Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1119888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122711

RESUMO

Introduction: Growth hormone secretagogues (GHSs) exert multiple actions, being able to activate GHS-receptor 1a, control inflammation and metabolism, to enhance GH/insulin-like growth factor-1 (IGF-1)-mediated myogenesis, and to inhibit angiotensin-converting enzyme. These mechanisms are of interest for potentially targeting multiple steps of pathogenic cascade in Duchenne muscular dystrophy (DMD). Methods: Here, we aimed to provide preclinical evidence for potential benefits of GHSs in DMD, via a multidisciplinary in vivo and ex vivo comparison in mdx mice, of two ad hoc synthesized compounds (EP80317 and JMV2894), with a wide but different profile. 4-week-old mdx mice were treated for 8 weeks with EP80317 or JMV2894 (320 µg/kg/d, s.c.). Results: In vivo, both GHSs increased mice forelimb force (recovery score, RS towards WT: 20% for EP80317 and 32% for JMV2894 at week 8). In parallel, GHSs also reduced diaphragm (DIA) and gastrocnemius (GC) ultrasound echodensity, a fibrosis-related parameter (RS: ranging between 26% and 75%). Ex vivo, both drugs ameliorated DIA isometric force and calcium-related indices (e.g., RS: 40% for tetanic force). Histological analysis highlighted a relevant reduction of fibrosis in GC and DIA muscles of treated mice, paralleled by a decrease in gene expression of TGF-ß1 and Col1a1. Also, decreased levels of pro-inflammatory genes (IL-6, CD68), accompanied by an increment in Sirt-1, PGC-1α and MEF2c expression, were observed in response to treatments, suggesting an overall improvement of myofiber metabolism. No detectable transcript levels of GHS receptor-1a, nor an increase of circulating IGF-1 were found, suggesting the presence of a novel receptor-independent mechanism in skeletal muscle. Preliminary docking studies revealed a potential binding capability of JMV2894 on metalloproteases involved in extracellular matrix remodeling and cytokine production, such as ADAMTS-5 and MMP-9, overactivated in DMD. Discussion: Our results support the interest of GHSs as modulators of pathology progression in mdx mice, disclosing a direct anti-fibrotic action that may prove beneficial to contrast pathological remodeling.


Assuntos
Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Distrofia Muscular de Duchenne , Secretagogos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Fibrose , Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/uso terapêutico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Secretagogos/metabolismo , Camundongos Endogâmicos mdx , Animais , Camundongos , Masculino , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/uso terapêutico
2.
Front Immunol ; 14: 1155740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228611

RESUMO

Mast cells play an important role in disease pathogenesis by secreting immunomodulatory molecules. Mast cells are primarily activated by the crosslinking of their high affinity IgE receptors (FcεRI) by antigen bound immunoglobulin (Ig)E antibody complexes. However, mast cells can also be activated by the mas related G protein-coupled receptor X2 (MRGPRX2), in response to a range of cationic secretagogues, such as substance P (SP), which is associated with pseudo-allergic reactions. We have previously reported that the in vitro activation of mouse mast cells by basic secretagogues is mediated by the mouse orthologue of the human MRGPRX2, MRGPRB2. To further elucidate the mechanism of MRGPRX2 activation, we studied the time-dependent internalization of MRGPRX2 by human mast cells (LAD2) upon stimulation with the neuropeptide SP. In addition, we performed computational studies to identify the intermolecular forces that facilitate ligand-MRGPRX2 interaction using SP. The computational predictions were tested experimentally by activating LAD2 with SP analogs, which were missing key amino acid residues. Our data suggest that mast cell activation by SP causes internalization of MRGPRX2 within 1 min of stimulation. Hydrogen bonds (h-bonds) and salt bridges govern the biding of SP to MRGPRX2. Arg1 and Lys3 in SP are key residues that are involved in both h-bonding and salt bridge formations with Glu164 and Asp184 of MRGPRX2, respectively. In accordance, SP analogs devoid of key residues (SP1 and SP2) failed to activate MRGPRX2 degranulation. However, both SP1 and SP2 caused a comparable release of chemokine CCL2. Further, SP analogs SP1, SP2 and SP4 did not activate tumor necrosis factor (TNF) production. We further show that SP1 and SP2 limit the activity of SP on mast cells. The results provide important mechanistic insight into the events that result in mast cell activation through MRGPRX2 and highlight the important physiochemical characteristics of a peptide ligand that facilitates ligand-MRGPRX2 interactions. The results are important in understanding activation through MRGPRX2, and the intermolecular forces that govern ligand-MRGPRX2 interaction. The elucidation of important physiochemical properties within a ligand that are needed for receptor interaction will aid in designing novel therapeutics and antagonists for MRGPRX2.


Assuntos
Mastócitos , Substância P , Humanos , Animais , Camundongos , Substância P/metabolismo , Secretagogos/metabolismo , Ligantes , Imunoglobulina E/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo
3.
Arch Pharm Res ; 45(9): 644-657, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36183260

RESUMO

Mast cells play essential role in allergic reactions through the process called mast cell degranulation. Recent studies have found that a basic secretagogue compound 48/80 (C48/80) induces non-IgE-mediated mast cell degranulation via activation of human Mas-related G protein-coupled receptor X2 (MRGPRX2) and mouse MrgprB2. Although previous studies have revealed that caffeic acid (CA) and its derivatives possess anti-allergic effects via IgE-dependent manner, it is largely elusive whether these compounds have impact on MRGPRX2/MrgprB2 to exert inhibitory effects. Therefore, the present study investigated whether CA as well as its derivatives - rosmarinic acid (RA) and caffeic acid phenethyl ester (CAPE) - has the ability to inhibit the activity of MRGPRX2/MrgprB2 to evoke pseudo-allergic effects. As a result, it was found that CAPE inhibits C48/80-induced activation of MRGPRX2/MrgprB2, but neither CA nor RA showed discernible inhibition. Furthermore, the ß-hexosaminidase release assay showed that CAPE inhibits mouse peritoneal mast cell degranulation in both IgE-dependent and MrgprB2-dependent manners. Additionally, mouse paw edema induced by C48/80 was dramatically suppressed by co-treatment of CAPE, suggesting that CAPE possesses a protective effect on C48/80-evoked pseudo-allergic reactions. The pretreatment of CAPE also significantly decreased scratching bouts of mice evoked by C48/80, demonstrating that CAPE also has an anti-pruritic effect. Therefore, these data implicate that CAPE can suppress pseudo-allergic reactions evoked by C48/80 via MrgprB2-dependent manner. Finally, molecular docking analysis showed that CAPE is predicted to bind to human MRGPRX2 in the region where C48/80 also binds, implying that CAPE can be a competitive inhibitor of MRGPRX2. In conclusion, it is found that CAPE has the ability to inhibit MRGPRX2/MrgprB2, leading to the prevention of mast cell degranulation and further to the alleviation of mast cell reactions. These results indicate that CAPE as a CA derivative could be developed as a new protective agent that exerts dual inhibition of mast cell degranulation mediated by IgE and MRGPRX2/MrgprB2.


Assuntos
Antialérgicos , Hipersensibilidade , Animais , Antialérgicos/farmacologia , Ácidos Cafeicos , Degranulação Celular , Humanos , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Álcool Feniletílico/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Secretagogos/metabolismo , Secretagogos/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/farmacologia , p-Metoxi-N-metilfenetilamina/metabolismo , p-Metoxi-N-metilfenetilamina/farmacologia
4.
Free Radic Biol Med ; 190: 124-147, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963563

RESUMO

In our previous study, a novel BMP2 secretagogue was synthesized belonging to a class of galloyl conjugates of flavanones, with remarkable osteogenic potential that promoted bone regeneration. We aimed to establish the protective effect of our compound against bone loss that co-exists with excess Glucocorticoid (GC) therapy. GC therapy induces osteoblast damage leading to apoptosis by increasing reactive oxygen species (ROS). Our results delineate that compound 5e (a BMP2 secretagogue) activates NRF2 signalling to counter the disturbed cellular redox homeostasis and escalate osteoblast survival as assessed by Western blot and immunocytochemistry. Depletion of NRF2 by siRNA blocked activation of the NRF2/HO-1 pathway, magnified oxidative stress, increased apoptosis and abrogated the protective effects of compound 5e. 5e, on the other hand, increased ALP, mineralization activity, and promoted osteoblast differentiation by activating WNT/ß-catenin signalling in BMP2 dependent manner, validated by Western blot of WNT3A, SOST, GSK3-ß and ß-catenin nuclear translocation. Treatment of 5e in presence of BMP inhibitor noggin attenuated the osteogenic efficacy and minimized Wnt//ß-catenin signalling in presence of dexamethasone. Our compound prevents GC challenged trabecular and cortical bone loss assessed by micro-CT and promotes bone formation and osteocyte survival determined by calcein labelling and TUNEL assay in GC treated animals. The osteogenic potential of the compound was authenticated by bone turnover markers. On a concluding note, compounds with BMP upregulation can be potential therapeutics for the prevention and treatment of glucocorticoid-induced osteoporosis.


Assuntos
Osteogênese , beta Catenina , Animais , Diferenciação Celular , Glucocorticoides/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese/genética , Estresse Oxidativo , Secretagogos/metabolismo , Secretagogos/farmacologia , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
5.
Antioxid Redox Signal ; 36(13-15): 920-952, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34180254

RESUMO

Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub ß-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Secretagogos/metabolismo
6.
Rapid Commun Mass Spectrom ; 35(23): e9201, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34542924

RESUMO

RATIONALE: Interest in growth hormone secretagogues has intensified during the past several years based on capable, ever-widening investigational applications of recombinant growth hormone in animals and humans. Ibutamoren is a potent, long-acting, selective and orally active non-peptide growth hormone secretagogue, which has a great potential for abuse as a performance-enhancing agent in sports. METHODS: To support drug metabolism and pharmacokinetic studies of chiral pharmaceuticals, it is necessary to combine the resolving power of high-performance liquid chromatography with the sensitivity of mass spectrometric techniques. This paper describes the metabolic conversion of ibutamoren using equine liver microsomes and metabolite characterization using a QExactive high-resolution mass spectrometer. RESULTS: A total of 32 metabolites for ibutamoren (20 phase I and 12 phase II) were detected. The important findings of the current research are as follows: (1) the growth hormone secretagogue ibutamoren was prone to oxidation, resulting in corresponding hydroxylated metabolites; (2) in ibutamoren, the dissociation of the phenyl ring and 2-amino-2-methylpropanamide side chain was also observed; (3) the glucuronic acid conjugates of mono-, di- and trihydroxylated analogues were detected; and (4) no sulfonic acid conjugated metabolites were observed in this study of ibutamoren. CONCLUSIONS: The reported data help in the speedy detection of the growth hormone secretagogue ibutamoren and reveal its illegal use in competitive sports.


Assuntos
Indóis , Microssomos Hepáticos/metabolismo , Secretagogos , Compostos de Espiro , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Dopagem Esportivo , Cavalos , Indóis/análise , Indóis/química , Indóis/metabolismo , Secretagogos/análise , Secretagogos/química , Secretagogos/metabolismo , Compostos de Espiro/análise , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas
7.
Mol Metab ; 53: 101327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428557

RESUMO

OBJECTIVE: The hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a recently identified antagonist and an inverse agonist of the growth hormone secretagogue receptor (GHSR). GHSR's other well-known endogenous ligand, acyl-ghrelin, increases food intake, body weight, and GH secretion and is lowered in obesity but elevated upon fasting. In contrast, LEAP2 reduces acyl-ghrelin-induced food intake and GH secretion and is found elevated in obesity but lowered upon fasting. Thus, the plasma LEAP2/acyl-ghrelin molar ratio could be a key determinant modulating GHSR signaling in response to changes in body mass and feeding status. In particular, LEAP2 may serve to dampen acyl-ghrelin action in the setting of obesity, which is associated with ghrelin resistance. Here, we sought to determine the metabolic effects of genetic LEAP2 deletion. METHODS: We generated the first known LEAP2-KO mouse line. Food intake, GH secretion, and cellular activation (c-fos induction) in different brain regions following s.c. acyl-ghrelin administration in LEAP2-KO mice and wild-type littermates were determined. LEAP2-KO mice and wild-type littermates were submitted to a battery of tests (such as measurements of body weight, food intake, and body composition; indirect calorimetry, determination of locomotor activity, and meal patterning while housed in metabolic cages) over the course of 16 weeks of high-fat diet and/or standard chow feeding. Fat accumulation was assessed in hematoxylin & eosin-stained and oil red O-stained liver sections from these mice. RESULTS: LEAP2-KO mice were more sensitive to s.c. ghrelin. In particular, acyl-ghrelin acutely stimulated food intake at a dose of 0.5 mg/kg BW in standard chow-fed LEAP2-KO mice while a 2× higher dose was required by wild-type littermates. Also, acyl-ghrelin stimulated food intake at a dose of 1 mg/kg BW in high-fat diet-fed LEAP2-KO mice while not even a 10× higher dose was effective in wild-type littermates. Acyl-ghrelin induced a 90.9% higher plasma GH level and 77.2-119.7% higher numbers of c-fos-immunoreactive cells in the arcuate nucleus and olfactory bulb, respectively, in LEAP2-KO mice than in wild-type littermates. LEAP2 deletion raised body weight (by 15.0%), food intake (by 18.4%), lean mass (by 6.1%), hepatic fat (by 42.1%), and body length (by 1.7%) in females on long-term high-fat diet as compared to wild-type littermates. After only 4 weeks on the high-fat diet, female LEAP2-KO mice exhibited lower O2 consumption (by 13%), heat production (by 9.5%), and locomotor activity (by 49%) than by wild-type littermates during the first part of the dark period. These genotype-dependent differences were not observed in high-fat diet-exposed males or female and male mice exposed for long term to standard chow diet. CONCLUSIONS: LEAP2 deletion sensitizes lean and obese mice to the acute effects of administered acyl-ghrelin on food intake and GH secretion. LEAP2 deletion increases body weight in females chronically fed a high-fat diet as a result of lowered energy expenditure, reduced locomotor activity, and increased food intake. Furthermore, in female mice, LEAP2 deletion increases body length and exaggerates the hepatic fat accumulation normally associated with chronic high-fat diet feeding.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Grelina/análogos & derivados , Secretagogos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/deficiência , Peptídeos Catiônicos Antimicrobianos/genética , Dieta Hiperlipídica/efeitos adversos , Feminino , Grelina/administração & dosagem , Grelina/metabolismo , Hormônio do Crescimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Front Immunol ; 11: 564953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281812

RESUMO

A hallmark of enteroaggregative Escherichia coli (EAEC) infection is the formation of an intestinal biofilm, which comprises a mucus layer with immersed bacteria. Pic is an autotransporter secreted by EAEC, and other E. coli pathotypes, and has been involved in two apparently contradictory phenotypes, as a mucus secretagogue and as a mucinase. Here, we investigated this Pic dual activity, mucus secretagogue capability and mucinolytic activity, in human goblet cells that secrete MUC2 and MUC5AC. Pic induced mucus hypersecretion directly in the goblet cells, without other intestinal cell types involved. At the same time, Pic exhibited strong proteolytic activity on the secreted mucins. These activities were independent since a mutation in the serine protease motif (PicS258I) abolished mucin degradation while maintaining the mucus secretagogue activity intact. Furthermore, deoxycholic acid (DCA)-induced mucins were proteolytically degraded when goblet cells were co-incubated with DCA/Pic, while co-incubation with DCA/PicS258I induced a synergistic effect on mucus hypersecretion. Pic was more efficient degrading MUC5AC than MUC2, but no degradation was detected with Pic inactivated at the active site by mutation or pharmacological inhibition. Remarkably, Pic cleaved MUC2 and MUC5AC in the C-terminal domain, leaving N-terminal subproducts, impacting the feature of gel-forming mucins and allowing mucus layer penetration by EAEC. Astonishingly, Pic stimulated rapid mucin secretion in goblet-like cells by activating the intracellular calcium pathway resulting from the PLC signal transduction pathway, leading to the production of DAG and releasing IP3, a second messenger of calcium signaling. Therefore, the dual activity of Pic, as a mucus secretagogue and a mucinase, is relevant in the context of carbon source generation and mucus layer penetration, allowing EAEC to live within the layer of mucus but also access epithelial cells.


Assuntos
Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Muco/metabolismo , Polissacarídeo-Liases/metabolismo , Secretagogos/metabolismo , Serina Endopeptidases/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Domínio Catalítico , Linhagem Celular , Infecções por Escherichia coli/microbiologia , Células Caliciformes/metabolismo , Células Caliciformes/microbiologia , Humanos , Mucina-5AC/metabolismo , Mucina-2/metabolismo
9.
Biochemistry ; 59(1): 18-25, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31566370

RESUMO

Sulfonylureas and glinides are commonly used oral insulin secretagogues (ISs) that act on the pancreatic ATP-sensitive potassium (KATP) channel to promote insulin secretion in order to lower the blood glucose level. Physiologically, KATP channels are inhibited by intracellular ATP and activated by Mg-ADP. Therefore, they sense the cellular energy status to regulate the permeability of potassium ions across the plasma membrane. The pancreatic KATP channel is composed of the pore-forming Kir6.2 subunits and the regulatory SUR1 subunits. Previous electrophysiological studies have established that ISs bind to the SUR1 subunit and inhibit the channel activity primarily by two mechanisms. First, ISs prevent Mg-ADP activation. Second, ISs inhibit the channel activity of Kir6.2 directly. Several cryo-EM structures of the pancreatic KATP channel determined recently have provided remarkable structural insights into these two mechanisms.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Secretagogos/metabolismo , Receptores de Sulfonilureias/metabolismo , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Conformação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
10.
Psychoneuroendocrinology ; 104: 80-88, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30818255

RESUMO

Aggressive behaviour is of crucial importance in the defence for limited resources including food and mates and involves central serotonin as well as dopamine signalling. As ghrelin modulates food intake and sexual behaviour we initially investigated the hypothesis that central ghrelin signalling regulates aggressive behaviour in the resident intruder paradigm in male mice. Moreover, interaction between ghrelin signalling and serotonergic, noradrenergic as well as dopaminergic neurotransmission in aggression was investigated. The relevance of ghrelin for human aggression per se as well as for aggression induced by alcohol was evaluated in a human genetic association study comprising young men (n = 784) from the normal population assessed for anti-social behaviours. The present study demonstrates that central ghrelin infusion, but not ghrelin administered systemically, increases aggression. Moreover aggressive behaviour is decreased by pharmacological suppression of the growth hormone secretagogue receptor-1 A (GHSR-1A) by JMV2959. As indicated by the ex vivo biochemical data serotonin, rather than dopamine or noradrenaline, in amygdala may have central roles for the ability of JMV2959 to reduce aggression. This link between central serotonin, GHSR-1A and aggression is further substantiated by the behavioural data showing that JMV2959 cannot decrease aggression following depletion of central serotonin signalling. The genetic association study demonstrates that males carrying the Leu72Leu genotype of the pre-pro-ghrelin gene and displaying hazardous alcohol use are more aggressive when compared to the group carrying the Met-allele. Collectively, this contributes to the identification of central ghrelin pathway as an important modulator in the onset of aggressive behaviours in male mice.


Assuntos
Agressão/fisiologia , Grelina/genética , Grelina/metabolismo , Adolescente , Tonsila do Cerebelo/metabolismo , Animais , Dopamina , Grelina/fisiologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Secretagogos/metabolismo , Serotonina/metabolismo , Serotonina/fisiologia , Transdução de Sinais , Triazóis/farmacologia
11.
Invest Ophthalmol Vis Sci ; 60(1): 255-264, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30649152

RESUMO

Purpose: Exposure to airborne particulate matter can induce ocular surface damage and inflammation. We evaluated the effects of a topical mucin secretagogue on the mitigation of ocular surface damage induced by exposure to airborne carbon black (CB). Methods: Sprague-Dawley rats were exposed to ambient CB for 2 hours twice daily for 5 days. Corneal staining score and tear lactic dehydrogenase (LDH) activity were measured to evaluate ocular surface damage. Serum immunoglobulin (Ig) G and IgE levels and the sizes of cervical lymph nodes were also measured. The expressions of interleukin (IL)-4, IL-17, and interferon (IFN)-γ were measured by Western blot analysis. Diquafosol tetrasodium was instilled six times a day for 5 days, and the extent of ocular surface damage was evaluated. Results: After exposure to airborne CB, the median corneal staining score and LDH activity were significantly increased. Serum IgG and IgE levels and the sizes of cervical lymph nodes were also significantly increased. Additionally, the expression of IL-4 and IFN-γ was elevated in the anterior segment of the eyeball. Furthermore, the expression of IL-4, IL-17, and IFN-γ was elevated in the cervical lymph nodes. When exposed to airborne black carbon, topical diquafosol tetrasodium significantly increased tear MUC5AC concentration and decreased tear LDH activity. Conclusions: Exposure to airborne CB induced ocular surface damage and increased proinflammatory cytokines in the eyes and cervical lymph nodes. Topical mucin secretagogues seem to have a protective effect on the ocular surface against exposure to airborne particulate matters.


Assuntos
Doenças da Córnea/prevenção & controle , Reação a Corpo Estranho/prevenção & controle , Mucina-5AC/metabolismo , Material Particulado/efeitos adversos , Polifosfatos/uso terapêutico , Agonistas do Receptor Purinérgico P2/uso terapêutico , Secretagogos/metabolismo , Nucleotídeos de Uracila/uso terapêutico , Animais , Western Blotting , Doenças da Córnea/etiologia , Doenças da Córnea/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/metabolismo , Imunoglobulina E/sangue , Imunoglobulina G/sangue , L-Lactato Desidrogenase/metabolismo , Linfonodos/metabolismo , Linfonodos/patologia , Masculino , Pescoço , Ratos , Ratos Sprague-Dawley , Fuligem/efeitos adversos , Lágrimas/enzimologia
12.
Cell Rep ; 24(1): 209-223.e6, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972782

RESUMO

SIRT3 is a nicotinamide adenine dinucleotide (NAD+)-dependent mitochondrial protein deacetylase purported to influence metabolism through post-translational modification of metabolic enzymes. Fuel-stimulated insulin secretion, which involves mitochondrial metabolism, could be susceptible to SIRT3-mediated effects. We used CRISPR/Cas9 technology to manipulate SIRT3 expression in ß cells, resulting in widespread SIRT3-dependent changes in acetylation of key metabolic enzymes but no appreciable changes in glucose- or pyruvate-stimulated insulin secretion or metabolomic profile during glucose stimulation. Moreover, these broad changes in the SIRT3-targeted acetylproteome did not affect responses to nutritional or ER stress. We also studied mice with global SIRT3 knockout fed either standard chow (STD) or high-fat and high-sucrose (HFHS) diets. Only when chronically fed HFHS diet do SIRT3 KO animals exhibit a modest reduction in insulin secretion. We conclude that broad changes in mitochondrial protein acetylation in response to manipulation of SIRT3 are not sufficient to cause changes in islet function or metabolism.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Hipernutrição/metabolismo , Proteoma/metabolismo , Sirtuína 3/metabolismo , Acetilação , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Células Clonais , Dieta Hiperlipídica , Glucose/farmacologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Mutação/genética , Ratos , Secretagogos/metabolismo , Sacarose , Transgenes
13.
Diabetes Obes Metab ; 20(8): 1817-1828, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29687585

RESUMO

Type 2 diabetes mellitus is now a worldwide health problem with increasing prevalence. Mounting efforts have been made to treat, prevent and predict this chronic disease. In recent years, increasing evidence from mice and clinical studies suggests that bone-derived molecules modulate glucose metabolism. This review aims to summarize our current understanding of the interplay between bone and glucose metabolism and to highlight potential new means of therapeutic intervention. The first molecule recognized as a link between bone and glucose metabolism is osteocalcin (OCN), which functions in its active form, that is, undercarboxylated OCN (ucOC). ucOC acts in promoting insulin expression and secretion, facilitating insulin sensitivity, and favouring glucose and fatty acid uptake and utilization. A second bone-derived molecule, lipocalin2, functions in suppressing appetite in mice through its action on the hypothalamus. Osteocytes, the most abundant cells in bone matrix, are suggested to act on the browning of white adipose tissue and energy expenditure through secretion of bone morphogenetic protein 7 and sclerostin. The involvement of bone resorption in glucose homeostasis has also been examined. However, there is evidence indicating the implication of the receptor activator of nuclear factor κ-B ligand, neuropeptide Y, and other known and unidentified bone-derived factors that function in glucose homeostasis. We summarize recent advances and the rationale for treating, preventing and predicting diabetes by skeleton intervention.


Assuntos
Osso e Ossos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Modelos Biológicos , Estado Pré-Diabético/tratamento farmacológico , Animais , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Regulação do Apetite/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/prevenção & controle , Metabolismo Energético/efeitos dos fármacos , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Lipocalina-2/genética , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Lipocalina-2/uso terapêutico , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/uso terapêutico , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteocalcina/farmacologia , Osteocalcina/uso terapêutico , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Estado Pré-Diabético/prevenção & controle , Ligante RANK/genética , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Ligante RANK/uso terapêutico , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Secretagogos/metabolismo , Secretagogos/farmacologia , Secretagogos/uso terapêutico
14.
Front Immunol ; 9: 3027, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619367

RESUMO

The human ortholog MRGPRX2 and the mice ortholog, Mrgprb2 are activated by basic secretagogues and neurokinins. A number of commonly used small-molecule drugs (e.g., neuromuscular blocking agents, fluoroquinolones, vancomycin) have been recently shown to activate these receptors under in vitro experimental conditions, what results in mast cell degranulation. The above drugs are also known to cause IgE-mediated anaphylactic reactions in allergic patients. The new findings on mechanisms of drug-induced mast cell degranulation may modify the current management of drug hypersensitivity reactions. Clinical interpretation of mild drug-provoked hypersensitivity reactions, interpretation of skin test with a drug of interest or further recommendations for patients suspected of drug allergy are likely to be reconsidered. In the paper we discussed future directions in research on identification and differentiation of MRGPRX2-mediated and IgE-dependent mast cell degranulation in patients presenting clinical features of drug-induced hypersensitivity reactions.


Assuntos
Hipersensibilidade a Drogas/metabolismo , Mastócitos/imunologia , Proteínas do Tecido Nervoso/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/imunologia , Animais , Degranulação Celular , Hipersensibilidade a Drogas/imunologia , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Camundongos , Secretagogos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA