Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 294(6): 1441-1453, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31214764

RESUMO

Soil salinization is one major constraint to plant geographical distribution, yield, and quality, and as an ideal plant for the "greening" of flat-roofed buildings, Sedum lineare Thunb. has strong tolerance against a variety of environmental adversities including salinity with the underlying mechanism still remaining unknown. In this study, we performed de novo transcriptome sequencing on leaf and root samples of NaCl-treated S. lineare Thunb. and identified 584 differentially expressed genes (DEGs), which were further annotated by gene function classification and pathway assignments using the public data repositories. In addition to the increased gene expression level verified by qRT-PCR, the elevated activities of the corresponding enzymes were also demonstrated for peroxidase (POD), glutathione peroxidases (GPX), and cysteine synthase (CSase) in the NaCl-treated roots. Furthermore, two highly inducible genes without known functions related to salt tolerance were selected to be overexpressed and tested for their effects on salt tolerance in the model plant, Arabidopsis thaliana. Upon 150 mM NaCl treatment, 35S:SlCXE but not 35S:SlCYP72A transgenic Arabidopsis seedlings exhibited improved salt resistance as shown by the increased seed germination rates and longer primary roots of transgenic seedlings when compared to wild-type plants. Taken together, this work laid a foundation for a better understanding of the salt adaptation mechanism of S. lineare Thunb. and genes identified could serve as useful resources for the development of more salt-tolerant varieties of other species through genetic engineering.


Assuntos
Estresse Salino/genética , Sedum/genética , Transcriptoma , Arabidopsis/genética , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/genética , Sedum/anatomia & histologia , Sedum/enzimologia , Análise de Sequência de RNA
2.
Int J Phytoremediation ; 17(1-6): 382-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25409252

RESUMO

Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg(-1) of Cd and 241 mg kg(-1) Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+-N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9-88.3 and 2691-4276 mg kg(-1), respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg(-1), respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.


Assuntos
Cádmio/metabolismo , Recuperação e Remediação Ambiental/métodos , Fertilizantes/análise , Nitrogênio/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Sedum/metabolismo , Poluentes do Solo/metabolismo , Urease/antagonistas & inibidores , Zinco/metabolismo , Biodegradação Ambiental , Recuperação e Remediação Ambiental/instrumentação , Nitrificação , Proteínas de Plantas/metabolismo , Sedum/enzimologia , Poluentes do Solo/análise , Urease/metabolismo
3.
Biotechnol Lett ; 33(9): 1865-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21516315

RESUMO

The Lhcb2 gene from hyperaccumulator Sedum alfredii was up-regulated more than three-fold while the non-hyperaccumulator accumulated one or two-fold higher amount of the mRNA than control plants under different concentrations of Cd(2+) for 24 h. Lhcb2 expression was up-regulated more than five-fold in a non-hyperaccumulator S. alfredii when exposed to 2 µM Cd(2+) or 50 µM Zn(2+) for 8 d and the hyperaccumulator had over two-fold more mRNA abundance than the control plants. Over-expression of SaLhcb2 increased the shoot biomass by 14-41% and the root biomass by 21-57% without Cd(2+) treatment. Four transgenic tobacco lines (L5, L7, L10 and L11) possessed higher shoot biomass than WT plants with Cd(2+). Four transgenic lines (L7, L8, L10 and L11) accumulated 6-35% higher Cd(2+) amounts in shoots than the wild type plants.


Assuntos
Cádmio/metabolismo , Proteínas de Ligação à Clorofila/biossíntese , Regulação da Expressão Gênica de Plantas , Sedum/enzimologia , Sedum/genética , Zinco/metabolismo , Biomassa , Cátions Bivalentes/metabolismo , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/biossíntese , Sedum/crescimento & desenvolvimento , Sedum/metabolismo , Análise de Sequência de DNA , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
4.
J Integr Plant Biol ; 50(2): 129-40, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18713434

RESUMO

The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02 mmol/L Pb, 0.1 mmol/L Pb and 0.1 mmol/L Pb/0.1 mmol/L ethylenediaminetetraacetic acid (EDTA) for 6 days. With the increasing Pb level, the Pb concentration in the shoots of AE plants enhanced accordingly, and EDTA supply helped 51% of Pb translocation to shoots of AE compared with those treated with 0.1 mmol/L Pb alone. Moreover, the presence of EDTA alleviated Pb phytotoxicity through changes in plant biomass, root morphology and chlorophyll contents. Lead toxicity induced hydrogen peroxide (H2O2) accumulation and lipid peroxidation in both ecotypes of S. alfredii. The activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), ascorbate peroxidase, and dehydroascorbate reductase elevated in both leaves and roots of AE as well as in leaves of NAE with the increasing Pb levels, but SOD and G-POD declined in roots of NAE. Enhancement in glutathione reductase activity was only detected in roots of NAE while a depression in catalase activity was recorded in the leaves of NAE. A significant enhancement in glutathione and ascorbic acid (AsA)levels occurred in both ecotypes exposed to Pb and Pb/EDTA treatment compared with the control, however, the differences between these two treatments were insignificant. The dehydroascorbate (DHA) contents in roots of both ecotypes were 1.41 to 11.22-fold higher than those in leaves, whereas the ratios of AsA to DHA (1.38 to 6.84) in leaves altering more to the reduced AsA form were much higher than those in roots. These results suggested that antioxidative enzymes and antioxidants play an important role in counteracting Pb stress in S. alfredii.


Assuntos
Antioxidantes/metabolismo , Chumbo/farmacologia , Sedum/crescimento & desenvolvimento , Sedum/metabolismo , Ácido Ascórbico/metabolismo , Ácido Desidroascórbico/metabolismo , Ácido Edético/farmacologia , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Chumbo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sedum/efeitos dos fármacos , Sedum/enzimologia
5.
J Hazard Mater ; 156(1-3): 387-97, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18242844

RESUMO

Plant growth, ultrastructural and antioxidant adaptations and glutathione biosynthesis in Cd-hyperaccumulating ecotype Sedum alfredii Hance (HE) countering high Cd environment were investigated and compared with its non Cd-hyperaccumulating ecotype (NHE). Cadmium exposure resulted in significant ultrastructural changes in root meristem and leaf mesophyll cells of S. alfredii, but damage was more pronounced in NHE even when Cd concentrations were one-tenth of those applied to HE. Cadmium stress damaged chloroplasts causing imbalanced lamellae formation coupled with early leaf senescence. Histochemical results revealed that glutathione (GSH) biosynthesis inhibition led to overproduction of hydrogen peroxide (H(2)O(2)) and superoxide radical (O(2)(*-)) in HE but not in NHE. Differences were noted in both HE and NHE for catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) activities under various Cd stress levels. No relationship was found between antioxidative defense capacity including activities of superoxide dismutase (SOD), CAT, GPX, APX and GR as well as ascorbic acid (AsA) contents and Cd tolerance in the two ecotypes of S. alfredii. The GSH biosynthesis induction in root and shoot exposed to elevated Cd conditions may be involved in Cd tolerance and hyperaccumulation in HE of S. alfredii H.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Sedum/efeitos dos fármacos , Ascorbato Peroxidases , Ácido Ascórbico/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura , Sedum/enzimologia , Sedum/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
6.
Environ Toxicol ; 23(4): 517-29, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18214940

RESUMO

Hydroponics studies were conducted to investigate the antioxidant adaptations, ascorbate and glutathione metabolism in hyperaccumulating ecotype of Sedum alfredii (HE) exposed to high Cd environment, when compared with its nonhyperaccumulating ecotype (NHE). Exposure to Cd induced a burst of oxidative stress in both ecotypes which was evident by the sharp increase in hydrogen peroxide (H(2)O(2)) contents and lipid peroxidation. Buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, did not affect H(2)O(2) concentrations as well as growth of both ecotypes in the absence of Cd. However, compared with Cd application alone, BSO combined with Cd treatment caused a substantial augmentation of H(2)O(2) accumulation accompanied by a reduction in Cd concentrations in roots and leaves of HE at the end of treatment, which may rule out the possibility that GSH biosynthesis may play an important role as a signal of the stress regulation. No efficient and superior enzymatic antioxidant defense mechanisms against Cd-imposed oxidative stress existed in both NHE and HE, but the essential nonenzymatic components like ascorbic acid (AsA) and GSH played a prominent role in tolerance against Cd. Cadmium stimulated a notable rise in AsA concentration in both ecotypes soon after the application of treatment. A preferential Cd-stress response in HE was suggested to changes in the GSH pool, where acclimation was marked by increased GSH concentrations.


Assuntos
Ácido Ascórbico/metabolismo , Cádmio/farmacologia , Glutationa/metabolismo , Sedum/efeitos dos fármacos , Sedum/enzimologia , Antioxidantes , Biodegradação Ambiental , Catalase/genética , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Peroxidase/genética , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA