Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Sci Rep ; 14(1): 12969, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839835

RESUMO

Schistosomiasis, caused by Schistosoma trematodes, is a significant global health concern, particularly affecting millions in Africa and Southeast Asia. Despite efforts to combat it, the rise of praziquantel (PZQ) resistance underscores the need for new treatment options. Protein kinases (PKs) are vital in cellular signaling and offer potential as drug targets. This study focused on focal adhesion kinase (FAK) as a candidate for anti-schistosomal therapy. Transcriptomic and proteomic analyses of adult S. mekongi worms identified FAK as a promising target due to its upregulation and essential role in cellular processes. Molecular docking simulations assessed the binding energy of FAK inhibitors to Schistosoma FAK versus human FAK. FAK inhibitor 14 and PF-03814735 exhibited strong binding to Schistosoma FAK with minimal binding for human FAK. In vitro assays confirmed significant anti-parasitic activity against S. mekongi, S. mansoni, and S. japonicum, comparable to PZQ, with low toxicity in human cells, indicating potential safety. These findings highlight FAK as a promising target for novel anti-schistosomal therapies. However, further research, including in vivo studies, is necessary to validate efficacy and safety before clinical use. This study offers a hopeful strategy to combat schistosomiasis and reduce its global impact.


Assuntos
Proteômica , Schistosoma , Esquistossomose , Transcriptoma , Animais , Humanos , Proteômica/métodos , Schistosoma/efeitos dos fármacos , Schistosoma/genética , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Perfilação da Expressão Gênica/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo
2.
Tissue Cell ; 88: 102416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796863

RESUMO

BACKGROUND: High-grade urothelial carcinoma either non-Schistosoma (NS-UBC) or Schistosoma (S-UBC)-associated is the tenth cause of death worldwide and represents a serious therapeutic problem. AIM: Evaluation of the immmunohistochemical expression of tumor necrosis factor-alpha (TNFα), epidermal growth factor receptor (EGFR), programmed cell death protein-1 (PDL1), estrogen receptor-alpha (ERα) and UroplakinIII, in the high-grade in NS-UBC and S-UBC as potential prognostic and therapeutic targets analyzed through estimation of area percentage, optical density and international pathological scoring system for each marker. MATERIAL AND METHODS: Sixty high grade urothelial carcinoma cases were enrolled in the study (30 cases of NS-UBC and 30 cases of S-UBC). The cases were immunohistochemically-assessed for TNFα, EGFR, PDL1, ERα and Uroplakin III expression. In S-UBC, parasite load was also evaluated for correlation with the immunohistochemical markers' expression in S-UBC. RESULTS: The area percentage of immune-expression of TNFα and EGFR was higher in S-UBC compared to NS-UBC. On the other hand, the NS-UBC displayed statistically-higher expression of PDL1 and uroplakinIII (p-value <0.001). ERα revealed higher, yet, non-significant expressions in S-UBC compared to NS-UBC (p-value =0.459). PDL1 expression showed the most superior record regarding area percentage (64.6± 34.5). Regarding optical density, TNF-α showed the highest transmittance expression (2.4 ± 0.9). EGFR positively correlated with PDL1 in S-UBC (r= 0.578, p-value =0.001) whereas in NS-UBC, TNFα and PDL1 (r=0.382, p-value=0.037) had positive correlation. Schistosoma eggs in tissues oppose uroplakin III expression and trigger immunomodulation via PDL1. CONCLUSION: Due to lower UroplakinIII expression, S-UBC is supposed to have a poorer prognosis. Hormonal therapy is not hypothesized due to a very minimal ERα expression in both NS-UBC and S-UBC. Regarding immunotherapy, anti-TNF-α is suggested for S-UBC whilst in NS-UBC, blockading PDL1 might be useful. Targeted EGFR therapy seems to carry emphasized outcomes in S-UBC. Correlations encourage combined immune therapy in NS-UBC; nevertheless, in S-UBC, combined anti-EGFR and PDL1 seem to be of benefit.


Assuntos
Biomarcadores Tumorais , Humanos , Masculino , Feminino , Biomarcadores Tumorais/metabolismo , Animais , Pessoa de Meia-Idade , Idoso , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/parasitologia , Neoplasias da Bexiga Urinária/patologia , Receptores ErbB/metabolismo , Schistosoma/metabolismo , Antígeno B7-H1/metabolismo , Esquistossomose/parasitologia , Esquistossomose/metabolismo , Receptor alfa de Estrogênio/metabolismo , Urotélio/patologia , Urotélio/metabolismo , Urotélio/parasitologia , Fator de Necrose Tumoral alfa/metabolismo
3.
J Mol Graph Model ; 122: 108457, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37004419

RESUMO

Schistosoma glutathione transferases (GSTs) have been identified as attractive drug targets for the design of novel antischistosomals. Here, we used in silico methods to validate the discriminative inhibitory properties of bromosulfophthalein (BSP) against the 26-kDa GST from S. japonicum (Sj26GST), and the 28-kDa GST from S. haematobium (Sh28GST), versus human GST (hGST) isoforms alpha (hGSTA), mu (hGSTM) and pi (hGSTP). The use of BSP as an archetypal selective inhibitor was harnessed to produce molecular dynamics-derived pharmacophores of the two targets. Pharmacophore-based screening using a large dataset of experimental and approved drug compounds was performed to produce a shortlist of candidates. The top candidate for each target was prioritised via molecular docking, yielding guanosine-3'-monophosphate-5'-diphosphate (G3D) for Sj26GST, and quercetin-3'-O-phosphate (Q3P) for Sh28GST. Comparative molecular dynamics studies of both candidates compared to BSP showed similar characteristics of binding stability and strength, suggesting their potential to emulate the inhibitory effects of BSP.


Assuntos
Simulação de Dinâmica Molecular , Sulfobromoftaleína , Animais , Humanos , Simulação de Acoplamento Molecular , Farmacóforo , Schistosoma/metabolismo , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Glutationa/metabolismo
4.
Mol Biochem Parasitol ; 253: 111532, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450338

RESUMO

Regulatory B cells (Bregs) producing IL-10 have negative regulatory function. Several studies have shown the important roles for Toll-like receptor 2 (TLR2), TLR4, and TLR9 ligation in the development of Bregs. We have reported that Schistosome soluble egg antigen (SEA) induced the production of Bregs. However, it remains unclear whether such activation is via the TLR pathway. The present study showed that IL-10 and TLR4 mRNA expression in spleen B cells of significantly increased in C57BL/10 J mice spleen B cells following SEA stimulation. The level of secreted IL-10 and IL-10+ B cell proportion decreased in spleen B cells derived from TLR4-deficient C57BL/10ScNJ (TLR4-/-) mice following SEA or LPS stimulation compared with C57BL/10 J mice. The CD1dhiCD5+ B cells proportion decreased in spleen B cells of TLR4-/- mice following SEA stimulation compared with control mice. NF-κB, ERK, p38MAPK and JNK signal transduction inhibitors significantly suppressed IL-10 secretion in CD1dhiCD5+ B cells induced by SEA or LPS. The phosphorylation levels of IκBα, p65, ERK, JNK and p38 were increased in CD1dhiCD5+ B cell of C57BL/10 J mice treated with LPS or SEA. In conclusion, this study suggests that TLR4 plays a critical role in Bregs activation induced by SEA. And the TLR4-triggered NF-κB and MAPK pathways activation in CD1dhiCD5+ B cells stimulated with SEA. The findings elucidated the mechanism of SEA induction of CD1dhiCD5+ B cells and helped us to understand the immune regulation during Schistosoma japonicum infection.


Assuntos
Linfócitos B Reguladores , Animais , Camundongos , Linfócitos B Reguladores/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Schistosoma/metabolismo , Receptor 4 Toll-Like/genética
5.
Mol Biochem Parasitol ; 252: 111531, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36375598

RESUMO

Praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis, although its mechanisms of action are not completely understood. PZQ acts largely on adult worms. This narrative literature review describes what is known about the mechanisms of action of PZQ against schistosomes from in vitro and in vivo studies and highlights the molecular targets in parasites and immune responses induced in definitive hosts by this drug. Moreover, new therapeutic uses of PZQ are discussed. Studies have demonstrated that in addition to impacting voltage-operated Ca2 + channels, PZQ may interact with other schistosome molecules, such as myosin regulatory light chain, glutathione S-transferase, and transient receptor potential channels. Following PZQ administration, increased T regulatory type 1 (Tr1) cell differentiation and decreased inflammation were observed, indicating that PZQ promotes immunoregulatory pathways. Although PZQ is widely used in mass drug administration schemes, the existence of resistant parasites has not been proven; however, it is a concern that should be constantly investigated in human populations. In addition, we discuss studies that evaluate health applications of PZQ (other than helminth infection), such as its effect in cancer therapy and its adjuvant action in vaccines against viruses.


Assuntos
Anti-Helmínticos , Esquistossomose mansoni , Esquistossomose , Canais de Potencial de Receptor Transitório , Vacinas , Adulto , Animais , Humanos , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Praziquantel/metabolismo , Esquistossomose/tratamento farmacológico , Schistosoma/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Vacinas/metabolismo , Vacinas/farmacologia , Vacinas/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/metabolismo , Schistosoma mansoni
6.
PLoS Negl Trop Dis ; 16(6): e0010536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759449

RESUMO

Cytokines mediate T-helper (TH) responses that are crucial for determining the course of infection and disease. The expression of cytokines is regulated by transcription factors (TFs). Here we present the frequencies of single nucleotide polymorphisms (SNPs) in cytokine and TF genes in a Zimbabwean population, and further relate SNPs to susceptibility to schistosomiasis and cytokine levels. Individuals (N = 850) were genotyped for SNPs across the cytokines IL4, IL10, IL13, IL33, and IFNG, and their TFs STAT4, STAT5A/B, STAT6, GATA3, FOXP3, and TBX21 to determine allele frequencies. Circulatory levels of systemic and parasite-specific IL-4, IL-5, IL-10, IL-13, and IFNγ were quantified via enzyme-linked immunosorbent assay. Schistosoma haematobium infection was determined by enumerating parasite eggs excreted in urine by microscopy. SNP allele frequencies were related to infection status by case-control analysis and logistic regression, and egg burdens and systemic and parasite-specific cytokine levels by analysis of variance and linear regression. Novel findings were i) IL4 rs2070874*T's association with protection from schistosomiasis, as carriage of ≥1 allele gave an odds ratio of infection of 0.597 (95% CIs, 0.421-0.848, p = 0.0021) and IFNG rs2069727*G's association with susceptibility to schistosomiasis as carriage of ≥1 allele gave an odds ratio of infection of 1.692 (1.229-2.33, p = 0.0013). Neither IL4 rs2070874*T nor IFNG rs2069727*G were significantly associated with cytokine levels. This study found TH2-upregulating SNPs were more frequent among the Zimbabwean sample compared to African and European populations, highlighting the value of immunogenetic studies of African populations in the context of infectious diseases and other conditions, including allergic and atopic disease. In addition, the identification of novel infection-associated alleles in both TH1- and TH2-associated genes highlights the role of both in regulating and controlling responses to Schistosoma.


Assuntos
Schistosomatidae , Esquistossomose Urinária , Animais , Citocinas/genética , Citocinas/metabolismo , Humanos , Interleucina-4/genética , Polimorfismo de Nucleotídeo Único , Schistosoma/metabolismo , Esquistossomose Urinária/genética , Esquistossomose Urinária/parasitologia , Fatores de Transcrição/genética , Zimbábue
7.
Acta Trop ; 231: 106433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364046

RESUMO

Schistosomes are blood-dwelling parasites that are constantly exposed to high-level oxidative stress arising from parasite-intrinsic and host defense mechanisms. To survive in their hosts, schistosomes require an antioxidant system to minimize with oxidative stress. Several schistosome antioxidant enzymes have been identified and have been suggested to play indispensable antioxidant roles for the parasite. In addition to antioxidant enzymes, non-enzymatic antioxidants including small molecules, peptides, and proteins have been identified and characterized. Neuroglobin (Ngb), a nervous system-specific heme-binding protein, has been classified as a non-enzymatic antioxidant and is capable of scavenging a variety of free radical species. The antioxidant activity of Ngb has been well-studied in humans. Ngb is involved in cellular oxygen homeostasis and reactive oxygen/nitrogen scavenging in the central and peripheral nervous systems, but its functions in schistosome parasites have not yet been characterized. In this study, we aimed to characterize the molecular properties and functions of Schistosoma mekongi Ngb (SmeNgb) using bioinformatic, biochemical, and molecular biology approaches. The amino acid sequence of Ngb was highly conserved among schistosomes as well as closely related trematodes. SmeNgb was abundantly localized in the gastrodermis, vitelline, and ovary of adult female S. mekongi worms as well as in the tegument of adult male worms. Assessment of antioxidant activity demonstrated that recombinant SmeNgb had Fe2+ chelating and hydrogen peroxide scavenging activities. Intriguingly, siRNA silencing of SmeNgb gene expression resulted in tegument pathology. Understanding the properties and functions of SmNgb will help in future development of effective treatments and vaccines against S. mekongi, other schistosome parasites, and other platyhelminths.


Assuntos
Antioxidantes , Schistosoma , Animais , Antioxidantes/metabolismo , Feminino , Masculino , Neuroglobina/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Schistosoma/genética , Schistosoma/metabolismo
8.
Proteins ; 90(8): 1561-1569, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35312105

RESUMO

The binding channel of Schistosoma glutathione transferase (SGST) has been identified to possess a non-substrate site implicated in enzyme inhibition. This binding channel is formed by the interface of the GST dimer. We produced a comparative characterization of the SGST dimer interface with respect to that of human GST (hGST) analogues using the selective binding of bromosulfophthalein (BSP). First, two SGST and three hGST structures were used as search queries to assemble a data set of 48 empirical GST structures. Sequence alignment to generate a universal residue indexing scheme was then performed, followed by local superposition of the dimer interface. Principal component analysis revealed appreciable variation of the dimer interface, suggesting the potential for selective inhibition of SGST. BSP was found to dock invariably in the dimer interface core pocket, placing it in proximity to the GST catalytic domains, through which it may exert its inhibitory behavior. Binding poses across the GST forms were distinguished with ligand interaction profiling, where SGST complexes showed stabilization of ligand aromatic- and sulfonate moieties, which altogether anchor the ligand and produce a tight association. In comparison, missing aromatic stabilization in the hGST complexes impart large bonding distances, causing mobile poses likely to dissociate. Altogether, this study illustrates the potential for selective inhibition of SGST, rationalizes the selective behavior of the BSP inhibitor, and produces a reliable metric for construction and validation of pharmacophore models of the SGST binding channel.


Assuntos
Glutationa Transferase , Sulfobromoftaleína , Animais , Sítios de Ligação , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Ligantes , Schistosoma/metabolismo , Sulfobromoftaleína/metabolismo
9.
J Biomol Struct Dyn ; 40(8): 3697-3705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33225839

RESUMO

Schistosomiasis is an infectious tropical disease caused by parasitic flatworm of the genus Schistosoma. This debilitating disease chronically infects about 200 million people globally and management relies on chemotherapy. Unfortunately, the solely available schistosomicide (praziquantel) against all forms of adult schistosmes has been faced with numerous drawbacks. Thus, there is an urgent need to design and develop a new regimen for schistosomiasis. In light of this, the current study focuses on inhibiting the schistosome glucose transporter 4 (SGTP4) as a therapeutic candidate for schistosomiasis. Several studies have revealed that Schistosoma parasites require an adequate amount of energy/glucose to survive. We modelled the 3D structure and subsequently used the homology model for docking with praziquantel (PZQ), Licochalcone A, Licarin and Harmonine. The docked complexes were subjected to molecular dynamics using Desmond system of Schrodinger software. Furthermore, the pharmacokinetic parameters of the ligands were investigated using the QikProp tool in the Schrodinger-2019-4 software suite. After performing all the computational analysis, our findings reveal that all four ligands were able to inhibit SGTP4 effectively through the higher glide G score (dock score) of -5.8 (-5.8), -6.5 (-6.4), -7.3 (-7.3) and -4.9 (-4.9) in kcal/mol for praziquantel, licochalcone A, licarin and harmonine respectively against the protein. The molecular simulation further confirmed that the stability of the complexes formed between the ligands and protein is excellent. More so, all the ligands fulfilled oral drugability of both the Lipinski's rule of five and Veber's rules.The findings in this present study provide new useful insights for the design of drugs which can serve as an alternative to praziquantel in the treatment of schistosomiasis through the inhibition of SGTP4.Communicated by Freddie R. Salsbury.


Assuntos
Anti-Helmínticos , Esquistossomose , Animais , Anti-Helmínticos/farmacologia , Humanos , Ligantes , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia
10.
Sci Transl Med ; 13(625): eabj5832, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936384

RESUMO

Praziquantel (PZQ) is an essential medicine for treating parasitic flatworm infections such as schistosomiasis, which afflicts over 250 million people. However, PZQ is not universally effective, lacking activity against liver flukes of the Fasciola genus. The reason for this insensitivity is unclear, as the mechanism of PZQ action is unknown. Here, we use ligand- and target-based methods to demonstrate that PZQ activates a transient receptor potential melastatin ion channel (TRPMPZQ) in schistosomes by engaging a hydrophobic ligand binding pocket within the voltage sensor­like domain of the channel to cause calcium entry and worm paralysis. PZQ activates TRPMPZQ homologs in other PZQ-sensitive flukes, but not Fasciola hepatica. However, a single amino acid change in the F. hepatica TRPMPZQ binding pocket, to mimic schistosome TRPMPZQ, confers PZQ sensitivity. After decades of clinical use, the molecular basis of PZQ action at a druggable TRP channel is resolved.


Assuntos
Anti-Helmínticos , Platelmintos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Humanos , Canais Iônicos/metabolismo , Praziquantel/metabolismo , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma/metabolismo
11.
PLoS Negl Trop Dis ; 15(9): e0009706, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473691

RESUMO

BACKGROUND: Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. METHODOLOGY/PRINCIPAL FINDINGS: Adult stage S. mekongi were treated with 0, 20, 40, or 100 µg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.


Assuntos
Anti-Helmínticos/administração & dosagem , Ácido Araquidônico/metabolismo , Praziquantel/administração & dosagem , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Animais , Resistência a Medicamentos , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Praziquantel/farmacologia , Schistosoma/genética , Schistosoma/crescimento & desenvolvimento , Esquistossomose/parasitologia
12.
Biomolecules ; 11(4)2021 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920436

RESUMO

Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of this pathogen needs to be explored. Bioactive peptides have been reported in several worms and play important roles in biological functions. Limited information is available on the S. mekongi peptidome. Therefore, this study aimed to identify S. mekongi peptides using in silico transcriptome mining and mass spectrometry approaches. Schistosoma peptide components were identified in adult worms, eggs, and infected mouse sera. Thirteen neuropeptide families were identified using in silico predictions from in-house transcriptomic databases of adult S. mekongi worms. Using mass spectrometry approaches, 118 peptides (from 54 precursor proteins) and 194 peptides (from 86 precursor proteins) were identified from adult worms and eggs, respectively. Importantly, eight unique peptides of the S. mekongi ubiquitin thioesterase, trabid, were identified in infected mouse sera 14, 28, and 56 days after infection. This protein may be a potential target for diagnosis of schistosomiasis. The S. mekongi peptide profiles determined in this study could be used for further drug and diagnostic development.


Assuntos
Proteínas de Helminto/genética , Schistosoma/genética , Esquistossomose/sangue , Transcriptoma , Animais , Proteínas de Helminto/sangue , Proteínas de Helminto/metabolismo , Camundongos , Óvulo/metabolismo , Schistosoma/crescimento & desenvolvimento , Schistosoma/metabolismo , Schistosoma/patogenicidade , Esquistossomose/parasitologia
13.
Front Immunol ; 12: 619776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692793

RESUMO

Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes (roundworms), have plagued humans persistently over a considerable period of time. It is now known that the degree of exposure to these and other pathogens inversely correlates with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. Accordingly, there has been recent increased interest in utilizing active helminth worm infections and helminth-derived products for the treatment of human autoimmune and inflammatory diseases and to alleviate disease severity. Indeed, there is an accumulating list of novel helminth derived molecules, including proteins, peptides, and microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease models. Here we consider the blood-dwelling schistosome flukes, which have evolved subtle immune regulatory mechanisms that promote parasite survival but at the same time minimize host tissue immunopathology. We review and discuss the recent advances in using schistosome infection and schistosome-derived products as therapeutics to treat or mitigate human immune-related disorders, including allergic asthma, arthritis, colitis, diabetes, sepsis, cystitis, and cancer.


Assuntos
Produtos Biológicos/farmacologia , Doenças do Sistema Imunitário/tratamento farmacológico , Fatores Imunológicos/farmacologia , Schistosoma/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Gerenciamento Clínico , Modelos Animais de Doenças , Humanos , Doenças do Sistema Imunitário/diagnóstico , Doenças do Sistema Imunitário/etiologia , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico , Imunomodulação/efeitos dos fármacos , Camundongos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Schistosoma/química
14.
Parasitol Res ; 120(1): 209-221, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33263166

RESUMO

Schistosomiasis is one of the most devastating parasitic disease in the world. Schistosoma spp. survive for decades within the vasculature of their human hosts. They have evolved a vast array of mechanisms to avoid the immune reaction of the host. Due to their sexual dimorphism, with the female worm lying within the gynecophoric canal of the male worm, it is the male that is exposed to the immediate environment and the soluble parts of the host's immune response. To understand how the worms are so successful in fending off the immune attacks of the host, comparative analyses of both worm sexes in human serum (with or without Praziquantel) were performed using scanning electron microscopy, transmission electron microscopy, and immunohistochemistry. Further, gene expression analyses of tegument-specific genes were performed. Following the incubation in human serum, males and females out of pairs show morphological changes such as an altered structure of the pits below the surface and an increased number of pits per area. In addition, female schistosomes presented a marked tuft-like repulsion of their opsonized surface. The observed resistance of females to Praziquantel seemed to depend on active proteins in the human serum. Moreover, different expression profiles of tegument-specific genes indicate different functions of female_single and male_single teguments in response to human serum. Our results indicate that female schistosomes developed different evasion strategies toward the host's immune system in comparison to males that might lead to more robustness and has to be taken into account for the development of new anti-schistosomal drugs.


Assuntos
Anti-Helmínticos/farmacologia , Proteínas de Helminto/metabolismo , Praziquantel/farmacologia , Schistosoma/efeitos dos fármacos , Soro/fisiologia , Animais , Resistência a Medicamentos , Feminino , Proteínas de Helminto/genética , Humanos , Evasão da Resposta Imune , Masculino , Schistosoma/metabolismo , Schistosoma/ultraestrutura , Fatores Sexuais
15.
Mol Biochem Parasitol ; 240: 111322, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961206

RESUMO

Morbidity associated with hepatic and urogenital schistosomiasis stems primarily from the host immune response directed against schistosome eggs. When eggs become entrapped in host tissues, the development of fibrotic plaques drives downstream pathology. These events occur due to the antigenic nature of egg excretory/secretory products (ESPs). Both Schistosoma mansoni and S. japonicum ESPs have been shown to interact with several cell populations in the host liver including hepatocytes, macrophages, and hepatic stellate cells, with both immunomodulatory and pathological consequences. Several protein components of the ESPs of S. mansoni and S. japonicum eggs have been characterised; however, studies into the collective contents of schistosome egg ESPs are lacking. Utilising shotgun mass spectrometry and an array of in silico analyses, we identified 266, 90 and 50 proteins within the S. mansoni, S. japonicum and S. haematobium egg secretomes respectively. We identified numerous proteins with already established immunomodulatory activities, vaccine candidates and vesicle markers. Relatively few common orthologues within the ESPs were identified by BLAST, indicating that the three egg secretomes differ in content significantly. Having a clearer understanding of these components may lead to the identification of new proteins with uncharacterised immunomodulatory potential or pathological relevance. This will enhance our understanding of host-parasite interactions, particularly those occurring during chronic schistosomiasis, and pave the way towards novel therapeutics and vaccines.


Assuntos
Proteínas de Helminto/metabolismo , Óvulo/metabolismo , Proteoma , Proteômica , Schistosoma/metabolismo , Esquistossomose/parasitologia , Animais , Biologia Computacional/métodos , Bases de Dados de Proteínas , Modelos Animais de Doenças , Ontologia Genética , Espectrometria de Massas , Camundongos , Proteômica/métodos
16.
Microbes Infect ; 22(10): 534-539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841730

RESUMO

Parasites of the genus Schistosoma are organisms capable of living for decades within the definitive host. They interfere with the immune response by interacting with host's receptors. In this review, we discuss from the first reports to the most recent discoveries regarding the ability of Schistosoma antigens in triggering intracellular receptors and inducing inflammasome activation.


Assuntos
Antígenos de Helmintos/metabolismo , Inflamassomos/metabolismo , Schistosoma/metabolismo , Animais , Células Dendríticas/metabolismo , Células Estreladas do Fígado/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteínas NLR/metabolismo , Óvulo , Piroptose , Schistosoma/imunologia , Esquistossomose/metabolismo , Esquistossomose/parasitologia
17.
Protoplasma ; 257(5): 1277-1287, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32462473

RESUMO

As part of the parasite's excretory/secretory system, extracellular vesicles (EVs) represent a potent communication tool of schistosomes with their human host to strike the balance between their own survival in a hostile immunological environment and a minimal damage to the host tissue. Their cargo consists of functional proteins, lipids, and nucleic acids that facilitate biological processes like migration, nutrient acquisition, or reproduction. The most important impact of the vesicle-mediated communication, however, is the promotion of the parasite survival via mimicking host protein function and directly or indirectly modulating the immune response of the host. Overcoming this shield of immunological adaption in the schistosome-host relation is the aim of current research activities in this field and crucial for the development of a reliable anti-schistosomal therapy. Not least because of their prospective use in clinical applications, research on EVs is now a rapidly expanding field. We herein focus on the current state of knowledge of vesicle-based communication of schistosomes and discussing the role of EVs in facilitating biological processes and immune modulatory properties of EVs considering the different life stages of the parasite.


Assuntos
Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno/genética , Parasitos/patogenicidade , Schistosoma/metabolismo , Animais , Humanos
18.
Artigo em Inglês | MEDLINE | ID: mdl-32315953

RESUMO

Human schistosomiasis is a disease which globally affects over 229 million people. Three major species affecting humans are Schistosoma mansoni, S. haematobium and S. japonicum. Previous treatment of S. mansoni includes the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The OXA activating enzyme was identified and crystallized, as being a S. mansoni sulfotransferase (SmSULT). S. haematobium and S. japonicum possess homologs of SmSULT (ShSULT and SjSULT) begging the question; why does oxamniquine fail to kill S. haematobium and S. japonicum adult worms? Investigation of the molecular structures of the sulfotransferases indicates that structural differences, specifically in OXA contact residues, do not abrogate OXA binding in the active sites as previously hypothesized. Data presented argue that the ability of SULTs to sulfate and thus activate OXA and its derivatives is linked to the ability of OXA to fit in the binding pocket to allow the transfer of a sulfur group.


Assuntos
Oxamniquine/farmacologia , Schistosoma/efeitos dos fármacos , Sulfotransferases/química , Animais , Estrutura Molecular , Schistosoma/metabolismo , Schistosoma haematobium/efeitos dos fármacos , Schistosoma haematobium/metabolismo , Schistosoma japonicum/efeitos dos fármacos , Schistosoma japonicum/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/metabolismo , Esquistossomicidas/farmacologia , Sulfotransferases/efeitos dos fármacos , Sulfotransferases/metabolismo
19.
Front Immunol ; 11: 624178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613562

RESUMO

Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.


Assuntos
Imunidade Adaptativa , Gastrópodes/parasitologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Schistosoma/imunologia , Esquistossomose mansoni/imunologia , Animais , Gastrópodes/imunologia , Humanos , Imunomodulação , Estágios do Ciclo de Vida , Pulmão/imunologia , Pulmão/parasitologia , Mimetismo Molecular , Mucinas/metabolismo , Oocistos/metabolismo , Proteoma , Schistosoma/crescimento & desenvolvimento , Schistosoma/metabolismo , Schistosoma/patogenicidade , Transcriptoma
20.
Curr Comput Aided Drug Des ; 16(4): 451-459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31284869

RESUMO

BACKGROUND: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. OBJECTIVE: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. METHODS: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it's missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. RESULTS: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. CONCLUSION: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


Assuntos
Oxamniquine/farmacologia , Pró-Fármacos/farmacologia , Schistosoma/enzimologia , Esquistossomicidas/farmacologia , Sulfotransferases/metabolismo , Animais , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxamniquine/metabolismo , Pró-Fármacos/metabolismo , Schistosoma/química , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Esquistossomicidas/metabolismo , Sulfotransferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA