Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.044
Filtrar
1.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950317

RESUMO

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Células Secretoras de Insulina , Insulina , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Humanos , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Insulina/metabolismo , Secreção de Insulina , Camundongos Knockout , Masculino , Adaptação Fisiológica
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999937

RESUMO

Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine that plays a critical role in insulin secretion, energy metabolism, and mitochondrial biogenesis. However, the action of serotonin in insulin production and secretion by pancreatic ß cells has not yet been elucidated. Here, we investigated how exogenous nanomolar serotonin concentrations regulate insulin synthesis and secretion in rat insulinoma INS-1E cells. Nanomolar serotonin concentrations (10 and 50 nM) significantly increased insulin protein expression above the constant levels in untreated control cells and decreased insulin protein levels in the media. The reductions in insulin protein levels in the media may be associated with ubiquitin-mediated protein degradation. The levels of membrane vesicle trafficking-related proteins including Rab5, Rab3A, syntaxin6, clathrin, and EEA1 proteins were significantly decreased by serotonin treatment compared to the untreated control cells, whereas the expressions of Rab27A, GOPC, and p-caveolin-1 proteins were significantly reduced by serotonin treatment. In this condition, serotonin receptors, Gαq-coupled 5-HT2b receptor (Htr2b), and ligand-gated ion channel receptor Htr3a were significantly decreased by serotonin treatment. To confirm the serotonylation of Rab3A and Rab27A during insulin secretion, we investigated the protein levels of Rab3A and Rab27A, in which transglutaminase 2 (TGase2) serotonylated Rab3A but not Rab27A. The increases in ERK phosphorylation levels were consistent with increases in the expression of p-Akt. Also, the expression level of the Bcl-2 protein was significantly increased by 50 and 100 nM serotonin treatment compared to the untreated control cells, whereas the levels of Cu/Zn-SOD and Mn-SOD proteins decreased. These results indicate that nanomolar serotonin treatment regulates the insulin protein level but decreases this level in media through membrane vesicle trafficking-related proteins (Rab5, Rab3A, syntaxin6, clathrin, and EEA1), the Akt/ERK pathway, and Htr2b/Htr3a in INS-1E cells.


Assuntos
Secreção de Insulina , Insulina , Insulinoma , Serotonina , Animais , Serotonina/metabolismo , Serotonina/farmacologia , Ratos , Insulinoma/metabolismo , Insulinoma/patologia , Secreção de Insulina/efeitos dos fármacos , Insulina/metabolismo , Linhagem Celular Tumoral , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000139

RESUMO

Epinephrine influences the function of pancreatic ß-cells, primarily through the α2A-adrenergic receptor (α2A-AR) on their plasma membrane. Previous studies indicate that epinephrine transiently suppresses insulin secretion, whereas prolonged exposure induces its compensatory secretion. Nonetheless, the impact of epinephrine-induced α2A-AR signaling on the survival and function of pancreatic ß-cells, particularly the impact of reprogramming after their removal from sustained epinephrine stimulation, remains elusive. In the present study, we applied MIN6, a murine insulinoma cell line, with 3 days of high concentration epinephrine incubation and 2 days of standard incubation, explored cell function and activity, and analyzed relevant regulatory pathways. The results showed that chronic epinephrine incubation led to the desensitization of α2A-AR and enhanced insulin secretion. An increased number of docked insulin granules and impaired Syntaxin-2 was found after chronic epinephrine exposure. Growth curve and cell cycle analyses showed the inhibition of cell proliferation. Transcriptome analysis showed the occurrence of endoplasmic reticulum stress (ER stress) and oxidative stress, such as the presence of BiP, CHOP, IRE1, ATF4, and XBP, affecting cellular endoplasmic reticulum function and survival, along with UCP2, OPA1, PINK, and PRKN, associated with mitochondrial dysfunction. Consequently, we conclude that chronic exposure to epinephrine induces α2A-AR desensitization and leads to ER and oxidative stress, impairing protein processing and mitochondrial function, leading to modified pancreatic ß-cell secretory function and cell fate.


Assuntos
Estresse do Retículo Endoplasmático , Epinefrina , Células Secretoras de Insulina , Insulina , Estresse Oxidativo , Animais , Epinefrina/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
4.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954536

RESUMO

BACKGROUND: Nephrin is a transmembrane protein with well-established signaling roles in kidney podocytes, and a smaller set of secretory functions in pancreatic ß cells are implicated in diabetes. Nephrin signaling is mediated in part through its 3 cytoplasmic YDxV motifs, which can be tyrosine phosphorylated by high glucose and ß cell injuries. Although in vitro studies demonstrate these phosphorylated motifs can regulate ß cell vesicle trafficking and insulin release, in vivo evidence of their role in this cell type remains to be determined. METHODS: To further explore the role of nephrin YDxV phosphorylation in ß cells, we used a mouse line with tyrosine to phenylalanine substitutions at each YDxV motif (nephrin-Y3F) to inhibit phosphorylation. We assessed islet function via primary islet glucose-stimulated insulin secretion assays and oral glucose tolerance tests. RESULTS: Nephrin-Y3F mice successfully developed pancreatic endocrine and exocrine tissues with minimal structural differences. Unexpectedly, male and female nephrin-Y3F mice showed elevated insulin secretion, with a stronger increase observed in male mice. At 8 months of age, no differences in glucose tolerance were observed between wild-type (WT) and nephrin-Y3F mice. However, aged nephrin-Y3F mice (16 months of age) demonstrated more rapid glucose clearance compared to WT controls. CONCLUSION: Taken together, loss of nephrin YDxV phosphorylation does not alter baseline islet function. Instead, our data suggest a mechanism linking impaired nephrin YDxV phosphorylation to improved islet secretory ability with age. Targeting nephrin phosphorylation could provide novel therapeutic opportunities to improve ß cell function.


Assuntos
Teste de Tolerância a Glucose , Secreção de Insulina , Células Secretoras de Insulina , Insulina , Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fosforilação , Camundongos , Masculino , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Feminino , Insulina/metabolismo , Tirosina/metabolismo , Envelhecimento/metabolismo , Intolerância à Glucose/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo
5.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953181

RESUMO

Neprilysin is a ubiquitous peptidase that can modulate glucose homeostasis by cleaving insulinotropic peptides. While global deletion of neprilysin protects mice against high-fat diet (HFD)-induced insulin secretory dysfunction, strategies to ablate neprilysin in a tissue-specific manner are favored to limit off-target effects. Since insulinotropic peptides are produced in the gut, we sought to determine whether gut-specific neprilysin deletion confers beneficial effects on insulin secretion similar to that of global neprilysin deletion in mice fed a HFD. Mice with conditional deletion of neprilysin in enterocytes (NEPGut-/-) were generated by crossing Vil-Cre and floxed neprilysin mice. Neprilysin activity was almost abolished throughout the gut in NEPGut-/- mice, and was similar in plasma, pancreas, and kidney in NEPGut-/- vs control mice. An oral glucose tolerance test was performed at baseline and following 14 weeks of HFD feeding, during which glucose tolerance and glucose-stimulated insulin secretion (GSIS) were assessed. Despite similar body weight gain at 14 weeks, NEPGut-/- displayed lower fasting plasma glucose levels, improved glucose tolerance, and increased GSIS compared to control mice. In conclusion, gut-specific neprilysin deletion recapitulates the enhanced GSIS seen with global neprilysin deletion in HFD-fed mice. Thus, strategies to inhibit neprilysin specifically in the gut may protect against fat-induced glucose intolerance and beta-cell dysfunction.


Assuntos
Dieta Hiperlipídica , Secreção de Insulina , Insulina , Neprilisina , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Enterócitos/metabolismo , Deleção de Genes , Teste de Tolerância a Glucose , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neprilisina/genética , Neprilisina/metabolismo
6.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959864

RESUMO

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Proteômica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Feminino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , Nutrientes/metabolismo , Adulto , Glucose/metabolismo , Idoso , Ácidos Graxos/metabolismo
7.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013634

RESUMO

INTRODUCTION: In this systematic review, we investigated the diagnostic accuracy of surrogate measures of insulin secretion based on fasting samples and the oral glucose tolerance test (OGTT). The first phase of insulin secretion was calculated using two gold standard methods; the hyperglycemic clamp (HGC) test and intravenous glucose tolerance test (IVGTT). RESEARCH DESIGN AND METHODS: We conducted searches in the PubMed, Cochrane Central, and Web of Science databases, the last of which was conducted at the end of June 2021. Studies were included that measured first-phase insulin secretion in adults using both a gold-standard reference method (either HGC or IVGTT) and one or more surrogate measures from either fasting samples, OGTT or a meal-tolerance test. QUADAS-2, a revised tool for the quality assessment of diagnostic accuracy studies, was used for quality assessment. Random-effects meta-analyses were performed to examine the correlation between first-phase measured with gold standard and surrogate methods. RESULTS: A total of 33 articles, encompassing 5362 individuals with normal glucose tolerance, pre-diabetes or type 2 diabetes, were included in our systematic review. Homeostatic model assessment (HOMA)-beta and Insulinogenic Index 30 (IGI(30)) were the surrogate measures validated in the largest number of studies (17 and 13, respectively). HOMA-beta's pooled correlation to the reference methods was 0.48 (95% CI 0.40 to 0.56) The pooled correlation of IGI to the reference methods was 0.61 (95% CI 0.54 to 0.68). The surrogate measures with the highest correlation to the reference methods were Kadowaki (0.67 (95% CI 0.61 to 0.73)) and Stumvoll's first-phase secretion (0.65 (95% CI 0.58 to 0.71)), both calculated from an OGTT. CONCLUSIONS: Surrogate measures from the first 30 min of an OGTT capture the first phase of insulin secretion and are a good choice for epidemiological studies. HOMA-beta has a moderate correlation to the reference methods but is not a measure of the first phase specifically. PROSPERO REGISTRATION NUMBER: The meta-analysis was registered at PROSPERO (Id: CRD42020169064) before inclusion started.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Secreção de Insulina , Insulina , Humanos , Teste de Tolerância a Glucose/métodos , Insulina/sangue , Insulina/metabolismo , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Biomarcadores/análise , Biomarcadores/sangue , Resistência à Insulina , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/sangue
8.
Front Endocrinol (Lausanne) ; 15: 1395028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989001

RESUMO

Introduction: Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods: Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results: Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion: The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.


Assuntos
Glucose , Secreção de Insulina , Insulina , Animais , Secreção de Insulina/efeitos dos fármacos , Glucose/metabolismo , Ratos , Humanos , Insulina/metabolismo , Camundongos , Masculino , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , AMP Cíclico/metabolismo , Cálcio/metabolismo
9.
PLoS One ; 19(6): e0303934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875221

RESUMO

The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.


Assuntos
Glucoquinase , Transportador de Glucose Tipo 2 , Glucose , Células Secretoras de Insulina , Fator de Crescimento Neural , Animais , Masculino , Ratos , Células Cultivadas , Glucoquinase/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Ratos Wistar
10.
BMJ Open Diabetes Res Care ; 12(3)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901858

RESUMO

INTRODUCTION: We designed and implemented a patient-centered, data-driven, holistic care model with evaluation of its impacts on clinical outcomes in patients with young-onset type 2 diabetes (T2D) for which there is a lack of evidence-based practice guidelines. RESEARCH DESIGN AND METHODS: In this 3-year Precision Medicine to Redefine Insulin Secretion and Monogenic Diabetes-Randomized Controlled Trial, we evaluate the effects of a multicomponent care model integrating use of information and communication technology (Joint Asia Diabetes Evaluation (JADE) platform), biogenetic markers and patient-reported outcome measures in patients with T2D diagnosed at ≤40 years of age and aged ≤50 years. The JADE-PRISM group received 1 year of specialist-led team-based management using treatment algorithms guided by biogenetic markers (genome-wide single-nucleotide polymorphism arrays, exome-sequencing of 34 monogenic diabetes genes, C-peptide, autoantibodies) to achieve multiple treatment goals (glycated hemoglobin (HbA1c) <6.2%, blood pressure <120/75 mm Hg, low-density lipoprotein-cholesterol <1.2 mmol/L, waist circumference <80 cm (women) or <85 cm (men)) in a diabetes center setting versus usual care (JADE-only). The primary outcome is incidence of all diabetes-related complications. RESULTS: In 2020-2021, 884 patients (56.6% men, median (IQR) diabetes duration: 7 (3-12) years, current/ex-smokers: 32.5%, body mass index: 28.40±5.77 kg/m2, HbA1c: 7.52%±1.66%, insulin-treated: 27.7%) were assigned to JADE-only (n=443) or JADE-PRISM group (n=441). The profiles of the whole group included positive family history (74.7%), general obesity (51.4%), central obesity (79.2%), hypertension (66.7%), dyslipidemia (76.4%), albuminuria (35.4%), estimated glomerular filtration rate <60 mL/min/1.73 m2 (4.0%), retinopathy (13.8%), atherosclerotic cardiovascular disease (5.2%), cancer (3.1%), emotional distress (26%-38%) and suboptimal adherence (54%) with 5-item EuroQol for Quality of Life index of 0.88 (0.87-0.96). Overall, 13.7% attained ≥3 metabolic targets defined in secondary outcomes. In the JADE-PRISM group, 4.5% had pathogenic/likely pathogenic variants of monogenic diabetes genes; 5% had autoantibodies and 8.4% had fasting C-peptide <0.2 nmol/L. Other significant events included low/large birth weight (33.4%), childhood obesity (50.7%), mental illness (10.3%) and previous suicide attempts (3.6%). Among the women, 17.3% had polycystic ovary syndrome, 44.8% required insulin treatment during pregnancy and 17.3% experienced adverse pregnancy outcomes. CONCLUSIONS: Young-onset diabetes is characterized by complex etiologies with comorbidities including mental illness and lifecourse events. TRIAL REGISTRATION NUMBER: NCT04049149.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Medicina de Precisão , Humanos , Feminino , Masculino , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Adulto , Medicina de Precisão/métodos , Pessoa de Meia-Idade , China/epidemiologia , Idade de Início , Adulto Jovem , Insulina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Seguimentos , Glicemia/análise , Hemoglobinas Glicadas/análise , Povo Asiático , Biomarcadores/análise , Prognóstico , População do Leste Asiático
11.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850534

RESUMO

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Insulina/metabolismo , Feminino , Secreção de Insulina/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Glucagon/metabolismo , Glucose/metabolismo , Autoanticorpos/imunologia , Amilases/metabolismo
12.
Biomolecules ; 14(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927074

RESUMO

Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine ß-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using ß-cell lines (MIN6, ß-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of ß-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction.


Assuntos
Cistationina beta-Sintase , Interleucina-6 , Fator de Transcrição STAT3 , Tacrolimo , Humanos , Fator de Transcrição STAT3/metabolismo , Tacrolimo/farmacologia , Interleucina-6/metabolismo , Animais , Camundongos , Feminino , Cistationina beta-Sintase/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Janus Quinase 2/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Menstruação/sangue , Menstruação/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Transdução de Sinais/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Linhagem Celular
13.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928038

RESUMO

Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Secreção de Insulina , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Secreção de Insulina/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Animais , Regulação Alostérica/efeitos dos fármacos , Ratos , Humanos , Insulina/metabolismo , Glucose/metabolismo , AMP Cíclico/metabolismo , Linhagem Celular , Hipoglicemiantes/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo
14.
Cell Metab ; 36(6): 1169-1171, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838638

RESUMO

In this issue of Cell Metabolism, Fang et al.1 report a novel pH-sensitive cellular signaling mechanism involving the transcription factor SMAD5 that regulates the vesicular secretion of insulin from pancreatic ß cells in response to dietary challenges. Dysregulation of this pathway may contribute to metabolic disorders such as type 2 diabetes mellitus.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina , Insulina , Transdução de Sinais , Proteína Smad5 , Insulina/metabolismo , Animais , Células Secretoras de Insulina/metabolismo , Proteína Smad5/metabolismo , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Concentração de Íons de Hidrogênio
15.
J ASEAN Fed Endocr Soc ; 39(1): 79-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863915

RESUMO

Background: Insulinoma is one of the causes of recurrent hypoglycemia, one of the chief complaints for emergency department admission. The gold standard in diagnosing insulinoma is a 72-hour fasting test which is inconvenient and inefficient as it requires hospitalization. Research has found that measurement of insulin and C-peptide during OGTT may help diagnose insulinoma. We aimed to assess the diagnostic value of OGTT in diagnosing insulinoma. Methodology: The literature search was conducted on 19 August 2022 using several databases (MEDLINE, Scopus, Embase, and ScienceDirect). All studies that measured OGTT as diagnostic tools in diagnosing insulinoma and 72-hour fasting test as reference standard were included. The quality assessment of the selected studies was based on the Centre of Evidence-Based Medicine University of Oxford and the Quality Assessment of Diagnostic Accuracy-2 tool (QUADAS-2). Analysis of the included studies was performed qualitatively. This study was registered on PROSPERO (CRD42022360205). Results: A total of two case-control studies (106 patients) were included, which were at risk of bias and low concern of applicability. Both studies demonstrated that the combination of insulin and C-peptide levels measured during OGTT had high specificity, sensitivity, positive predictive value, and negative predictive value in diagnosing insulinoma compared to the reference standard. A logistic regression model of 8.305 - (0.441 × insulin 2-h/0-h) - (1.679 × C-peptide 1-h/0-h) >0.351 has the highest diagnostic value in one study (AUC 0.97, Sensitivity 86.5%, Specificity 95.2%, PPV 94.1, NPV 88.9). Conclusion: The measurement of 0-h and 2-h insulin and C-peptide levels during 2-h OGTT was found in two small case-control studies with a total of 106 patients to have good sensitivity and specificity. However, due to these limitations, future research is still needed to validate the potential use of OGTT for the diagnosis of insulinoma.


Assuntos
Peptídeo C , Teste de Tolerância a Glucose , Insulina , Insulinoma , Neoplasias Pancreáticas , Humanos , Peptídeo C/sangue , Insulinoma/diagnóstico , Insulinoma/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Insulina/sangue , Insulina/metabolismo , Sensibilidade e Especificidade , Secreção de Insulina
16.
Trends Endocrinol Metab ; 35(6): 466-477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861922

RESUMO

The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.


Assuntos
Secreção de Insulina , Insulina , Humanos , Secreção de Insulina/fisiologia , Insulina/metabolismo , Animais , Homeostase/fisiologia , Incretinas/metabolismo , Glicemia/metabolismo
17.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892240

RESUMO

A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.


Assuntos
Glucagon , Glucose , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Glucose/metabolismo , Animais , Insulina/metabolismo , Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Ácidos Graxos/metabolismo , Ratos , Palmitatos/metabolismo , Palmitatos/farmacologia , Oxirredução/efeitos dos fármacos
18.
Front Endocrinol (Lausanne) ; 15: 1414447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915897

RESUMO

Type 2 diabetes (T2D) is a polygenic metabolic disorder characterized by insulin resistance in peripheral tissues and impaired insulin secretion by the pancreas. While the decline in insulin production and secretion was previously attributed to apoptosis of insulin-producing ß-cells, recent studies indicate that ß-cell apoptosis rates are relatively low in diabetes. Instead, ß-cells primarily undergo dedifferentiation, a process where they lose their specialized identity and transition into non-functional endocrine progenitor-like cells, ultimately leading to ß-cell failure. The underlying mechanisms driving ß-cell dedifferentiation remain elusive due to the intricate interplay of genetic factors and cellular stress. Understanding these mechanisms holds the potential to inform innovative therapeutic approaches aimed at reversing ß-cell dedifferentiation in T2D. This review explores the proposed drivers of ß-cell dedifferentiation leading to ß-cell failure, and discusses current interventions capable of reversing this process, thus restoring ß-cell identity and function.


Assuntos
Desdiferenciação Celular , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/citologia , Desdiferenciação Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Animais , Diferenciação Celular/fisiologia , Apoptose/fisiologia , Secreção de Insulina/fisiologia
19.
Sci Rep ; 14(1): 13608, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871849

RESUMO

Transplantation of stem cell-derived ß-cells is a promising therapeutic advancement in the treatment of type 1 diabetes mellitus. A current limitation of this approach is the long differentiation timeline that generates a heterogeneous population of pancreatic endocrine cells. To address this limitation, an inducible lentiviral overexpression system of mature ß-cell markers was introduced into human induced-pluripotent stem cells (hiPSCs). Following the selection of the successfully transduced hiPSCs, the cells were treated with doxycycline in the pancreatic progenitor induction medium to support their transition toward the pancreatic lineage. Cells cultured with doxycycline presented the markers of interest, NGN3, PDX1, and MAFA, after five days of culture, and glucose-stimulated insulin secretion assays demonstrated that the cells were glucose-responsive in a monolayer culture. When cultured as a spheroid, the markers of interest and insulin secretion in a static glucose-stimulated insulin secretion assay were maintained; however, insulin secretion upon consecutive glucose challenges was limited. Comparison to human fetal and adult donor tissues identified that although the hiPSC-derived spheroids present similar markers to adult insulin-producing cells, they are functionally representative of fetal development. Together, these results suggest that with optimization of the temporal expression of these markers, forward programming of hiPSCs towards insulin-producing cells could be a possible alternative for islet transplantation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas de Homeodomínio , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Fatores de Transcrição Maf Maior , Proteínas do Tecido Nervoso , Transativadores , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Transativadores/metabolismo , Transativadores/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Maf Maior/metabolismo , Fatores de Transcrição Maf Maior/genética , Insulina/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Cultivadas , Doxiciclina/farmacologia
20.
Mol Biol Rep ; 51(1): 748, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874843

RESUMO

Background this study was conducted to assess the effects of vitamin D on differentiation of bone marrow- derived mesenchymal stem cells (BM-MSCs) into insulin producing cells (IPCs). Method BM-MSCs were isolated from femur and tibia of rats and incubated in low (LG) or high glucose (HG) (5mM or 25mM), or high glucose DMEM media supplemented with vitamin D (0.2nM) (HGD) for 14 days. Cells viability was analysis by MTT assay. Differentiation of SCs was confirmed using measuring genes expression level of pdx1 and insulin, and insulin secretion, glucose stimulated insulin secretion, and insulin content by ELISA method. Results Cell viability was significantly higher in HGD than LG (p < 0.05) in day 3, also, in HG and HGD than LG (p < 0.001), and HGD vs. HG (p < 0.001) in day 7. Pdx1 and insulin level was markedly higher in HGD than LG (p < 0.05 and p < 0.01). pdx1 expression was markedly higher in HGD (p < 0.05) than LG, also insulin expression the HG (p < 0.05), and HGD (p < 0.01) groups compared to the LG group. Insulin release at 5mM glucose was notably higher in the HGD group compared to LG (p < 0.05), and at 25mM glucose, both HG and HGD showed significant increases vs. LG (p < 0.05 and p < 0.01, respectively). Insulin content was significantly higher in both 5mM and 25mM glucose for HG and HGD vs. LG (p < 0.01 and p < 0.001, respectively). In conclusion, treatment BM-MSCs with vitamin D could increase their differentiation into IPCs and it can be considered as a potential supplementary agent in enhancing differentiation SCs into insulin generating cells.


Assuntos
Células da Medula Óssea , Diferenciação Celular , Células Secretoras de Insulina , Insulina , Células-Tronco Mesenquimais , Vitamina D , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Vitamina D/farmacologia , Vitamina D/metabolismo , Ratos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/citologia , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Masculino , Transativadores/metabolismo , Transativadores/genética , Suplementos Nutricionais , Secreção de Insulina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA