Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101470

RESUMO

Selaginellaceae, originated in the Carboniferous and survived the Permian-Triassic mass extinction, is the largest family of lycophyte, which is sister to other tracheophytes. It stands out from tracheophytes by exhibiting extraordinary habitat diversity and lacking polyploidization. The organelle genome-based phylogenies confirmed the monophyly of Selaginella, with six or seven subgenera grouped into two superclades, but the phylogenetic positions of the enigmatic Selaginella sanguinolenta clade remained problematic. Here, we conducted a phylogenomic study on Selaginellaceae utilizing large-scale nuclear gene data from RNA-seq to elucidate the phylogeny and explore the causes of the phylogenetic incongruence of the S. sanguinolenta clade. Our phylogenetic analyses resolved three different positions of the S. sanguinolenta clade, which were supported by the sorted three nuclear gene sets, respectively. The results from the gene flow test, species network inference, and plastome-based phylogeny congruently suggested a probable hybrid origin of the S. sanguinolenta clade involving each common ancestor of the two superclades in Selaginellaceae. The hybrid hypothesis is corroborated by the evidence from rhizophore morphology and spore micromorphology. The chromosome observation and Ks distributions further suggested hybridization accompanied by polyploidization. Divergence time estimation based on independent datasets from nuclear gene sets and plastid genome data congruently inferred that allopolyploidization occurred in the Early Triassic. To our best knowledge, the allopolyploidization in the Mesozoic reported here represents the earliest record of tracheophytes. Our study revealed a unique triad of phylogenetic positions for a hybrid-originated group with comprehensive evidence and proposed a hypothesis for retaining both parental alleles through gene conversion.


Assuntos
Filogenia , Poliploidia , Selaginellaceae , Selaginellaceae/genética , Transcriptoma , Fluxo Gênico
2.
Nutrients ; 16(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39064820

RESUMO

Selaginella tamariscina is a perennial plant that is used for diverse diseases. This study investigated whether Selaginella tamariscina has an antiviral effect against influenza A virus (IAV) infection. We used green fluorescent protein (GFP)-tagged influenza A virus (IAV) to examine the effect of Selaginella tamariscina ethanol extract (STE) on influenza viral infection. Fluorescence microscopy and flow cytometry showed that STE potently represses GFP expression by the virus, dose-dependently. STE significantly inhibited the expression of the IAV M2, NP, HA, NA, NS1, and PB2 proteins. Time-of-addition and hemagglutination inhibition assays showed that STE has an inhibitory effect on hemagglutinin and viral binding on the cells at an early infection time. In addition, STE exerted a suppressive effect on the neuraminidase activity of the H1N1 and H3N2 IAVs. Furthermore, dose-dependently, STE inhibited the cytopathic effect induced by H3N2, as well as by H1N1 IAV. Especially in the presence of 200 µg/mL STE, the cytopathic effect was completely blocked. Our findings suggest that STE has antiviral efficacy against IAV infection; thus, it could be developed as a natural IAV inhibitor.


Assuntos
Antivirais , Etanol , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Neuraminidase , Extratos Vegetais , Selaginellaceae , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Animais , Células Madin Darby de Rim Canino , Selaginellaceae/química , Cães , Vírus da Influenza A/efeitos dos fármacos , Hemaglutininas/metabolismo , Influenza Humana/tratamento farmacológico
3.
Int J Biol Macromol ; 269(Pt 2): 131918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697418

RESUMO

Polygalacturonases (PGs) can modulate chemistry and mechanical properties of the plant cell wall through the degradation of pectins, one of its major constituents. PGs are largely used in food, beverage, textile, and paper industries to increase processes' performances. To improve the use of PGs, knowledge of their biochemical, structural and functional features is of prime importance. Our study aims at characterizing SmoPG1, a polygalacturonase from Selaginella moellendorffii, that belongs to the lycophytes. Transcription data showed that SmoPG1 was mainly expressed in S. moellendorffii shoots while phylogenetic analyses suggested that SmoPG1 is an exo-PG, which was confirmed by the biochemical characterization following its expression in heterologous system. Indeed, LC-MS/MS oligoprofiling using various pectic substrates identified galacturonic acid (GalA) as the main hydrolysis product. We found that SmoPG1 was most active on polygalacturonic acid (PGA) at pH 5, and that its activity could be modulated by different cations (Ca2+, Cu2+, Fe2+, Mg2+, Mn2+, Na2+, Zn2+). In addition, SmoPG1 was inhibited by green tea catechins, including (-)-epigallocatechin-3-gallate (EGCG). Docking analyses and MD simulations showed in detail amino acids responsible for the SmoPG1-EGCG interaction. Considering its expression yield and activity, SmoPG1 appears as a prime candidate for the industrial production of GalA.


Assuntos
Pectinas , Poligalacturonase , Selaginellaceae , Poligalacturonase/metabolismo , Poligalacturonase/química , Poligalacturonase/genética , Selaginellaceae/química , Selaginellaceae/genética , Selaginellaceae/enzimologia , Pectinas/metabolismo , Pectinas/química , Filogenia , Especificidade por Substrato , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Hidrólise , Ácidos Hexurônicos
4.
J Biol Chem ; 300(5): 107252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569936

RESUMO

Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP , Modelos Moleculares , Proteínas de Plantas , Proteínas RGS , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Oryza/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Proteínas RGS/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Relação Estrutura-Atividade , Selaginellaceae/genética , Selaginellaceae/metabolismo , Estrutura Quaternária de Proteína
5.
Ecotoxicol Environ Saf ; 277: 116375, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677071

RESUMO

Eco-friendly reagents derived from plants represent a promising strategy to mitigate the occurrence of toxic cyanobacterial blooms. The use of an amentoflavone-containing Selaginella tamariscina extract (STE) markedly decreased the number of Microcystis aeruginosa cells, thus demonstrating significant anti-cyanobacterial activity. In particular, the Microcystis-killing fraction obtained from pulverized S. tamariscina using hot-water-based extraction at temperatures of 40 °C induced cell disruption in both axenic and xenic M. aeruginosa. Liquid chromatographic analysis was also conducted to measure the concentration of amentoflavone in the STE, thus supporting the potential M. aeruginosa-specific killing effects of STE. Bacterial community analysis revealed that STE treatment led to a reduction in the relative abundance of Microcystis species while also increasing the 16S rRNA gene copy number in both xenic M. aeruginosa NIBR18 and cyanobacterial bloom samples isolated from a freshwater environment. Subsequent testing on bacteria, cyanobacteria, and algae isolated from freshwater revealed that STE was not toxic for other taxa. Furthermore, ecotoxicology assessment involving Aliivibrio fischeri, Daphnia magna, and Danio rerio found that high STE doses immobilized D. magna but did not impact the other organisms, while there was no change in the water quality. Overall, due to its effective Microcystis-killing capability and low ecotoxicity, aqueous STE represents a promising practical alternative for the management of Microcystis blooms.


Assuntos
Microcystis , Extratos Vegetais , Selaginellaceae , Microcystis/efeitos dos fármacos , Selaginellaceae/química , Animais , Extratos Vegetais/farmacologia , Daphnia/efeitos dos fármacos , Proliferação Nociva de Algas , RNA Ribossômico 16S , Água Doce/microbiologia
6.
Microsc Res Tech ; 87(7): 1413-1428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385770

RESUMO

The present study was carried out to record the color, size, and ornamentation of megaspores in 18 species of the family Selaginellaceae from Arunachal Pradesh using scanning electron microscope (SEM) and light microscope (LM). Electron microscopic study of the spore features revealed the type of ornamentation and microsculptural detail. SEM study on megaspore of Selaginella pentagona (S. pentagona), Selaginella tenuifolia, Selaginella semicordata, and Selaginella chrysorrhizos is presented for the first time. Variation in the megaspore ornamentation is noted at the interspecific level and intraspecific level in some cases. Examination of the megaspores under study found all the megaspores as trilete, with a size ranging from 116 to 560 µm in diameter. Taxonomic key is prepared to differentiate the species. Short descriptions of megaspores are provided and supported by photo plates. New features are recorded for seven species. The study contributes to the separation of species within the genus Selaginella based on the spore feature and brings forward the use of spore as a diagnostic tool in the taxonomy of the genus. These works contribute to the systematic of the family Selaginellaceae and provide useful information in the field of palynology. RESEARCH HIGHLIGHTS: Study on megaspore features of Selaginella species collected from Arunachal Pradesh, using SEM and LM. Taxonomic key is provided for each species based on megaspores features. New megaspore features are recorded for the seven species. The study brings forward the use of spore as a diagnostic tool in the taxonomy of the genus. These works provide useful information in the field of systematic and palynology.


Assuntos
Microscopia Eletrônica de Varredura , Selaginellaceae , Selaginellaceae/anatomia & histologia , Selaginellaceae/classificação , Selaginellaceae/ultraestrutura , Índia , Esporos/ultraestrutura , Microscopia
7.
Protoplasma ; 261(1): 143-159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37612526

RESUMO

Within the ancient vascular plant lineage known as lycophytes, many Selaginella species contain only one giant chloroplast in the upper epidermal cells of the leaf. In deep-shade species, such as S. martensii, the chloroplast is cup-shaped and the thylakoid system differentiates into an upper lamellar region and a lower granal region (bizonoplast). In this report, we describe the ultrastructural changes occurring in the giant chloroplast hosted in the epidermal cells of S. martensii during the daily relocation of the organelle. The process occurs in up to ca. 40% of the microphylls without the plants being exposed to high-light flecks. The relocated chloroplast loses its cup shape: first, it flattens laterally toward the radial cell wall and then assumes a more globular shape. The loss of the conical cell shape, the side-by-side lateral positioning of vacuole and chloroplast, and the extensive rearrangement of the thylakoid system to only granal cooperate in limiting light absorption. While the cup-shaped chloroplast emphasizes the light-harvesting capacity in the morning, the relocated chloroplast is suggested to support the renewal of the thylakoid system during the afternoon, including the recovery of photosystem II (PSII) from photoinhibition. The giant chloroplast repositioning is part of a complex reversible reshaping of the whole epidermal cell.


Assuntos
Selaginellaceae , Tilacoides , Tilacoides/ultraestrutura , Selaginellaceae/fisiologia , Cloroplastos/ultraestrutura , Complexo de Proteína do Fotossistema II , Folhas de Planta , Luz
8.
Phytochemistry ; 217: 113919, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952708

RESUMO

A phytochemical investigation of Selaginella tamariscina led to the isolation of 17 selaginellin derivatives. Their inhibitory activities against breast cancer cells were screened, and preliminary structure-activity relationships were also established. Among them, dimeric selaginellin 17 showed potential activity against MDA-MB-231 cells with an IC50 value of 3.2 ± 0.1 µM, corresponding to 4-fold higher potency than the reference compound 5-FU (IC50 14.8 ± 0.2 µM). Mechanistic studies indicated that 17 could cause G2/M phase arrest in MDA-MB-231 cells and induce apoptosis accompanied by increased ROS levels.


Assuntos
Neoplasias , Selaginellaceae , Estrutura Molecular , Compostos de Bifenilo/farmacologia , Relação Estrutura-Atividade
9.
Curr Biol ; 33(19): 4085-4097.e5, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37716350

RESUMO

The evolution of roots allowed vascular plants to adapt to land environments. Fossil evidence indicates that roots evolved independently in euphyllophytes (ferns and seed plants) and lycophytes, the two lineages of extant vascular plants. Based on a high-quality genome assembly, mRNA sequencing (mRNA-seq) data, and single-cell RNA-seq data for the lycophyte Selaginella kraussiana, we show that the two root origin events in lycophytes and euphyllophytes adopted partially similar molecular modules in the regulation of root apical meristem (RAM) development. In S. kraussiana, the RAM initiates from the rhizophore primordium guided by auxin and duplicates itself by dichotomous branching. The auxin signaling pathway directly upregulates euAINTEGUMENTAb (SkeuANTb), and then SkeuANTb directly promotes the expression of SkeuANTa and the WUSCHEL-RELATED HOMEOBOX13b (SkWOX13b) for RAM maintenance, partially similar to the molecular pathway involving the euANT-branch PLETHORA (AtPLT) genes and AtWOX5 in root initiation in the seed plant Arabidopsis thaliana. Other molecular modules, e.g., SHORT-ROOT and SCARECROW, also have partially similar expression patterns in the RAMs of S. kraussiana and A. thaliana. Overall, our study not only provides genome and transcriptome tools of S. kraussiana but also indicates the employment of some common molecular modules in RAMs during root origins in lycophytes and euphyllophytes.


Assuntos
Selaginellaceae , Traqueófitas , Meristema/metabolismo , Selaginellaceae/genética , Transcriptoma , Ácidos Indolacéticos/metabolismo , RNA Mensageiro/metabolismo , Raízes de Plantas , Regulação da Expressão Gênica de Plantas
10.
Expert Rev Mol Med ; 25: e27, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534437

RESUMO

BACKGROUND: Metallic nanoparticles from different natural sources exhibit superior therapeutic options as compared to the conventional methods. Selaginella species have attracted special attention of researchers worldwide due to the presence of bioactive molecules such as flavonoids, biflavonoids, triterpenes, steroids, saponins, tannins and other secondary metabolites that exhibit antimicrobial, antiplasmodial, anticancer and anti-inflammatory activities. Environment friendly green synthesised silver nanoparticles from Selaginella species provide viable, safe and efficient treatment against different fungal pathogens. OBJECTIVE: This systematic review aims to summarise the literature pertaining to superior antifungal ability of green synthesised silver nanoparticles using plant extracts of Selaginella spp. in comparison to both aqueous and ethanolic raw plant extracts by electronically collecting articles from databases. METHODS: The recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis were taken into consideration while preparing this review. The titles and abstracts of the collected data were stored in Endnote20 based on the inclusion and exclusion criteria. The search strategy included literature from established sources like PubMed, Google Scholar and Retrieval System Online using subject descriptors. RESULTS: The search yielded 60 articles with unique hits. After removal of duplications, 46 articles were identified, 40 were assessed and only seven articles were chosen and included in this review based on our eligibility criteria. CONCLUSION: The physicochemical and preliminary phytochemical investigations of Selaginella suggest higher drug potency of nanoparticles synthesised from plant extract against different diseases as compared to aqueous and ethanolic plant extracts. The study holds great promise as the synthesis of nanoparticles involves low energy consumption, minimal technology and least toxic effects.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selaginellaceae , Humanos , Nanopartículas Metálicas/química , Selaginellaceae/química , Prata/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Ultrason Sonochem ; 98: 106491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37379745

RESUMO

In this study, the deep eutectic solvent based ultrasound-assisted extraction (DES-UAE) was investigated for the efficient and environmentally friendly extraction of Selaginella chaetoloma total biflavonoids (SCTB). As an extractant for optimization, tetrapropylaminium bromide-1,4-butanediol (Tpr-But) was employed for the first time. 36 DESs were created, with Tpr-But producing the most effective results. Based on response surface methodology (RSM), the greatest extraction rate of SCTB was determined to be 21.68 ± 0.78 mg/g, the molar ratio of HBD to HBA was 3.70:1, the extraction temperature was 57 °C, and the water content of DES was 22 %. In accordance with Fick's second rule, a kinetic model for the extraction of SCTB by DES-UAE has been derived. With correlation coefficients 0.91, the kinetic model of the extraction process was significantly correlated with the general and exponential equations of kinetics, and some important kinetic parameters such as rate constants, energy of activation and raffinate rate were determined. In addition, molecular dynamics simulations were used to study the extraction mechanisms generated by different solvents. Comparing the effect of several extraction methods on S.chaetoloma using ultrasound-assisted extraction and conventional methods, together with SEM examination, revealed that DES-UAE not only saved time but also enhanced SCTB extraction rate by 1.5-3 folds. SCTB demonstrated superior antioxidant activity in three studies in vitro. Furthermore, the extract could suppress the growth of A549, HCT-116, HepG2, and HT-29 cancer cells. Alpha-Glucosidase (AG) inhibition experiment and molecular docking studies suggested that SCTB exhibited strong inhibitory activity against AG and potential hypoglycemic effects. The results of this study indicated that a Tpr-But-based UAE method was suitable for the efficient and environmentally friendly extraction of SCTB, and also shed light on the mechanisms responsible for the increased extraction efficiency, which could aid in the application of S.chaetoloma and provide insight into the extraction mechanism of DES.


Assuntos
Biflavonoides , Selaginellaceae , Solventes , Biflavonoides/farmacologia , Solventes Eutéticos Profundos , Simulação de Acoplamento Molecular
12.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375139

RESUMO

Six compounds including three new benzophenones, selagibenzophenones D-F (1-3), two known selaginellins (4-5) and one known flavonoid (6), were isolated from Selaginella tamariscina. The structures of new compounds were established by 1D-, 2D-NMR and HR-ESI-MS spectral analyses. Compound 1 represents the second example of diarylbenzophenone from natural sources. Compound 2 possesses an unusual biphenyl-bisbenzophenone structure. Their cytotoxicity against human hepatocellular carcinoma HepG2 and SMCC-7721 cells and inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells were evaluated. Compound 2 showed moderate inhibitory activity against HepG2 and SMCC-7721 cells, and compounds 4 and 5 showed moderate inhibitory activity to HepG2 cells. Compounds 2 and 5 also exhibited inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production.


Assuntos
Selaginellaceae , Humanos , Estrutura Molecular , Selaginellaceae/química , Óxido Nítrico , Lipopolissacarídeos/farmacologia , Benzofenonas/farmacologia
13.
Chem Biodivers ; 20(7): e202300387, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37336788

RESUMO

Three new compounds (1-2, 14), as well as 22 known compounds (3-13, 15-25), were extracted for the first time from the Selaginella effusa Alston (S. effusa). For the unknown compounds, the planar configurations were determined via NMR and by high-resolution mass spectrometry, while their absolute configurations were determined by calculated electronic circular dichroism (ECD), and the configuration of the stereogenic center of biflavones 4-5 were established for the first time. The pure compounds (1-25) were tested in vitro to determine the inhibitory activity of the enzyme-catalyzed reactions. Compounds 1-9 inhibited α-glucosidase with IC50 values ranging from 0.30±0.02 to 4.65±0.04 µM and kinetic analysis of enzyme inhibition indicated that biflavones 1-3 were mixed-type α-glucosidase inhibitors. Compounds 12-13 showed excellent inhibitory activity against urease, with compound 12 (IC50 =4.38±0.31 µM) showing better inhibitory activity than the positive control drug AHA (IC50 13.52±0.61 µM). In addition, molecular docking techniques were used to simulate inhibitor-enzyme binding and to estimate the binding posture of the α-glucosidase and urease catalytic sites.


Assuntos
Selaginellaceae , alfa-Glucosidases , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Selaginellaceae/metabolismo , Urease/metabolismo , Cinética , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular
14.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175435

RESUMO

Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.


Assuntos
Antineoplásicos , Biflavonoides , Selaginellaceae , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Biflavonoides/química , Extratos Vegetais/farmacologia , Selaginellaceae/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Disponibilidade Biológica
15.
Chem Biodivers ; 20(4): e202300109, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786210

RESUMO

Three new selaginellin derivatives, selaginpulvilins V-X (1-3), together with seven known analogs (4-10) were isolated from whole plants of Selaginella pulvinata. Their structures were determined by extensive spectroscopic methods including 1D and 2D NMR, HR-ESI-MS and chemical derivatization method. Compound 1 represents a rare example of naturally occurring selaginellin with an alkynylphenol-trimmed skeleton. Biological evaluation showed that compounds 2, 6 and 8 displayed moderate inhibition against α-glucosidase with IC50 values of 3.71, 2.04 and 4.00 µM, respectively.


Assuntos
Selaginellaceae , Estrutura Molecular , Selaginellaceae/química , alfa-Glucosidases , Espectroscopia de Ressonância Magnética
16.
Biomed Chromatogr ; 37(5): e5611, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840461

RESUMO

Biflavonoids are naturally occurring compounds consisting of two flavonoid moieties that have received substantial attention from researchers. Although many kinds of biflavonoids are typically distributed in Selaginella uncinata with hypoglycemic effect, their anti-α-glucosidase activities are not yet clear. In this study, a ligand fishing strategy for fast screening of α-glucosidase inhibitors from S. uncinata was proposed. α-Glucosidase was first immobilized on Fe3 O4 magnetic nanoparticles (MNPs) and then the α-glucosidase-functionalized MNPs were incubated with crude extracts of S. uncinata to fish out the ligands. Furthermore, considering the similarity and easy confusion of the structures of biflavonoids, the fragmentation patterns of different types of biflavonoids were studied. Based on this, 11 biflavonoids ligands with α-glucosidase inhibitory activities were accurately and quickly identified from S. uncinata with ultra-high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry. Furthermore, these ligands were confirmed to be potential inhibitors through the in vitro inhibitory assay and molecular docking.


Assuntos
Biflavonoides , Selaginellaceae , Animais , alfa-Glucosidases , Biflavonoides/farmacologia , Biflavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Ligantes , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Selaginellaceae/química , Espectrometria de Massas em Tandem/métodos
17.
J Ethnopharmacol ; 308: 116174, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36669597

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Selaginella moellendorffii (SM) has been applied as an ethnic drug to treat conditions such as osteoporosis, idiopathic thrombocytopenic purpura, and chronic inflammation. It is known to be rich in flavonoids, including apigenin glycosides and unique elements of bioflavonoids. AIM OF THE STUDY: To investigate estrogen-like constituents of SM and the possible mechanism. MATERIALS AND METHODS: We identified the main components in liquid chromatography and liquid chromatography-mass spectrometry. The estrogenic effects were examined using a recombinant yeast screening assay, an E-screen cell proliferation assay, and an in vivo uterotrophic assay. RESULTS: Flavonoid glycosides extract, some flavonoid glycosides, and apigenin showed estrogen agonistic activity in the yeast screening assay. They also induced cell proliferation in estrogen receptor-positive (ER+) cells but not in estrogen receptor-negative (ER-) cells. Consistently, the protein expression of ERα, phosphorylation protein kinase B (p-AKT), phosphatidylinositol 3 kinase (PI3K), phosphorylation mammalian target of rapamycin (p-mTOR), phosphorylation 38,000-Da protein (p-P38), and phosphorylation extracellular-regulated kinase 1/2 (p-ERK1/2) elevated following treatment with flavonoid glycoside extract (P < 0.01 or P < 0.05). These effects could be blocked by ER antagonist or ERα antagonist but not be blocked by ERß antagonist. In vivo assay, flavonoid glycoside extract could significantly increase body weight, serum estradiol level, uterine wet weight, alter uterine morphology, and promote ERα protein expression (P < 0.01 or P < 0.05). CONCLUSIONS: ERα induction via mitogen-activated protein kinases (MAPK) and PI3K/Akt/mTOR pathways might be the possible mechanism underlying the phytoestrogen effect of SM, and the flavonoid glycosides might be the critical estrogenic constituents.


Assuntos
Receptores de Estrogênio , Selaginellaceae , Receptores de Estrogênio/metabolismo , Fitoestrógenos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Flavonoides/farmacologia , Glicosídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Apigenina/farmacologia , Saccharomyces cerevisiae , Transdução de Sinais , Estrogênios/farmacologia , Serina-Treonina Quinases TOR/metabolismo
18.
J Exp Bot ; 74(3): 889-908, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36433902

RESUMO

Methyl jasmonate (MeJA) induces various defence responses in seed plants, but for early plant lineages, information on the potential of jasmonates to elicit stress signalling and trigger physiological modifications is limited. The spikemoss Selaginella martensii was exposed to a range of MeJA concentrations (0, 10, 25, and 50 mM), and biogenic volatile organic compound (BVOC) emissions, photosynthetic rate (A), and stomatal conductance (gs) were continuously measured. In addition, changes in phytohormone concentrations and gene expression were studied. Enhancement of methanol, lipoxygenase pathway volatiles and linalool emissions, and reductions in A and gs, were MeJA dose-dependent. Before MeJA treatment, the concentration of 12-oxo-phytodienoic acid (OPDA) was 7-fold higher than jasmonic acid (JA). MeJA treatment rapidly increased OPDA and JA concentrations (within 30 min), with the latter more responsive. Some genes involved in BVOC biosynthesis and OPDA-specific response were up-regulated at 30 min after MeJA spraying, whereas those in the JA signalling pathway were not affected. Although JA was synthesized in S. martensii, OPDA was prioritized as a signalling molecule upon MeJA application. MeJA inhibited primary and enhanced secondary metabolism; we propose that fast-emitted linalool could serve as a marker of elicitation of stress-induced metabolism in lycophytes.


Assuntos
Reguladores de Crescimento de Plantas , Selaginellaceae , Reguladores de Crescimento de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo
19.
Drug Chem Toxicol ; 46(4): 625-633, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35635134

RESUMO

AIM: The aim of the study was to assess the toxicity profile of Selaginella bryopteris extract and evaluate its wound healing activity. METHODS: In vitro wound healing activity of S. bryopteris extract (5% and 10%) was performed using Clonogenic and Scratch assays. The toxicity profile of S. bryopteris extract ointment was evaluated on animals using acute toxicity and dermal toxicity tests. In vivo wound healing activity of S. bryopteris extract ointment (5% and 10%) was used to determine tensile strength in the incision wound healing model. RESULTS: Results exhibited that the extract was safe up to 2000 mg/kg per oral dose and non-reactive while applied topically. In vitro results showed that S. bryopteris extract closed the wound gap created by 97.13% in 48 h. The clonogenic assay revealed that the surviving factor for HaCaT cells and MEF cells was 0.78 and 0.85 after treated with 10% concentrations of S. bryopteris. The tensile strength exhibited by S. bryopteris 5% and 10% groups was 395.4 g and 558.5 g in comparison to the control group. CONCLUSION: Thus, S. bryopteris extract can be used as an alternative safe drug therapy against topical wounds.


Assuntos
Selaginellaceae , Ratos , Animais , Ratos Wistar , Extratos Vegetais/toxicidade , Pomadas , Cicatrização
20.
Phytomedicine ; 108: 154508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332384

RESUMO

BACKGROUND: Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear. PURPOSE: In this study, we focused on the TME to determine whether TBESD and Delicaflavone could restore anti-tumor immune response. METHODS: 4T1 tumor-bearing immunocompetent BALB/c mice and T cell-deficient nude mice were used to examine the effect of TBESD on T cell-mediated immunity in vivo. Multi-parameter flow cytometry was conducted to evaluate the impacts of TBESD on TME. Primary cells, including murine CD8+ T cells, tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were prepared to investigate the modulatory activities of TBESD on immune cells. It was further determined whether Delicaflavone or Amentoflavone, two typical functional biflavones from TBESD, mediated those effects of TBESD. Finally, the impacts of TBESD and Delicaflavone on Jak1/STAT6 signaling pathway were explored via western blot. RESULTS: We found that TBESD significantly reduced 4T1 tumor growth in immunocompetent BALB/c mice, but not in nude mice. This effect was associated with the regulation of TME, shown as an increase in functional T cells and M1 phenotype TAMs (M1-TAMs), and a decrease in M2 phenotype TAMs (M2-TAMs), monocytic-MDSCs (M-MDSCs) and regulatory T cells (Tregs) in TBESD-treated BALB/c mouse 4T1 tumors. It was found ex vivo that TBESD restrained the viability and immunosuppressive properties of M2-TAMs and M-MDSCs, especially for the loss of arginase-1 expression. Additionally, TBESD re-educated M2-TAMs to an M1 like phenotype. Further investigations determined that Delicaflavone predominantly mediated the immuno-modulatory activities of TBESD both ex vivo and in vivo. Finally, Delicaflavone and TBESD blocked Jak1/STAT6 signaling pathway in M2-TAMs and MDSCs. CONCLUSION: The present study suggests Delicaflavone as a potent natural inhibitor of M2-TAMs and MDSCs, which fills the gap in knowledge on the immuno-modulatory effects of TBESD and Delicaflavone, and could have translational implications to improve the efficacy of cancer immunotherapy.


Assuntos
Neoplasias , Selaginellaceae , Animais , Camundongos , Camundongos Nus , Linfócitos T CD8-Positivos , Células Mieloides , Camundongos Endogâmicos BALB C , Imunidade , Terapia de Imunossupressão , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA