reconnect laminin-211 and the dystroglycan beta-subunit to ameliorate sarcolemmal fragility, a primary pathology in patients with α-dystroglycan-related muscular dystrophies. We show that the treatment of LARGEmyd-3J mice, an α-dystroglycanopathy model, with the biAb improved muscle function and protected muscles from exercise-induced damage. These results demonstrate the viability of a biAb that binds to laminin-211 and dystroglycan simultaneously as a potential treatment for patients with α-dystroglycanopathy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Distroglicanas/metabolismo , Laminina/metabolismo , Síndrome de Walker-Warburg/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Modelos Animais de Doenças , Distroglicanas/imunologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Injeções Intramusculares , Laminina/genética , Laminina/imunologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Síndrome de Walker-Warburg/tratamento farmacológico , Síndrome de Walker-Warburg/etiologia
8.
Mol Med ; 25(1): 53, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810440

RESUMO

Pre-clinical animal studies have shown that triiodothyronine (T3) replacement therapy improves cardiac contractile function after myocardial infarction (MI). We hypothesized that T3 treatment could prevent adverse post-infarction cardiomyocyte remodeling by maintaining transverse-tubule (TT) structures, thus improving calcium dynamics and contractility. METHODS: Myocardial infarction (MI) or sham surgeries were performed on female Sprague-Dawley rats (aged 12 wks), followed by treatment with T3 (5µg/kg/d) or vehicle in drinking water for 16 wks (n = 10-11/group). After in vivo echocardiographic and hemodynamic analyses, left ventricular myocytes were isolated by collagenase digestion and simultaneous calcium and contractile transients in single cardiomyocytes were recorded using IonOptix imaging. Live cardiomyocytes were stained with AlexaFluor-488 conjugated wheat germ agglutinin (WGA-488) or di-8-ANEPPS, and multiple z-stack images per cell were captured by confocal microscopy for analysis of TT organization. RTqPCR and immunoblot approaches determined expression of TT proteins. RESULTS: Echocardiography and in vivo hemodynamic measurements showed significant improvements in systolic and diastolic function in T3- vs vehicle-treated MI rats. Isolated cardiomyocyte analysis showed significant dysfunction in measurements of myocyte relengthening in MI hearts, and improvements with T3 treatment: max relengthening velocity (Vmax, um/s), 2.984 ± 1.410 vs 1.593 ± 0.325, p < 0.05 and time to Vmax (sec), 0.233 ± 0.037 vs 0.314 ± 0.019, p < 0.001; MI + T3 vs MI + Veh, respectively. Time to peak contraction was shortened by T3 treatment (0.161 ± 0.021 vs 0.197 ± 0.011 s., p < 0.01; MI + T3 vs MI + Veh, respectively). Analysis of TT periodicity of WGA- or ANEPPS-stained cardiomyocytes indicated significant TT disorganization in MI myocytes and improvement with T3 treatment (transverse-oriented tubules (TE%): 9.07 ± 0.39 sham, 6.94 ± 0.67 MI + Veh and 8.99 ± 0.38 MI + T3; sham vs MI + Veh, p < 0.001; MI + Veh vs MI + T3, p < 0.01). Quantitative RT-PCR showed that reduced expression of BIN1 (Bridging integrator-1), Jph2 (junctophilin-2), RyR2 (ryanodine receptor) and Cav1.2 (L-type calcium channel) in the failing myocardium were increased by T3 and immunoblot analysis further supporting a potential T3 effect on the TT-associated proteins, BIN1 and Jph2. In conclusion, low dose T3 treatment initiated immediately after myocardial infarction attenuated adverse TT remodeling, improved calcium dynamics and contractility, thus supporting the potential therapeutic utility of T3 treatment in heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos , Sarcolema/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células Cultivadas , Feminino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
9.
Biochem Biophys Res Commun ; 512(4): 908-913, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929926

RESUMO

α2-Adrenoceptors (α2-AR) found in the cardiomyocyte's sarcolemma represent a very important negative feedback for control of myocardial contractility by endogenous catecholamines. Earlier, we showed that the endogenous neurotransmitter agmatine in micromolar concentrations via α2-AR activates the nitric oxide (NO) synthesis, enhancing the Ca2+ pumping into sarcoplasmic reticulum (SR). In the millimolar doses it inhibits Ca2+ sequestration by SR Ca2+ ATPase (SERCA), acting through the first type of imidazoline receptors. Here, we study the functional activity of agmatine, as well as a specific α2-agonist, guanabenz, in respect to spontaneous Ca2+-transients in SHR cardiomyocytes of the early age (2-2.5 months), and adulthood animals (8-9 months). α2-mediated cardioprotective effect was almost twofold decreased in SHR cardiac cells compared to normotensive rats of the corresponding age, despite the fact that both α2A- and α2B-AR protein levels were significantly increased in SHR cardiomyocytes. NO-mediated facilitation of SERCA activity is substantially reduced in SHR cardiomyocytes vs. normotensive rats. These data suggest that the SHR phenotype starting from early age shows signs of the impaired sarcolemmal α2-AR signaling, which can aggravate the development of this cardiovascular pathology.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Fatores Etários , Agmatina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Citosol/metabolismo , Guanabenzo/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos Endogâmicos SHR , Ratos Wistar , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
10.
J Appl Physiol (1985) ; 126(6): 1737-1745, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946638

RESUMO

Lack of sarcolemma-localized neuronal nitric oxide synthase mu (nNOSµ) contributes to muscle damage and fatigue in dystrophic muscle. In this study, we examined the effects of compensating for lack of nNOSµ with a phosphodiesterase type 5 (PDE5) inhibitor in mdx mice following downhill running and endurance training. Dystrophic mice (mdx) were treated with sildenafil citrate and compared with untreated mdx and wild-type mice after an acute bout of downhill running and during a progressive low-intensity treadmill running program (5 days/wk, 4 wk). Magnetic resonance imaging (MRI) and spectroscopy (MRS) transverse relaxation time constant (T2) of hindlimb and forelimb muscles were measured as a marker of muscle damage after downhill running and throughout training. The MRI blood oxygenation level dependence (BOLD) response and 31phosphorus MRS (31P-MRS) data were acquired after stimulated muscle contractions. After downhill running, the increase in T2 was attenuated (P < 0.05) in treated mdx and wild-type mice compared with untreated mdx. During training, resting T2 values did not change in wild-type and mdx mice from baseline values; however, the running distance completed during training was greater (P < 0.05) in treated mdx (>90% of target distance) and wild-type (100%) than untreated mdx (60%). The post-contractile BOLD response was greater (P < 0.05) in treated mdx that trained than untreated mdx, with no differences in muscle oxidative capacity, as measured by 31P-MRS. Our findings indicate that PDE5 inhibition reduces muscle damage after a single bout of downhill running and improves performance during endurance training in dystrophic mice, possibly because of enhanced microvascular function. NEW & NOTEWORTHY This study examined the combined effects of PDE5 inhibition and exercise in dystrophic muscle using high-resolution magnetic resonance imaging and spectroscopy. Our findings demonstrated that sildenafil citrate reduces muscle damage after a single bout of downhill running, improves endurance-training performance, and enhances microvascular function in dystrophic muscle. Collectively, the results support the combination of exercise and PDE5 inhibition as a therapeutic approach in muscular dystrophies lacking nNOSµ.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Condicionamento Físico Animal/fisiologia , Animais , Treino Aeróbico/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Sarcolema/efeitos dos fármacos , Citrato de Sildenafila/farmacologia
11.
Circ Res ; 124(9): 1350-1359, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30836825

RESUMO

RATIONALE: ßARs (ß-adrenergic receptors) are prototypical GPCRs (G protein-coupled receptors) that play a pivotal role in sympathetic regulation. In heart cells, ß1AR signaling mediates a global response, including both l-type Ca2+ channels in the sarcolemma/T tubules and RyRs (ryanodine receptors) in the SR (sarcoplasmic reticulum). In contrast, ß2AR mediates local signaling with little effect on the function of SR proteins. OBJECTIVE: To investigate the signaling relationship between ß1ARs and ß2ARs. METHOD AND RESULTS: Using whole-cell patch-clamp analyses combined with confocal Ca2+ imaging, we found that the activation of compartmentalized ß2AR signaling was able to convert the ß1AR signaling from global to local mode, preventing ß1ARs from phosphorylating RyRs that were only nanometers away from sarcolemma/T tubules. This offside compartmentalization was eliminated by selective inhibition of ß2AR, GRK2 (GPCR kinase-2), ßarr1 (ß-arrestin-1), and phosphodiesterase-4. A knockin rat model harboring mutations of the last 3 serine residues of the ß1AR C terminus, a component of the putative ßarr1 binding site and GRK2 phosphorylation site, eliminated the offside compartmentalization conferred by ß2AR activation. CONCLUSIONS: ß2AR stimulation compartmentalizes ß1AR signaling into nanoscale local domains in a phosphodiesterase-4-dependent manner by targeting the C terminus of ß1ARs. This finding reveals a fundamental negative feed-forward mechanism that serves to avoid the cytotoxicity of circulating catecholamine and to sharpen the transient ß1AR response of sympathetic excitation.


Assuntos
Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Adrenérgicos/farmacologia , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Masculino , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Transgênicos , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Cardiovasc Res ; 115(3): 546-555, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165515

RESUMO

AIMS: Cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling by acting in microdomains associated with sarcolemmal ion channels. However, local real time cAMP dynamics in such microdomains has not been visualized before. We sought to directly monitor cAMP in a microdomain formed around sodium-potassium ATPase (NKA) in healthy and failing cardiomyocytes and to better understand alterations of cAMP compartmentation in heart failure. METHODS AND RESULTS: A novel Förster resonance energy transfer (FRET)-based biosensor termed phospholemman (PLM)-Epac1 was developed by fusing a highly sensitive cAMP sensor Epac1-camps to the C-terminus of PLM. Live cell imaging in PLM-Epac1 and Epac1-camps expressing adult rat ventricular myocytes revealed extensive regulation of NKA/PLM microdomain-associated cAMP levels by ß2-adrenoceptors (ß2-ARs). Local cAMP pools stimulated by these receptors were tightly controlled by phosphodiesterase (PDE) type 3. In chronic heart failure following myocardial infarction, dramatic reduction of the microdomain-specific ß2-AR/cAMP signals and ß2-AR dependent PLM phosphorylation was accompanied by a pronounced loss of local PDE3 and an increase in PDE2 effects. CONCLUSIONS: NKA/PLM complex forms a distinct cAMP microdomain which is directly regulated by ß2-ARs and is under predominant control by PDE3. In heart failure, local changes in PDE repertoire result in blunted ß2-AR signalling to cAMP in the vicinity of PLM.


Assuntos
AMP Cíclico/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/enzimologia , Fosfoproteínas/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Sarcolema/enzimologia , Sistemas do Segundo Mensageiro , ATPase Trocadora de Sódio-Potássio/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Técnicas Biossensoriais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Domínios e Motivos de Interação entre Proteínas , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Sarcolema/efeitos dos fármacos , Sarcolema/patologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo
13.
Skelet Muscle ; 8(1): 31, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305165

RESUMO

The scientific premise, design, and structure-function analysis of chemical-based muscle membrane stabilizing block copolymers are reviewed here for applications in striated muscle membrane injury. Synthetic block copolymers have a rich history and wide array of applications from industry to biology. Potential for discovery is enabled by a large chemical space for block copolymers, including modifications in block copolymer mass, composition, and molecular architecture. Collectively, this presents an impressive chemical landscape to leverage distinct structure-function outcomes. Of particular relevance to biology and medicine, stabilization of damaged phospholipid membranes using amphiphilic block copolymers, classified as poloxamers or pluronics, has been the subject of increasing scientific inquiry. This review focuses on implementing block copolymers to protect fragile muscle membranes against mechanical stress. The review highlights interventions in Duchenne muscular dystrophy, a fatal disease of progressive muscle deterioration owing to marked instability of the striated muscle membrane. Biophysical and chemical engineering advances are presented that delineate and expand upon current understanding of copolymer-lipid membrane interactions and the mechanism of stabilization. The studies presented here serve to underscore the utility of copolymer discovery leading toward the therapeutic application of block copolymers in Duchenne muscular dystrophy and potentially other biomedical applications in which membrane integrity is compromised.


Assuntos
Distrofia Muscular de Duchenne/tratamento farmacológico , Poloxâmero/farmacologia , Sarcolema/efeitos dos fármacos , Animais , Ensaios Clínicos como Assunto , Humanos , Poloxâmero/química , Poloxâmero/uso terapêutico
14.
J Cachexia Sarcopenia Muscle ; 9(6): 1063-1078, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216693

RESUMO

BACKGROUND: This study was performed to test the therapeutic potential of obestatin, an autocrine anabolic factor regulating skeletal muscle repair, to ameliorate the Duchenne muscular dystrophy (DMD) phenotype. METHODS AND RESULTS: Using a multidisciplinary approach, we characterized the ageing-related preproghrelin/GPR39 expression patterns in tibialis anterior (TA) muscles of 4-, 8-, and 18-week-old mdx mice (n = 3/group) and established the effects of obestatin administration at this level in 8-week-old mdx mice (n = 5/group). The findings were extended to in vitro effects on human immortalized DMD myotubes. An analysis of TAs revealed an age-related loss of preproghrelin expression, as precursor of obestatin, in mdx mice. Administration of obestatin resulted in a significant increase in tetanic specific force (33.0% ± 1.5%, P < 0.05), compared with control mdx mice. Obestatin-treated TAs were characterized by reduction of fibres with centrally located nuclei (10.0% ± 1.2%, P < 0.05) together with an increase in the number of type I fibres (25.2% ± 1.7%, P < 0.05) associated to histone deacetylases/myocyte enhancer factor-2 and peroxisome proliferator-activated receptor-gamma coactivator 1α axis, and down-regulation of ubiquitin E3-ligases by inactivation of FoxO1/4, indexes of muscle atrophy. Obestatin reduced the level of contractile damage and tissue fibrosis. These observations correlated with decline in serum creatine kinase (58.8 ± 15.2, P < 0.05). Obestatin led to stabilization of the sarcolemma by up-regulation of utrophin, α-syntrophin, ß-dystroglycan, and α7ß1-integrin proteins. These pathways were also operative in human DMD myotubes. CONCLUSIONS: These results highlight the potential of obestatin as a peptide therapeutic for preserving muscle integrity in DMD, thus allowing a better efficiency of gene or cell therapy in a combined therapeutic approach.


Assuntos
Grelina/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Fenótipo , Animais , Biomarcadores , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/diagnóstico , Oxirredução/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo
15.
PLoS One ; 13(7): e0200301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975744

RESUMO

A prominent theory of cell death in myocardial ischemia/reperfusion (I/R) posits that the primary and pivotal step of irreversible cell injury is the opening of the mitochondrial permeability transition (MPT) pore. However, the predominantly positive evidence of protection against infarct afforded by the MPT inhibitor, Cyclosporine A (CsA), in experimental studies is in stark contrast with the overall lack of benefit found in clinical trials of CsA. One reason for the discrepancy might be the fact that relatively short experimental ischemic episodes (<1 hour) do not represent clinically-realistic durations, usually exceeding one hour. Here we tested the hypothesis that MPT is not the primary event of cell death after prolonged (60-80 min) episodes of global ischemia. We used confocal microcopy in Langendorff-perfused rabbit hearts treated with the electromechanical uncoupler, 2,3-Butanedione monoxime (BDM, 20 mM) to allow tracking of MPT and sarcolemmal permeabilization (SP) in individual ventricular myocytes. The time of the steepest drop in fluorescence of mitochondrial membrane potential (ΔΨm)-sensitive dye, TMRM, was used as the time of MPT (TMPT). The time of 20% uptake of the normally cell-impermeable dye, YO-PRO1, was used as the time of SP (TSP). We found that during reperfusion MPT and SP were tightly coupled, with MPT trending slightly ahead of SP (TSP-TMPT = 0.76±1.31 min; p = 0.07). These coupled MPT/SP events occurred in discrete myocytes without crossing cell boundaries. CsA (0.2 µM) did not reduce the infarct size, but separated SP and MPT events, such that detectable SP was significantly ahead of MPT (TSP -TMPT = -1.75±1.28 min, p = 0.006). Mild permeabilization of cells with digitonin (2.5-20 µM) caused coupled MPT/SP events which occurred in discrete myocytes similar to those observed in Control and CsA groups. In contrast, deliberate induction of MPT by titration with H2O2 (200-800 µM), caused propagating waves of MPT which crossed cell boundaries and were uncoupled from SP. Taken together, these findings suggest that after prolonged episodes of ischemia, SP is the primary step in myocyte death, of which MPT is an immediate and unavoidable consequence.


Assuntos
Cardiotônicos/farmacologia , Morte Celular , Permeabilidade da Membrana Celular/fisiologia , Ciclosporina/farmacologia , Isquemia Miocárdica/patologia , Sarcolema/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Masculino , Microscopia Confocal , Traumatismo por Reperfusão Miocárdica/patologia , Coelhos , Sarcolema/efeitos dos fármacos
16.
Cell Calcium ; 71: 65-74, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604965

RESUMO

Hyperamylinemia is a condition that accompanies obesity and precedes type II diabetes, and it is characterized by above-normal blood levels of amylin, the pancreas-derived peptide. Human amylin oligomerizes easily and can deposit in the pancreas [1], brain [2], and heart [3], where they have been associated with calcium dysregulation. In the heart, accumulating evidence suggests that human amylin oligomers form moderately cation-selective [4,5] channels that embed in the cell sarcolemma (SL). The oligomers increase membrane conductance in a concentration-dependent manner [5], which is correlated with elevated cytosolic Ca2+. These findings motivate our core hypothesis that non-selective inward Ca2+ conduction afforded by human amylin oligomers increase cytosolic and sarcoplasmic reticulum (SR) Ca2+ load, which thereby magnifies intracellular Ca2+ transients. Questions remain however regarding the mechanism of amylin-induced Ca2+ dysregulation, including whether enhanced SL Ca2+ influx is sufficient to elevate cytosolic Ca2+ load [6], and if so, how might amplified Ca2+ transients perturb Ca2+-dependent cardiac pathways. To investigate these questions, we modified a computational model of cardiomyocytes Ca2+ signaling to reflect experimentally-measured changes in SL membrane permeation and decreased sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) function stemming from acute and transgenic human amylin peptide exposure. With this model, we confirmed the hypothesis that increasing SL permeation alone was sufficient to enhance Ca2+ transient amplitudes. Our model indicated that amplified cytosolic transients are driven by increased Ca2+ loading of the SR and that greater fractional release may contribute to the Ca2+-dependent activation of calmodulin, which could prime the activation of myocyte remodeling pathways. Importantly, elevated Ca2+ in the SR and dyadic space collectively drive greater fractional SR Ca2+ release for human amylin expressing rats (HIP) and acute amylin-exposed rats (+Amylin) mice, which contributes to the inotropic rise in cytosolic Ca2+ transients. These findings suggest that increased membrane permeation induced by oligomeratization of amylin peptide in cell sarcolemma contributes to Ca2+ dysregulation in pre-diabetes.


Assuntos
Cálcio/metabolismo , Ventrículos do Coração/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Humanos , Íons , Camundongos , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo
17.
J Mol Cell Cardiol ; 115: 104-114, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29307535

RESUMO

AIMS: Protein kinase C (PKC) isozymes contribute to the development of heart failure through dysregulation of Ca2+ handling properties and disruption of contractile function in cardiomyocytes. However, the mechanisms by which PKC activation leads to Ca2+ dysfunction are incompletely understood. METHODS AND RESULTS: Shortly upon ventricular pressure overload in mice, we detected transient PKC activation that was associated with pulsed actin cytoskeletal rearrangement. In cultured cardiomyocytes, transient activation of PKC promoted long-term deleterious effects on the integrity of the transverse (T)- tubule system, resulting in a significant decrease in the amplitude and increase in the rising kinetics of Ca2+ transients. Treatment with a PKCα/ß inhibitor restored the synchronization of Ca2+ transients and maintained T-tubule integrity in cultured cardiomyocytes. Supporting these data, PKCα/ß inhibition protected against T-tubule remodeling and cardiac dysfunction in a mouse model of pressure overload-induced heart failure. Mechanistically, transient activation of PKC resulted in biphasic actin cytoskeletal rearrangement, consistent with in vivo observations in the pressure overloaded mouse model. Transient inhibition of actin polymerization or depolymerization resulted in severe T-tubule damage, recapitulating the T-tubule damage induced by PKC activation. Moreover, inhibition of stretch activated channels (SAC) protected against T-tubule remodeling and E-C coupling dysfunction induced by transient PKC activation and actin cytoskeletal rearrangement. CONCLUSIONS: These data identify a key mechanistic link between transient PKC activation and long-term Ca2+ handling defects through PKC-induced actin cytoskeletal rearrangement and resultant T-tubule damage.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C/metabolismo , Sarcolema/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/metabolismo , Pressão , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sarcolema/efeitos dos fármacos
18.
J Exp Biol ; 220(Pt 24): 4589-4599, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28982967

RESUMO

The mechanisms of action potential (AP) generation in the myoepithelial cells of the tunicate heart are not yet well understood. Here, an attempt was made to elucidate these mechanisms by analyzing the effects of specific blockers of K+, Na+ and Ca2+ currents on the configuration of transmembrane APs and their frequency in the spontaneously beating ascidian heart. In addition, an immunocytochemical analysis of heart myoepithelial cells was performed. Staining with anti-FMRF-amide and anti-tubulin antibodies did not reveal any nerve elements within the heart tube. Treatment with 1 mmol l-1 TEA (IK blocker) resulted in depolarization of heart cell sarcolemma by 10 mV, and inhibition of APs generation was recorded after 3 min of exposure. Prior to this moment, the frequency of AP generation in a burst decreased from 16-18 to 2 beats min-1 owing to prolongation of the diastole. After application of ivabradine (3 or 10 µmol l-1), the spontaneous APs generation frequency decreased by 24%. Based on these results and published data, it is concluded that the key role in the automaticity of the ascidian heart is played by the outward K+ currents, Na+ currents, activated hyperpolarization current If and a current of unknown nature IX.


Assuntos
Potenciais de Ação , Coração/fisiologia , Urocordados/química , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Polaridade Celular , Imuno-Histoquímica , Potenciais da Membrana , Bloqueadores dos Canais de Potássio/farmacologia , Sarcolema/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Urocordados/efeitos dos fármacos , Urocordados/metabolismo , Urocordados/fisiologia
19.
Mol Ther ; 25(10): 2360-2371, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28750735

RESUMO

Limb girdle muscular dystrophy type 2B (LGMD2B) and other dysferlinopathies are degenerative muscle diseases that result from mutations in the dysferlin gene and have limited treatment options. The dysferlin protein has been linked to multiple cellular functions including a Ca2+-dependent membrane repair process that reseals disruptions in the sarcolemmal membrane. Recombinant human MG53 protein (rhMG53) can increase the membrane repair process in multiple cell types both in vitro and in vivo. Here, we tested whether rhMG53 protein can improve membrane repair in a dysferlin-deficient mouse model of LGMD2B (B6.129-Dysftm1Kcam/J). We found that rhMG53 can increase the integrity of the sarcolemmal membrane of isolated muscle fibers and whole muscles in a Ca2+-independent fashion when assayed by a multi-photon laser wounding assay. Intraperitoneal injection of rhMG53 into mice before acute eccentric treadmill exercise can decrease the release of intracellular enzymes from skeletal muscle and decrease the entry of immunoglobulin G and Evans blue dye into muscle fibers in vivo. These results indicate that short-term rhMG53 treatment can ameliorate one of the underlying defects in dysferlin-deficient muscle by increasing sarcolemmal membrane integrity. We also provide evidence that rhMG53 protein increases membrane integrity independently of the canonical dysferlin-mediated, Ca2+-dependent pathway known to be important for sarcolemmal membrane repair.


Assuntos
Proteínas de Transporte/uso terapêutico , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Proteínas Recombinantes/uso terapêutico , Animais , Modelos Animais de Doenças , Disferlina/deficiência , Disferlina/genética , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Proteínas com Motivo Tripartido
20.
J Clin Invest ; 127(6): 2418-2432, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481224

RESUMO

Glucocorticoid steroids such as prednisone are prescribed for chronic muscle conditions such as Duchenne muscular dystrophy, where their use is associated with prolonged ambulation. The positive effects of chronic steroid treatment in muscular dystrophy are paradoxical because these steroids are also known to trigger muscle atrophy. Chronic steroid use usually involves once-daily dosing, although weekly dosing in children has been suggested for its reduced side effects on behavior. In this work, we tested steroid dosing in mice and found that a single pulse of glucocorticoid steroids improved sarcolemmal repair through increased expression of annexins A1 and A6, which mediate myofiber repair. This increased expression was dependent on glucocorticoid response elements upstream of annexins and was reinforced by the expression of forkhead box O1 (FOXO1). We compared weekly versus daily steroid treatment in mouse models of acute muscle injury and in muscular dystrophy and determined that both regimens provided comparable benefits in terms of annexin gene expression and muscle repair. However, daily dosing activated atrophic pathways, including F-box protein 32 (Fbxo32), which encodes atrogin-1. Conversely, weekly steroid treatment in mdx mice improved muscle function and histopathology and concomitantly induced the ergogenic transcription factor Krüppel-like factor 15 (Klf15) while decreasing Fbxo32. These findings suggest that intermittent, rather than daily, glucocorticoid steroid regimen promotes sarcolemmal repair and muscle recovery from injury while limiting atrophic remodeling.


Assuntos
Glucocorticoides/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Prednisona/administração & dosagem , Animais , Anexina A6/genética , Anexina A6/metabolismo , Células Cultivadas , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Glucocorticoides/efeitos adversos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiopatologia , Atrofia Muscular/induzido quimicamente , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisona/efeitos adversos , Ligação Proteica , Receptores de Glucocorticoides/metabolismo , Regeneração , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA